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Flutter is an extremely significant academic topic in both aerodynamics and aircraft design. Since 
flutter can cause multiple types of phenomena including bifurcation, period doubling, and chaos, 
it becomes one of the most unpredictable instability phenomena. The complexity of modeling 
aeroelasticity of high flexibility wings will be substantially simplified by investigating the prospect of 
system identification techniques to forecast flutter velocity. Therefore, a novel neural network (NN)-
based method for aeroelastic system identification is proposed. The proposed NN-based approach 
constructs an NN framework of high flexibility wings flutter models with different materials and 
sizes, which can effectively predict the flutter velocity of flexible wings. The accuracy of the method is 
demonstrated by comparing with the simulation results.
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Wing flutter is a form of self-excited vibration with non-attenuated amplitude generated by an interaction of 
aerodynamic force, elastic restoring force, and inertial force1–3. Wing flutter will happen when the flying velocity 
exceeds a particular number, recognized as the “flutter velocity”. The amplitude of vibration and the dynamic 
stress within the structure can simultaneously grow dramatically when the wing achieves flutter, leading to the 
rapid disintegration of aircrafts and the eventual annihilation of structures4. Thus, any kind of flutter is prohibited 
inside the intended flight envelope5. Flutter investigating is presently conducted using essentially three methods: 
theoretical calculations6, wind tunnel tests7, and flutter flight tests8,9. Flutter flight tests and wind tunnel tests are 
both potentially dangerous and demand an enormous amount of labor and materials. In order to decrease the 
cycle and cost of flutter flight tests as well as their associated risks, it is crucial to propose a productive, affordable, 
and relatively low-risk flutter anticipation approach10. A significant subject in aeroelastic analysis, flight tests, 
and flutter airworthiness certification is how to accurately forecast the wing’s flutter characteristics throughout 
the flight envelope11–13. Contemporary civil aircraft and high-altitude solar-powered aircraft are heavily reliant 
on composite materials with the development of technology. For example, the Boeing 787, which uses composite 
materials, has the characteristics of light weight, high chord ratio and high flexibility. Therefore, developing a 
method to forecast the high flexibility wings’ flutter velocity is crucial in the present scenario.

High flexibility wings indicate the aircraft wings’ exceptional bending and flexibility. In contrast to conventional 
aircraft wings, high flexibility wings utilizes more flexible materials and design, allowing for increased bending 
or deformation during flight14,15. Furthermore, the aircraft mode will be dense given the high flexibility wings, 
which will complicate the flutter coupling relationship16. Consequently, one of the main factors influencing 
the flutter design of high aircraft will be the wings’ great degree of flexibility. One of the main methods for 
studying flutter velocity is nonlinear reduced-order models17,18. Huang et al.19. applied the nonlinear reduced-
order model to the transonic flutter analysis of the Isogai wing model accurately and efficiently. The application 
of control methods to solve structural problems has gained popularity in recent years due to advancements in 
modern control theory. One of the key subfields of system identification technology20 is the estimation of key 
parameters, which defines the behavior of the system and the determination of the mathematical model of the 
system behavior based on the input and output time function of the system. The research on the ability of system 
identification technology to predict flutter velocity can provide some guidance on aeroelastic difficulties with 
high flexible wings.

In recent years, data-driven machine learning approaches have provided effective approaches to solve many 
problems in multidisciplinary fields. As an important method in the field of machine learning, neural network 
(NN) model is widely used in many fields such as identification of aeroelastic systems because of its powerful 
nonlinear fitting ability. For example, NASA Langley Laboratory and Boeing Company cooperatively carried out 
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the aeroelastic response adaptive neural control (ANCAR)21 project. In their work, three different NN models 
were employed to obtain the flutter control rate, predictive control, and inverse model adjustment. In a transonic 
wind tunnel, the NACA0012 airfoil model was used to assess the control system, which demonstrated that the 
three-network adaptive control system can lessen wing model flutter in linear circumstances. Mattaboni and 
Quaranta22 used two feedforward NN models to control the flutter of the X-DIA model. They used a high number 
of theoretical data to train the network and extended the flight envelope by 15% when the flight envelope was 
uncontrolled. Pitt and Haudrich23 designed an NN architecture for the plug-in of small-aspect-ratio fighters. The 
network was trained with the mass and moment of inertia of the station nodes as input and the flutter velocity 
as output. The results showed that the network can predict the flutter velocity caused by additional plug. This 
method was also used to predict the new flutter velocity that changes due to the weight increasing or decreasing 
of the wing during the maintenance of a low aspect ratio fighter24. Mu et al.25 proposed novel approach of 
machine learning-based control law for the problem of active flutter suppression, which is efficient and effective 
in expanding the flutter boundaries. Based on the above, we apply neural networks to predicting flutter of high 
flexibility wings, so as to develop an efficient and accurate aeroelastic system identification approach.

Many existing studies usually focus on the flutter characteristics of wings with a single material or geometric 
size, while this paper analyzes the flutter characteristics by expanding to a variety of materials and sizes. 
Specifically, the neural network is trained by the flutter characteristic data, and the neural network flutter model 
of the flexible wing with metal materials, composite materials and geometric dimensions is established. The 
trained neural network is used to predict the flutter speed, and the flutter characteristics obtained by simulation 
are compared to verify the correctness of the method. It provides important support for the design, optimization 
and safety assessment of highly flexible wings in the aerospace field, and promotes the progress of technology 
in this field.

The rest of this paper is organized as follows. Section "High flexibility wings dynamics and flutter analysis" 
introduces the modeling and simulation of flutter velocity. The system identification and NN algorithm are 
introduced in "The architecture of neural networks" Sect.. "NN training for high flexibility wings flutter" Section 
establishes the NN models of metallic materials, composite materials, and the same materials with different 
geometric sizes of high flexibility wings. In "Predicting results of high flexibility wings’ flutter" Sect., the 
trained NN is used to predict the unknown flutter velocity of the high flexibility wing model. Conclusions are 
summarized in "Conclusion"Sect.

High flexibility wings dynamics and flutter analysis
Structural modeling based on plate model
The establishment of flutter model includes structural modeling and aerodynamic modeling. Structural 
modeling is generally based on beam model, plate model and solid structure model. The aerodynamic model 
generally simplifies the wing surface as a lifting surface, and the plug is simplified as a rotating body. In order 
to simplify the difficulty of modeling and provide enough data for subsequent system identification, the wing 
is modelled based on plate model in this paper, and the geometric parameters are as shown in Table 1. Due to 
the large number of modeling and the obtained data, this paper takes 7050 aluminum and wing materials as an 
example to model and analyze the flutter speed.

The geometric shape is formed by the Geometry in Patran, while the material properties are defined by 
Materials in Patran. The constitutive model is selected as Linear Elastic, and the data are entered into it. The grid 
is divided into 29 nodes in the span direction and 4 nodes in the chord direction. The overall grid is relatively 
uniform and approximates to a square grid. The 2D Shell element is selected as the unit property. The boundary 
condition is selected as FEM (finite element entity), and the four nodes on the left side are fixed to simulate the 
root rib part of the connection between the wing and the fuselage, i.e., the specified degree of freedom constraint 
(SPC). The geometry, mesh and boundary conditions are shown in Fig. 1.

Wing modal analysis
Due to the large number of modeling and data obtained in this paper, 7050 aluminum wing material is taken as 
an example to model and analyze the flutter speed. The structural dynamics analysis of the wing model is carried 
out to obtain the modal information, including the vibration mode and frequency. The calculated results and the 
deformation figures of each mode are shown in Table 2.

Wing flutter analysis
In the modal coordinate system, the flutter calculation equation has the following form.

	
Mq̈ (t) + Cq̇ (t) + Kq (t) = 1

2ρQ (k, Ma) q (t)� (1)

 

Parameters Values

Chord 1.6m

Thickness 0.02m

Half-span 16m

Table 1.  Wing sizes.
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where M, C and K are modal mass, modal damping and modal stiffness, respectively. Q (k, Ma) is the modal 
aerodynamic force matrix. The p-k method is used to solve Eq. (1). When the wing flutters, it performs simple 
harmonic vibration, i.e.,

	 q (t) = q0e(γ+i)ωt� (2)

whereω = kV/b, and we can obtain the following Eq. 

	

[
p2

(
V

b

)2
M + p

V

b
C + K − 1

2ρV 2Q (k, Ma)
]

q0 = 0� (3)

where p = g + ik, is a dimensionless parameter, γ is the transient decay rate coefficient.
After giving the atmospheric density and the Mach number of free flow in the flight condition, the iterative 

calculation of Equation ( 3 ) is carried out. γ = 0 is the critical point, and the corresponding V is the flutter 
speed.

To carry out the flutter, the aerodynamic grid is established. The calculation of the aerodynamic force uses 
the dipole grid method, and the flutter calculation is performed using the p-k method. The aerodynamic model, 
spline and working condition settings are competed in Flightloads. The specific parameters are shown in Table 3. 
The speed range setting needs to be debugged many times, which is set to 5–35 m / s finally. The results are sent 
to Nastran for post-processing, and the first 6-order v-g diagram is shown in Fig. 2. Through the analysis of v-g 
diagram and vibration mode data, it can be seen that the flutter occurs in the third-order bending mode, and the 
frequency data of the third-order bending mode under the material are extracted as shown in Fig. 3.

Through flutter analysis, it is concluded that the flutter speed of 7050 aluminum wing is 22.3 m / s and the 
flutter frequency is 0.7 Hz. Wing flutter analysis of other materials is similar.

This paper applies MSC. Flightloads and MSC. Nastran 2018 for completing wing modeling and flutter 
analysis. Concretely, the flutter velocities of the wing are simulated by different metallic materials (7050 Aluminum 
alloy, 15-5PH stainless steel, Ti-6Al-4 V titanium alloy and 6061 aluminum alloy), different composite materials 
(T300/914, T300/1034-C, T300/976 and T300/5208), and different reduction ratios of the wing sizes (1:1.5, 1:1.7, 
1:2, 1:3, 1:10 and 1:20) with 7050 Aluminum alloy materials are shown in Table 4.

The data in Table 3 are separated into two groups, known flutter data and predicted flutter data, to confirm 
the accuracy of the trained NN’s prediction (see Fig. 4). The specific algorithm is as follows:

	(1)	� Metallic material: The flutter velocity of 7050 aluminum alloy, 15-5PH stainless steel, and Ti-6Al-4 V tita-
nium alloy are used to train the NN to predict that of 6061 aluminum alloy.

	(2)	� Composite material: The flutter velocity of T300/914, T300/1034-C, and T300/5208 are used to train the 
NN to predict that of T300/976.

	(3)	� Wing Sizes: The flutter velocity of 7050 aluminum alloy with different sizes reduction ratios (1:1, 1:1.7, 1:3, 
1:10, 1:20) are used to train the NN to predict that of other sizes reduction ratios (1:1.5, 1:2).

The architecture of neural networks
NN is a mathematical or computational model by duplicating the architecture and performance of the neural 
system in the brain of an individual26. By strategically modifying the relationships between an immense number 
of nodes in the neural network, it mostly depends on the system’s complexity to accomplish the objective of 
information processing. NN is mainly used for function fitting and image recognition. It can continuously learn 
from the original data and find its characteristics to make predictions, which is very suitable for dealing with 
non-linear and complex data27.

Fig. 1.  Wing model.
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Modality Frequency values/Hz mode of vibration Deformation

1 0.063676 First-order bending

2 0.39897 Second-order bending

3 1.113 First-order torsion

4 1.1168 Third-order bending

Continued
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The structure of neurons
Throughout the training process, the weight term w that represents the connections between all the different 
layers of neurons should be continually modified. A bias term b is included in addition to the weight term for 
adjusting the neurons’ activity threshold. The activation function is used to add nonlinearity so as to enhance 
the NN’s capacity to match the input-output function. There are several common activation functions such as 
Sigmoid, ReLU, Tanh, etc. The structure of neurons is shown in Fig. 5.

Structure and algorithm of back propagation neural network
In this paper, an NN model trained using the error back propagation (BP) algorithm is utilized, called the 
BPNN. None of the neurons are connected to other neurons in the same layer, while they are fully connected 
to the neurons in previous layer. The weight term is rectified in reverse from the output layer until it returns to 
the input layer in the direction toward decreasing the expected output. Then the real output after the neurons in 
the output layer receive the input response of the network. The weight term can be continuously adjusted until 
the network output error is as small as possible28,29. Three kinds of layers constitute the conventional BPNN: the 
input layer, the hidden layers, and the output layer, which are shown in Fig. 6.

It is assumed that there are l, m, n neurons in each of the layers for input, hidden, and output. xi is the input 
of the neural network, while the outputs of the hidden layer and the output layer are yj  and zk . tk  is the expected 
output of the output layer. The weight items between the hidden layer and the output layer and the input layer 
are wij  and vjk, respectively. Furthermore, there are two bias terms: aj  for the hidden layer and bk  for the output 
layer.

The internal structure of the neuron can be employed to calculate the output values of the hidden layer and 
the output layer as follows.

	
yj = f(

l∑
i=1

wijxi − aj), j = 1, 2, · · · , m� (4)

Parameters Values

Atmospheric density 1.229 Kg/m3

Air-to-atmospheric density ratio 1

Mach number 0.1

Table 3.  Flutter condition parameters.

 

Modality Frequency values/Hz mode of vibration Deformation

5 2.1899 Fourth-order bending

6 3.3525 Second-order torsion

Table 2.  Deformation cloud maps of different modes.
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zk = f(

m∑
j=1

yjvjk − bk), k = 1, 2, · · · , n� (5)

where the activation function is represented byf(•). The function employed in this research is the Sigmoid 
function.

The BPNN output and the expected output are used to compute the error ek , which is used to compute the 
loss by the Mean Square Error (MSE) δk .

	 ek = tk − zk, k = 1, 2, · · · , n� (6)

	
δk = 1

n

n∑
k=1

e2
k � (7)

The goal of neural network training is to minimize the loss function. Thus, optimization is usually required to 
update the NN parameters (w, b).

Optimistic algorithm
BPNN uses the gradient descent algorithm30 to adjust the parameters for network learning, which is the simplest 
to use and most easily understood. However, there are a few apparent drawbacks, including the longest time-
consuming and lowest efficiency. Furthermore, the error function frequently has many minima considering the 
applied transfer function is a nonlinear function. Considering that the error first reaches the local minimum 
point, it is perhaps impossible to update the weight items and bias items to the global minimum point.

The Levernberg Marquardt (LM) algorithm31,32 is implemented in this paper to update the NN’s parameters. 
Combining the gradient descent and Gauss-Newton methods, the LM algorithm enhances learning efficiency 
under guaranteeing quick convergence and avoiding the entire system from reaching the local minimum point.

Fig. 2.  v-g figure.
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Take the weight wij  between the input layer and the hidden layer for example, the variables δk  and ek  are 
the both functions of wij . Similar to the Gauss-Newton method that expresses the Jacobi matrix of the first 
derivatives of the error function with respect to weights and thresholds as the Hessian matrix, the Hessian matrix 
of Jacobi matrix J(w) of e(w) can be expressed as:

	 H = JT J � (8)

The gradient can be expressed as Eq. (6).

	 g = JT e� (9)

Wing material Velocity (m/s)
Wing sizes reduction ratio
(7050 aluminum alloy) Velocity (m/s)

7050 aluminum alloy 22.3 1:1.5 22.7

15-5PH stainless steel 37 1:1.7 21.83

Ti-6Al-4 V titanium alloy 27 1:2 20.27

6061 aluminum alloy 22 1:3 20.6

T300/914 20.2 1:10 22.35

T300/1034-C 19.8 1:20 26.79

T300/976 21.8

T300/5208 22.1

Table 4.  Flutter velocity of high flexibility wings simulation.

 

Fig. 3.  v-f figure.
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Fig. 5.  Structure of neurons.

 

Fig. 4.  Classification of flutter data.
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The LM algorithm, similar to Newton’s method, corrects the weight items through an estimated Hessian matrix 
as follows.

	 w(k + 1) = w(k) − [JT (w(k))J(k) + µJ(w(k))]−1JT (w(k))e(w(k))� (10)

All the parameters in the NN model can be corrected according to Eq.  (7). Equation  (7) becomes Newton’s 
method when the coefficient µ is 0, while it can be seen as the gradient descent approach with a smaller step size 
when the value of µ is high. In general, µ is initially given a tiny positive value, δ is progressively decreased by 
iteration, and µ is divided by a positive value θ that is greater than one. If a step cannot reduce the mean square 
error, µ is multiplied by θ and brought back to recalculate the weight item.

In the next two sections, we establish the framework of the neural network-based aeroelastic system 
identification for predicting flutter of high flexibility wings. Figure 7 shows the flowchart of the proposed method.

Fig. 6.  The structure of NN.
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NN training for high flexibility wings flutter
The design and implementation of NN
To train the high flexibility wings’ flutter data, it is essential to have a thorough understanding of the NN’s input 
and output variables. The main output variable is the wings’ flutter velocity. The input of the neural network 
in this paper includes the structural characteristics, flutter conditions, geometric dimensions and material 
properties of the wing.

This section demonstrates the simulation procedure of a BPNN based on the MATLAB neural network 
toolbox making use of the training process of 7050 aluminum alloy, 5-15PH stainless steel, and Ti-6Al-4  V 
titanium alloy data.

Given that the internal workings of the aeroelastic system that causes flutter are intricate, it is widely accepted 
that adding more hidden layers to a network can shorten training iterations and boost prediction accuracy. On 
the other hand, an excessive number of layers may result in overfitting and an extended training period. There 
is an identical issue with choosing the quantity of hidden layer nodes. It is the direct cause of overfitting during 
training and has a significant impact on the effectiveness of the well-established NN model. However, it cannot 
be ascertained in theory using a general and scientific procedure.

The present study employs the parameter debugging approach, i.e. the number of hidden layers and the 
number of neurons inside each layer are iterated continuously. Ultimately, a three-hidden-layer NN structure is 
established, with 10, 10, and 6 nodes in each layer, respectively. Other network training parameters are visualized 
by MATLAB’s integrated Neural Network Training toolbox, as shown in Fig. 8.

Figure 8 shows that the LM algorithm is employed as the training algorithm in this research. There are 132 
training epochs. The highest MSE is computed to assess the network’s performance, which is less than 0.0433‰. 
This network has a gradient value of 0.0479‰.

The plotperform function of MATLAB can be used to view the training of network performance. For example, 
Fig. 9 shows that the network reaches the minimum error at about 32 steps, and then over-fitting occurs, but the 
magnitude is not high, which will not significantly affect the prediction accuracy.

High flexibility wings fitting for metallic materials
7050 aluminum alloy, 5-15PH stainless steel, and Ti-6Al-4 V titanium alloy data are used as sets of training data. 
Table 5 displays the specific parameters. Figure 10 shows the expected output, the predicted output and the error 
surface of the network.

Each surface is defined by its x-, y-, and z-axes, which represent the sample serial number, modal serial 
number, and damping values, correspondingly. Figure 10(a)(c)(e) shows the trend of the damping values with 
modal serial and sample serial, while Fig. 10(b)(d)(f) are 2D view of the results with sample serial. It is the same 
in Figs. 11 and 12. Since the training data is the damping of 6 modes of 3 materials at 11 velocities, there are 33 

Fig. 7.  The flowchart of the NN approach for predicting flutter velocity.
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samples, and each sample has 6 outputs, which are the damping of the first to sixth modes at the corresponding 
velocity.

The samples are arranged according to velocity and material. Type I, II, and III are made of 7050 aluminum 
alloy, 5-15PH stainless steel, and Ti-6Al-4 V titanium alloy. The sample serials and their corresponding initial 
velocities are shown in Table 6.

To forecast flutter, one has to observe that whether the output surface’s z-axis is continually diverging and 
above the x-y plane. This will allow one to calculate the mode’s flutter. In essence, the error surface is maintained 

Fig. 8.  Neural network settings.
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in the x-y plane. Because of the huge size, the first-order modal frequency is too low, resulting in a significant 
inaccuracy in the low-serial mode. First-serial modal damping diminishes with increasing velocity, but it quickly 
approaches 0-value damping. It is stable even if there is a gradual rising trend. The system starts to diverge after 
going to positive damping, but it is not flutter. Since it is currently a static aeroelastic problem, further study 
won’t be performed in this paper.

The network is more precise in dampening the development trend of the flutter mode, with the exception of 
the high error of the low-serial mode. As can be seen from Fig. 10, the mapping of input and output parameters 
is completed and the network essentially fits the modal damping at various velocities. It is apparent from the 
peak value analysis of the surface that the network effectively fits the flutter occurrence of 7050 aluminum 
alloy, 5-15PH stainless steel, and Ti-6Al-4 V titanium alloy under various modes. As a consequence, the BPNN 
effectively finishes the high-precision data fitting and identified the fluttering aeroelastic system.

High flexibility wings fitting for composite materials
In order to test the ability of BPNN to predict the flutter velocity of composite high flexibility wings, the input 
data of three kinds of graphite/epoxy resin composite fibers (T300/914, T300/1034-C and T300/5208) are used 
as training data. The performance parameters of the three composites are shown in Table  7. Given that the 
plate model serves as the foundation for wing modeling, composite materials should adhere to the traditional 

7050
aluminum alloy

5-15PH
stainless steel

Ti-6Al-4 V
titanium alloy

Elastic modulusE(GPa) 71 196.508 110.3

Densityρ(kg/m3) 2823 7833 4429

Poisson’s ratio λ 0.33 0.27 0.31

Table 5.  Metallic material performance parameters.

 

Fig. 9.  Mean square error curve.
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laminated plate theory, which states that strain perpendicular to the center surface is zero and that shear strain 
and shear stress perpendicular to the plate surface are ignored. Therefore, the composite material’s independent 
attribute parameters are restricted to the x-y direction. These four independent parameters include the plate 
surface’s Poisson’s ratio, the longitudinal elastic modulus, the transverse elastic modulus, and the shear modulus 
of the plate surface.

Type Sample serial Material Initial velocity Velocity interval

I 1–11 7050 aluminum alloy 5–33 m/s 3 m/s

II 12–22 5-15PH stainless steel 20–60 m/s 4 m/s

III 23–33 Ti-6Al-4 V titanium alloy 15–45 m/s 3 m/s

Table 6.  The initial velocities of the sample serials.

 

Fig. 10.  Fitting results of metallic materials.
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The inclusion of two parameters results in a significant decline in prediction ability when it comes to network 
configurations. There is a noticeable improvement when the number of concealed layers is increased, but the 
over-fitting becomes more apparent. After multiple trainings, there should be 10 concealed layers totally, with 6 
nodes for the final layer and 13 nodes for the remaining layers.

The experimental data for T300/914, T300/1034-C, and T300/5208 are given in the number of 1 to 11 (Type 
I), 12 to 22 (Type II), and 23 to 33 (Type III). The initial velocities of them are listed in Table 8.

The specific fitting situation is shown in Fig. 11. Except for the first-order modal fitting of T300/914, the 
results demonstrate that the network fitting is good and other data does not show significant deviations.

High flexibility wings fitting for different sizes reduction ratios of the same material
Aiming at the high flexibility wings of 7050 aluminum alloy material when changing the size reduction ratios 
(1:1, 1:1.7, 1:3, 1:10 and 1:20) are used as training data. Debugging the network parameters results in the first 
hidden layer getting 11 nodes, but the other layers remain 10 and 6 nodes. With a total of 55 groups, the sample 

Fig. 11.  Fitting results of composite materials.
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Name / Properties of composite materials T300/914 T300/1034-C T300/5208

Longitudinal elasticity modulus E1(GPa) 130 146.9 181

Transverse elastic modulus E2(GPa) 4.65 11.4 10.3

Shear modulus G12(GPa) 4.65 6.18 7.17

Density ρ(kg/m3) 1760 1800 1600

Poisson’s ratio λ 0.35 0.3 0.28

Table 7.  Composite material performance parameters.

 

Fig. 12.  Fitting results of different dimensions.
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set is still set to 11 samples for the size of the wing flutter data, in the order of 1:1, 1:1.7, 1:3, 1:10, and 1:20. Table 9 
shows the initial velocities of them.

Figure  12 illustrates how the network is fitted to the data. It is evident that even with a little amount of 
inaccuracy present in the 1:20 reduction ratio’s low-order modal damping, the network retains a high fitting 
accuracy even after the wing size is altered.

Predicting results of high flexibility wings’ flutter
High flexibility wings prediction for metallic materials
The network trained in Sect. "High flexibility wings fitting for metallic materials" is used to predict the flutter 
velocity of 6061 aluminum alloy high flexibility wings. Table 10 presents the material performance parameters. 
Figure  13 shows the results of 6061 aluminum alloy velocity-damping curve. Through a comparison of the 
simulation and prediction first 6-order modal velocity damping diagrams, it is shown that the network is unstable 
when forecasting the first and third modes, resulting in an early positive damping that eventually decays. The 
divergence induced by the first mode is also sooner than the simulation data. In addition, the initial flutter is 
the third mode, which becomes the fourth mode in the prediction, but the network’s expected flutter velocity is 

Fig. 13.  6061 aluminum alloy velocity-damping curve.

 

Parameters Values

Elastic modulus E(Gpa) 68.9

Density ρ(kg/m3) 2710

Poisson ratio λ 0.33

Table 10.  6061 aluminum alloy performance parameters.

 

Type Sample serial Wing size reduction ratio Initial velocity velocity interval

I 1–11 1:1 5–33 m/s 3 m/s

II 12–22 1:1.7 5–20 m/s 1.5 m/s

III 23–33 1:3 5–20 m/s 1.5 m/s

IV 34–44 1:10 5–20 m/s 1.5 m/s

V 45–55 1:20 5–20 m/s 1.5 m/s

Table 9.  The initial velocities of the sample serials.

 

Type Sample serial Material Initial velocity velocity interval

I 1–11 T300/914 5–33 m/s 3 m/s

II 12–22 T300/1034-C 5–20 m/s 1.5 m/s

III 23–33 T300/1034-C 5-m/s 1.5 m/s

Table 8.  The initial velocities of the sample serials.
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not considerably different. The simulation’s flutter velocity is 22m/s, while the network predicting of the flutter 
velocity is 22.5m/s.

High flexibility wings prediction for composite materials
The network trained in Sect.  4.3 is implemented to estimate the flutter velocity of the T300/976 composite 
high flexibility wings. Table 11 provides the material performance parameters. Figure 14 shows the results of 
simulation and prediction for the first six orders of modal velocity-damping. It can be seen that the network 
exhibits an oscillation phenomenon when predicting the first mode. Nonetheless, the mode type is not affected. 
As the network predicts a flutter velocity of 23.9m/s, compared to the model’s 21.8m/s in the simulation, it 
is obvious that the trained network can still forecast the aeroelastic system of the composite material’s high 
flexibility wings.

High flexibility wings prediction for different sizes reduction ratios of the same material
The network trained in Sect. 4.4 is implemented to estimate the flutter velocity with a reduction ratio of 1:1.5 
and 1:2 (7050 aluminum alloy). The simulation and prediction results are displayed in Figs. 15 and 16. The 
first 6-order modal velocity damping diagram shows that the network trained with wing size changes is more 
adaptive to the 1:1.5 lessen model, each mode’s form is nearly precise, and the first mode in the 1:2 model does 
not fluctuate. The two models estimate flutter velocities of 16.5m/s and 22.05m/s. Compared to the simulated 
flutter velocity, the 1:2 model’s flutter velocity prediction is more precise.

Conclusions
This paper proposes a system identification technique based on BPNN for predicting the flutter velocity of 
flexible wings. The multi-layer error of BPNN is trained by using the flutter data of the same size of different 
materials, as well as different sizes of the same material. The trained BPNN is used to predict the model with 
simulated flutter data, and the prediction ability of the BPNN to the unknown data is tested. The results show 
that the performance of the network is not good in the low-order mode, and the oscillation phenomenon often 
occurs, which confuses the occurrence of flutter and may cause incorrect mode of flutter. However, the accuracy 
of the predicted velocity is relatively high. Based on the identification results, the identification of the model 
by BPNN is reasonable and has certain credibility. The proposed NN-based method can solve the aeroelastic 
problem quickly and accurately in the preliminary design stage of the aircraft.

This method is particularly suitable for design tasks that need to evaluate the dynamic response of highly 
flexible wings, including large aircraft, drones and other application scenarios. The flexibility and weak parts 

Fig. 14.  T300/976 velocity-damping curve.

 

Parameters Values

Longitudinal elasticity modulus E1(GPa) 150

Transverse elastic modulus E2(GPa) 9

Shear modulus G12(GPa) 7.1

Density ρ(kg/m3) 1600

Poisson ratio λ 0.3

Table 11.  T300/976 performance parameters.
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of the wing are usually prone to flutter. In these cases, the traditional flutter analysis method may have a large 
amount of calculation, while the neural network can quickly provide more accurate prediction results by learning 
historical data.

Data availability
The data presented in this study are available upon request from the corresponding authors. The data are not 
publicly available due to privacy.
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