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signatures across cohorts

Check for updates

Yin-Cheng Chen , Yin-Yuan Su , Tzu-Yu Chu, Ming-Fong Wu, Chieh-Chun Huang &
Chen-Ching Lin

The intricate nature of microbiota sequencing data—high dimensionality and sparsity—presents a
challenge in identifying informative and reproducible microbial features for both research and clinical
applications. Addressing this, we introduce PreLect, an innovative feature selection framework that
harnesses microbes’ prevalence to facilitate consistent selection in sparse microbiota data. Upon
rigorous benchmarking against established feature selection methodologies across 42 microbiome
datasets, PreLect demonstrated superior classification capabilities compared to statistical methods
andoutperformedmachine learning-basedmethodsby selecting featureswith greater prevalenceand
abundance. A significant strength of PreLect lies in its ability to reliably identify reproducible microbial
features across varied cohorts. Applied to colorectal cancer, PreLect identifies key microbes and
highlights crucial pathways, such as lipopolysaccharide and glycerophospholipid biosynthesis, in
cancer progression. This case study exemplifies PreLect’s utility in discerning clinically relevant
microbial signatures. In summary, PreLect’s accuracy and robustness make it a significant
advancement in the analysis of complex microbiota data.

The microbiota, which comprises diverse microbial communities inha-
biting the human body, plays a crucial role in maintaining host health
and influencing disease1. Advanced sequencing techniques, like 16S
rRNA gene sequencing2, have revolutionized our ability to profile the
microbiome comprehensively and investigate the associations between
microbial taxa and host health. Despite these advances, the inherent
complexity of microbiota data, characterized by high dimensionality and
sparsity, presents significant challenges for accurate modeling and
interpretation. Therefore, in microbiota research, feature selection
becomes essential for identifying potential biomarkers for diagnosis or
prognosis3. Such identification may guide the development of targeted
therapeutic interventions.

Previous studies have employed differential abundance analysis for
identifying features that significantly differ in abundance between groups
of samples. Methods such as DEseq24, edgeR5, and LEfSe6 have been used
widely. However, these methods have come under scrutiny for their
propensity to yield an inordinately high number of false positives7. In
addition, univariate models such as statistical testing may result in false
results if complex interactions are ignored. Efforts to overcome these
limitations have seen the adoption of machine learning (ML) algorithms
with multivariate models for feature engineering of microbiota data.
Models such as LASSO8, random forest (RF)9, and eXtreme Gradient

Boosting (XGBoost)10 adeptly capture intricate variable interactions,
leading to more precise predictions. However, microbiota data are
typically sparse; many taxa present in only a small subset of the samples,
often containing 70–90% zeros11. This sparsity makes it challenging to
determine whether a taxon is truly informative or merely a result of
noise12. Furthermore, sparsity can lead to instability in feature selection,
resulting in discrepancies in data interpretation13.

To tackle the challenges arising from the sparsity, researchers have
looked towards alternative strategies. For instance, dictionary learning has
been proposed to achieve a compact and informative data representation by
linearly combining a set of essential functions or atoms in a sparse signal14.
Nardone et al. introduced a method of sparse dictionary learning, SMBA-
CSFS15, showing promising results in biological data applications. Mutual
information16 is another popular approach in information theory,whichhas
been implemented in various feature selectionmethods. For instance, Peng,
Long, and Ding introduced a mutual information-based feature selection
method called max-relevance and min-redundancy (mRMR)17. This
method aims to minimize redundancy among features and maximize the
dependency between a feature subset and a class label, which can lead to
improved discriminative power of the selected features. Another note-
worthy feature selection method is ReliefF18, which can handle sparse data.
This approach randomly selects instances and evaluates the differences in
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feature values between the current instance and its nearest neighbor, both
from the same class and different classes. The feature importance scores are
then calculated as the average differences over all instances.

Sparse learning primarily employs L1-regularization, as seen in the
LASSOmethod that sets regression coefficients of non-informative features
to zero for facilitating automatic feature selection. Several LASSO variants
have since been proposed, such as LAD-Lasso19, resistant to heavy-tailed
errors or outliers in response, and sparse group Lasso20, capable of identi-
fying sparse sets by adopting the L1 and L2 norm penalty. The sparse group
Lasso has been introduced to generate group-wise and within-group spar-
sity, facilitating the identificationof important groups andessential variables
within groups21. However, a challenge in microbiota research is the varying
feature selection across different cohorts, influenced by diverse microbial
compositions and the inherent high prevalence observed in the original
cohort.

To address these gaps, our study introduces PreLect, which incorpo-
rates a prevalence penalty to eliminate irrelevant features and enhance the
reliability and reproducibility of feature selection in microbiome research.
Our approach offers a more robust and accurate feature selection process,
leading to a deeper understanding of microbial interactions and potential
disease biomarkers. We benchmarked PreLect across multiple microbiome
datasets and compared it to other statistics and ML-based methods. Our
study emphasizes PreLect’s potential to enhance our grasp on microbiota’s
role in health and disease, opening pathways for developing microbial
markers in clinical settings.

Results
Assessing PreLect’s efficacy in an ultra-sparse dataset
In this study, we developed PreLect, an embedded feature selection fra-
mework that utilizes the force of regularization rate (lambda, λ) to select
informative features (Fig. 1). More specifically, PreLect incorporates a
prevalence penalty to discourage the selection of low-prevalence (local)
features effectively. Therefore, it is particularly beneficial when dealing with
sparse data. To demonstrate its effectiveness, we compared PreLect with
other popular feature engineeringmethods, includingLASSO, SVMLASSO,
elastic net (EN), RF,XGBoost, andmutual information (MI), using anultra-
sparse dataset (“real-sim” in LIBSVM),which contains only 0.24%non-zero
values.

Initially, we applied the six methods, limiting the number of selected
features in each to match that of PreLect to evaluate the universality and
performance of the features selected by PreLect. Our results revealed that
PreLect had a slightly lower but comparable prevalence than MI (median
prevalence: 2.584% vs. 2.667%; Fig. 2a) but a higher prevalence than the
other five methods. Among the six methods evaluated, five demonstrated
similarlyhighareasunder the receiver operating characteristic curve (AUC),
as shown in Fig. 2b (LASSO: 0.976, SVMLASSO: 0.971, random forest (RF):

0.989, XGBoost: 0.991, mutual information (MI): 0.98), all comparable to
PreLect’s AUC of 0.985. Elastic net (EN), however, displayed the lowest
performance with an AUC of 0.806. Furthermore, when using the full
feature set, which is the feature set selected by eachmethodwith parameters
that achieved the best performance, PreLect outperformed the other
approaches by demonstrating both the highest prevalence (Fig. 2c) and the
smallest feature set size (Fig. 2d; 618 features).Despite theL1-basedmethods
having feature sets approximately ten times larger than PreLect, they
achievedonlymarginally better AUC scores compared to PreLect, as shown
in Fig. 2e (PreLect: 0.985, LASSO: 1.0, SVMLASSO: 1.0). In summary,
PreLect offers substantial advantages over the other methods by effectively
extracting global features (high prevalence) and providing sufficient dis-
crimination in sparse non-microbiome data.

PreLect captures the universal and critical features across 42
microbiome datasets
In our detailed exploration of microbiota research, we utilized PreLect on a
broad collection of 42 microbiome datasets. Our analysis compared Pre-
Lect’s efficiency against fifteen well-known approaches: six based on sta-
tistics (Fig. 3) and nine specialized in feature selection (Fig. 4). Our results
were revealing: PreLect-selected features consistently demonstrated higher
mean relative abundance across samples when compared to other methods
in the majority of the datasets (Figs. 3b and 4b). Furthermore, PreLect’s
feature set distribution differed notably from benchmarked statistics and
MLmethods (SupplementaryFigs. 1 and2).The features selectedbyPreLect
in the balanced dataset (crc_zeller) are equally represented across case and
control samples, showing no bias toward either group, as detailed in Sup-
plementary Figs. 1 and 2. Furthermore, we investigated the sw_sed_de-
tender dataset, which is imbalanced and shows the greatest difference in
feature prevalence between the two conditions (seawater vs. sediment;
Cohen’s d = 0.724). The findings suggest that PreLect consistently focuses
on selecting features with high prevalence in both conditions (Supple-
mentary Fig. 3). However, we observed a slight preference for PreLect to
select features more frequently in the predominant case, in this instance,
seawater. This observation indicates that the PreLect algorithm might be
slightly influenced by the case-to-control ratio of the dataset, yet it remains
robust in handling imbalanced datasets.

Looking closely at the statistics-based methods, edgeR, LEfSe, and
NBZIMM22 were found to choose feature sets with fewer occurrences
compared toPreLect (Fig. 3a). This patternwas consistent across 41datasets
for edgeR, 29 for LEfSe, and 41 forNBZIMM.AhighCohen’s d value, above
0.8, indicated PreLect’s superior performance (as seen in Fig. 3a). This
finding aligns with previous research7, suggesting that benchmarked
methods might produce more false positives. In contrast, ALDEx2 and
ANCOM2 focused on fewer features of higher prevalence (Fig. 3a and d).
However, their broader distribution of feature prevalence fell short
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Fig. 1 | PreLect framework formicrobial data analysis.This diagram illustrates the
PreLect framework, a process for identifying significant microbial features in sparse,
high-dimensional datasets. The workflow begins with inputting a microbial data
table, which details the microbial characteristics of each sample. PreLect employs an

inverse prevalence penalty to ensure the universality of selected features. The final
output is a selection of microbes with significant classification ability to distinguish
between patient groups and consistency across different cohorts, which are then
used in further analyses.
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compared to PreLect. Notably, 14 datasets for ALDEx2 and 11 for
ANCOM2 had fewer than ten features, which might have impacted their
ability to detect significant differences. Our analysis shows that PreLect
provides a balance: it selects enough features of high prevalence while
ensuring accurate predictions, especially when compared to edgeR, LEfSe,
andNBZIMM.Byminimizing false positives, PreLect presents adependable
method for microbiome data analysis.

In our side-by-side comparison with otherMLmethods, we used a
detailed grid search (explained in the “Methods” section) for the nine
ML techniques to find the optimal parameters. Importantly, to main-
tain fairness, we matched the feature size to what was selected by
PreLect. Our findings showcased PreLect’s dominance in feature pre-
valence over most ML methods across the 42 datasets. Except for MI,
only one dataset exhibited a Cohen’s d above 0 (Fig. 4a). PreLect also
consistently outperformed other methods in prediction accuracy
across the datasets (Fig. 4c). Interestingly, the feature dispersion cri-
terion (FDC)23, which is an unsupervised feature selection technique
developed for text classification, selected features with an exceptionally
low prevalence in all datasets. This observation suggests that the var-
iance filter approach used by FDC may not be suitable for microbiota
data, as low prevalence features can exhibit small fluctuations. We also
evaluated the performance of PreLect against benchmarked methods
using their respective default full feature sets to discern variations in
feature selection across methods further. The features selected by
PreLect still outperformed other methods in almost all 42 datasets
(Supplementary Fig. 5).

To evaluate PreLect’s capability in selecting high-prevalence and
informative feature sets, we synthesized five datasets by designating the top
100 most prevalent features as true positive features, with the remaining

classified as negative features (detailed in the “Methods” section and Sup-
plementary Fig. 6). The results demonstrate that ALDEx2, ANCOM2,
metagenomeSeq, and MI are particularly effective at accurately identifying
true positive features. This effectiveness is likely attributed to univariate
models beinghighly sensitive to case-control signals.However, in real-world
data, prevalent features often do not show strong case-control signals, as
illustrated in Fig. 3. Despite this, PreLect consistently outperforms other
ML-based methods in our comparisons.

In conclusion, PreLect empowers researchers to pinpoint critical fea-
tures in intricate microbiome datasets, enriching our grasp on microbial
community behaviors and their roles in various health conditions.

PreLect promotes consistent selection of microbe features in
cross-cohort analyses
Consistency in identifying influential microbes from different datasets for
the same health condition is vital for microbiology research24. Nevertheless,
ensuring reproducibility across diverse studies remains a significant chal-
lenge. We addressed this issue by evaluating the consistency of microbe
features selected by PreLect.We specifically targeted two prevalent diseases:
diarrhea (with five datasets) and obesity (with nine datasets). We analyzed
the overlapping genera across cohorts to assess the degree of consistency
between different studies.

Using thewell-known statisticsmethods, PreLect exhibited the highest
overlapping number and odds ratio in the obesity datasets (Fig. 5a and b),
suggesting that PreLect identified the most common results and the best
match across the obesity datasets. For diarrhea, ALDEx2 and ANCOM2
displayed high odds ratios but low overlapping numbers in some compar-
isons. This could be because they only chose a small number of features they
selected to start with. In addition, the Jaccard similarity revealed that the

Fig. 2 | A comprehensive evaluation of feature pre-
valence and classifier efficacy across different feature
selection algorithms on an ultra-sparse dataset.
a Feature prevalence in ‘equivalent size model.’ This
panel showcases the distributions of feature prevalence
when each algorithm is restricted to an equal number
of features. Embedded values represent Cohen’s d,
accentuating the differential prominence of PreLect
compared toothermethods.ApositiveCohen’sdvalue
indicates that the features selected by PreLect have a
higher prevalence compared to those chosen by the
corresponding benchmarking method. b Classifier
performance in ‘equivalent size model.’ The AUC
scores are displayed here, indicating the classification
capability for each algorithm under the model that
holds feature counts consistent across methods.
c Feature prevalence in ‘full feature size model.’ In
contrast to panel a, this representation of the non-zero
importance features selected by each algorithm.
d Feature counts in ‘full feature size model.’ A loga-
rithmic scale captures thenumberof features chosenby
each algorithm, providing insights into their inherent
feature selection tendencies. e Classifier efficacy in ‘full
feature size model.’ Presented here are the AUC scores
that quantify the discriminatory power of each algo-
rithm, this time under the setting where no limitations
are imposed on feature count. The ‘equivalent size
model’ limits feature assessment to PreLect’s selection
count, while the ‘full feature size model’ uses each
method’s typical feature count. The prediction per-
formance of all benchmarking methods was assessed
using logistic regression, employing a 7/3 train-test
split ratio. The evaluationwas conducted on the testing
set to ensure the accuracy and reliability of the results.
Detailed descriptions of the computational issues
encountered are provided in Supplementary Note 3.

https://doi.org/10.1038/s41522-024-00598-2 Article

npj Biofilms and Microbiomes |            (2025) 11:3 3

www.nature.com/npjbiofilms


intersection ratio of ALDEx2 remained lower than that of PreLect. On the
other hand, edgeR and LEfSe demonstrated large overlapping genera
numbers but low odds ratios in diarrhea, suggesting a bias derived from a
larger number of selected features by edgeR and LEfSe. Looking at machine
learning methods that used the same number of features as PreLect (Fig. 5c
and d), PreLect maintained the highest overlapping number, Jaccard
similarity, and odds ratio in diarrhea and was almost dominant in obesity.
The decision-tree-based models, including RF and XGBoost, exhibited a
high Jaccard similarity due to their mechanisms but lower odds ratios. We
observed that features present in multiple datasets tend to have higher
prevalence within those datasets (Supplementary Fig. 7; diarrhea: r = 0.458,
p-value < 2.2e−16; obesity: r = 0.528, p-value < 2.2e−16). This finding

suggests that features with higher prevalence in one dataset are more likely
to be universal across different datasets. Consequently, this supports the
ability of PreLect to select features that are universally applicable, by
leveraging the prevalence distribution within individual datasets. To con-
clude, our consistency analysis revealed that PreLect outperformed other
benchmarked methods. This can be attributed to PreLect’s ability to select
universally relevant features.

Decoding the microbial landscape of colorectal cancer with
PreLect
To further elucidate the biological significance of the features selected by
PreLect, we investigated the microbes featured by PreLect in a colorectal
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Fig. 3 | Comparative analysis of PreLect with statistical methods across 42
microbiome datasets. a Effect size of prevalence difference. Utilizing Cohen’s d, this
panel represents the effect size of the prevalence difference between PreLect and the
benchmarked methods. A positive Cohen’s d value indicates that the features
selected by PreLect have a higher prevalence compared to those chosen by the
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other methods. A Cohen’s d value surpassing 0.8 (indicated by the dotted line)
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than other techniques. c Classification performance. Here, the AUC score is

extracted from a basic logistic regression model that utilizes the chosen features to
differentiate between case and control samples. d Number of features selected by
each method in the corresponding dataset. The horizontal dashed line serves as a
reference, marking the selection of 10 features. Each point’s color corresponds to a
specific method, as the inset legend details. The prediction performance of all
benchmarking methods was assessed using logistic regression, employing a 7/3
train-test split ratio. The evaluation was conducted on the testing set to ensure the
accuracy and reliability of the results. Detailed descriptions of the computational
issues encountered are provided in Supplementary Note 3.
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cancer dataset25, which collected 50 health control, 63 adenoma, and 41
CRC patients. To detect microbial community shifts during cancer
progression, we categorized adenoma patients as normal to maintain a
clear distinction between healthy and cancer-affected cases. In the
dataset, PreLect selected 231 ASV features, which can achieve an
impressive AUC of 0.907 for distinguishing normal subjects from cancer
patients (accuracy: 0.795, sensitivity: 0.952, specificity: 0.917, and F1
score: 0.934). Among the 94 genera represented by theseASVs, 46 genera
have a prevalence higher than 0.5 in both normal and cancer samples,
and their weights in the predictivemodel for tumor samples are shown in
Fig. 6a. We observed that Flavonifractor, Bilophila, and Escherichia-
shigella genera positively contribute to predicting tumor samples. This
observation suggests that the patients with a high abundance of these
three genera could potentially be predicted as having colorectal cancer.
Indeed, Flavonifractor and Bilophila have been reported to be more
abundant in CRC patients than in healthy controls26, and Escherichia-
shigella has been identified as a pathogen of CRC27. On the other hand,
the Akkermansia genus, which has a negative contribution in predicting
tumor samples, has been reported as an anticancer probiotic with anti-
inflammatory properties28; and the Ruminococcus gauvreauii group,
which also negatively contributed to predicting tumor samples, has been

reported to promote the activation of CD8+ T cells, reducing colon
tumor growth29.

To understand the biological implications of these selected features, we
examined the microbiome-based functional alterations between normal
and colorectal cancer using gene set enrichment analysis (GSEA).We found
that carbon metabolism had the highest number of hits in the enhanced
pathway of CRC, with carbon fixation and the citrate cycle also enriched in
CRC, suggesting that gut bacteria might have adapted to the abnormal
energy metabolism environment in CRC30 (Fig. 6b). We also observed that
lipopolysaccharide (LPS) biosynthesis is the second highest enhanced
pathway in CRC. The LPS is a major component of the outer membrane of
Gram-negative bacteria and a classic inflammatory activator known to
trigger the Toll-like receptor 4 (TLR4)-mediated signal transduction31. In
addition, oxidative phosphorylation emerged as the third highest enhanced
pathway in CRC. Previous studies have reported that enteric bacteria, such
as enterotoxigenic Bacteroides fragilis (ETBF) andHelicobacter pylori32, can
induce reactive oxygen species (ROS) production in colonic epithelium,
causing DNA damage that is considered to initiate CRC progression. Fur-
thermore, our analysis revealed that relevant KOs in Vitamin B1, B6, and
B12 were inhibited in CRC, corresponding to the Thiamine metabolism,
vitamin B6 metabolism, and porphyrin metabolism pathways, respectively
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of the results.
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(Fig. 6c), suggesting that the bacteria involved in these pathways may help
maintain gut microbiome environment to prevent CRC progression.

Our results indicated that oxidative phosphorylation was enriched in
cancer and had a higher association with, Sphingomonas, and Paracoccus
(Fig. 6d). In addition, our analysis revealed enrichment of catalase (K03781)
and superoxide dismutase (K04564) KOs in the FoxO signaling pathway of
CRC (Supplementary Fig. 8), which exhibited a strong correlation with the
taxa mentioned above, indicating that these three taxa may be involved in
ROS production. Overall, PreLect highlights the potential roles of specific
bacterial taxa, providing insights into potential therapeutic targets and
diagnostic markers.

Expanding the horizons of PreLect: beyond microbiome to
microRNA transcriptome, binary to multi-class domains and
regression task
To elucidate the PreLect algorithm’s adaptability, we explored its potential
in a broader spectrum of omics data types. We collected shotgun data from
six CRC studies and identified differential features between cancer and
normal samples, comparing these with ML-based benchmark methods as
shown in Supplementary Fig. 9. Under the “Equivalent SizeModel” features
selected by PreLect demonstrated the highest consistency across the six
datasets. Conversely, in the “full feature sizemodel”, due to the largenumber

of features selected by elastic net (EN), it exhibited the highest consistency in
cross-cohort analysis. Additionally, our pursuit led us to integrate the Pre-
LectmodelwithmicroRNA(miRNA)data.Thisdata, inherently sparse,was
derived from a comprehensive collection of 14 distinct cancer varieties
archived in the cancer genome atlas (TCGA) database (Supplementary Fig.
10). In a comparative analysis with MI and mRMR—both of which
recognize more abundant features—PreLect stood out by manifesting
paramount prevalence and an unparalleled classification prowess. This was
particularly evident when juxtaposed against selections made via other
machine learning paradigms (highlighted in Supplementary Fig. 11). Such
outcomes accentuate PreLect’s adeptness in proficiently navigating diverse
sparse data realms, which it achieves by leveraging the prevalence penalty.

Diving deeper into the realm of classification, we endeavored to extend
PreLect’s versatility to accommodate multi-class scenarios. Our metho-
dology incorporated a ‘one-vs-rest’ stratagem (detailed in Supplementary
Note 1). In our quest for feature selection, two distinct paradigms were
adopted: the ‘intersection,’ wherein features were unanimously selected by
all classifiers, and the ‘union,’ where a feature’s selection by even a single
classifier sufficed. Post this selection, rigorous validation was ensured using
multiclass logistic regression on both CRC and IBD datasets (as depicted in
Supplementary Fig. 12). Anoteworthy observationwas the superior efficacy
of the union sets over their intersection counterparts, a phenomenon
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potentially attributed to the richer informative content of the union feature
set. The union set’s mean AUC in IBD notably surpassed the 0.8 threshold
(see Supplementary Fig. 12). A caveat, however, emerged in the form of
inconsistent performance metrics across CRC datasets. While PreLect
showcased commendable proficiency on the CRC dataset sourced from
Zeller, it faltered in the Baxter-derived dataset. Such disparities underscore
both the promise and challenges for PreLect in multi-class terrains,
emphasizing the imperative for continued refinement.

Finally, we expanded PreLect to include regression capabilities, as
detailed in Supplementary Note 2. To test this, we gathered data from four
studies on overweight individuals and used human gut 16S data to regress
BMI. We also benchmarked the regression version of PreLect against other
methods and compared it to PreLect’s performance in binary classification
tasks. The results indicate that the penalty term strategy of PreLect’s regres-
sion version is effective, and the features it selects share similar characteristics
with those identified in classification tasks (Supplementary Fig. 13).

Discussion
We have meticulously engineered the PreLect framework, seamlessly inte-
grating a prevalence penalty. This innovation addresses the dual challenges
of feature sparsity and high dimensionality intrinsic to microbiota data,
significantly elevating the feature selection process in the domain of
microbiome research. Comprehensive assessments of PreLect across var-
iousmicrobiota datasets showcased its superiority over traditional statistical
paradigms and ML-driven feature selection methodologies. Our investiga-
tions shed light on the inherent shortcomings of conventional methods,
notably the propensity to yield an elevated count of false-positive identifi-
cations. Furthermore, methods grounded in univariate statistics, particu-
larly those hinging on “differential expression,” often grapple with
delineating the complex interplay among variables, culminating in data
interpretation disparities. When examining ML-centric approaches, the
specter of overfitting looms large, gravitating towards the selection of low-
prevalence, localized features. This predisposition accentuates the

reproducibility quandary across diverse cohorts. The PreLect architecture
deftly sidesteps this pitfall by assimilating aprevalencepenalty, positioning it
as a nimble, empirically informed alternative to prevalent-filtering para-
digms. Additionally, it is common practice to filter out features with low
prevalenceprior to applying conventional feature selectionmethods, such as
LASSOand theWilcoxon test,with the aimof enhancing their performance.
Notably, even with this preprocessing step, the performance of these two
conventional methods does not improve (Supplementary Fig. 14). On the
other hand, using prevalence alone to select features does not yield satis-
factory classification performance (Supplementary Fig. 15). Consequently,
PreLect consistently outperforms these two preprocessing strategies, further
underscoring its effectiveness in selecting informative features.

Nevertheless, like all frameworks, PreLect’s efficacy is occasionally
modulated by the unique prevalence distribution intrinsic to specific data-
sets. An illustrative case in point is the ‘ob_zupancic’ dataset, which mani-
fested a comparatively subdued AUC value (Supplementary Fig. 16).
Intriguingly, the prevalence spectrumof ‘ob_zupancic’ is punctuated by two
prominent peaks, deviating from the typical distribution observed in other
datasets. This observation hints at a potential Achilles’ heel in PreLect’s
design: its performance might wane in settings dominated by amultimodal
prevalence distribution.

In summary, our primary contribution is the introduction of PreLect,
an L1-based model adept at identifying features with significant biological
relevance. While our model places importance on prevalence, potentially
affecting its predictive performance, it still yields results comparable to other
leading methods. A key strength of our approach is its consistency across
various cohorts, ensuring reproducibility in microbiome studies and the
analysis of other types of sparse data. Our efforts have enhanced the
understanding of microbial interactions and the identification of potential
disease biomarkers. We hope that our research serves as a foundation for
further studies, promoting a deeper understanding of the role of microbiota
in health and disease and supporting the development of practicalmicrobial
markers for clinical applications.

Fig. 6 | Analysis of colorectal cancer dataset (Zeller). a The weight distribution of
PreLect-selected ASVs with prevalence higher than 0.5 in both normal and tumor
samples. The genera with a median weight of selected ASV larger and smaller than
zero are marked as normal (yellow) and tumor (orange), respectively. The enhanced
(b) and suppressed (c) pathways in which PreLect-featured ASVs are involved. The
x-axis shows the number of KOs identified as significantly enriched (b) and sup-
pressed (c) in colorectal cancer by GSEA analysis. The color indicates the BH-

corrected q-value for each pathway. d and e The bacteria-pathway correlation net-
work, where orange nodes represent ASV labeled with genus or species names, and
green nodes representKO terms. The blue represents significant pathways according
to (b and c, see the “Methods” section). The edges between the nodes represent
correlations, with red indicating positive correlations, blue indicating negative
correlations, and green indicating KOs belonging to the same pathway.
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Methods
Dataset collection and preprocessing
To evaluate the effectiveness of PreLect in analyzing sparse data, we
employed the binary dataset, called real-sim, fromLIBSVM33. This dataset is
derived from a text categorization problem and consists of 20,958 features
and 72,309 observations (samples). Notably, only about 0.24% of the values
in the dataset are non-zero, making it an excellent example of sparse data.
Each feature represents a term’s occurrence frequency within a document,
and each observation corresponds to a specific document. The objective of
the binary classification is to categorize the documents into two distinct
classes based on their content.

We further incorporated 38 microbiome datasets from Nearing’s
study34. These datasets were obtained from various sources, including
humans, mice, soil, marine environments, wastewater, and buildings. The
majority of these datasets were processed using the QIIME2 version 2019.7
standard operating procedure. Primers were removed using cutadapt and
stitched by QIIME2 VSEARCH. The initial dataset comprised 38 entries,
but two colorectal cancer datasets were excluded due to duplication with
other datasets we independently collected. The complete list of included
datasets is presented in Supplementary Data 1.

Additionally, we gathered 16S rRNA sequencing data from published
studies focusing on Colorectal Cancer (CRC), Inflammatory Bowel Disease
(IBD), and Melanoma. These datasets (crc_baxter, crc_zeller, ibd_frau,
ibd_lloyd, melanoma_matson, and melanoma_mcculloch) were processed
using the dada2 pipeline (v1.16.0), which has included stitching into its
standard pipeline. For CRC analysis, we used two cohorts: Zeller et al.
(PRJEB6070)25 and Baxter et al. (SRP062005)35, comprising French and
international samples, respectively. Both datasets include samples from
healthy individuals and colorectal cancer patients. To maintain a clear
distinction between healthy and cancer-affected cases, we treated adenoma
(precancerous) samples as normal.

We obtained IBD data from two sources: the Human Microbiome
Project (PRJNA398089)36 and Frau et al. (PRJEB38969)37. The Human
Microbiome Project includes a diverse collection of samples from indivi-
dualswith IBD, specificallyCrohn’s disease (CD)andulcerative colitis (UC),
as well as healthy controls. Frau et al.‘s dataset comprises samples from a
European cohort featuring CD and UC patients alongside healthy indivi-
duals. In our analysis, we collectively classified CD andUC samples as IBD,
comparing them against the healthy control group.

For Melanoma analysis, we collected two distinct cohorts from
McCulloch et al. (PRJNA762360)38 and Matson et al. (PRJNA399742)39,
respectively. The McCulloch et al. dataset consists of samples from a US
cohort, encompassing both immunotherapy responders andnon-responders.
The Matson et al. dataset provides data on a diverse population, classifying
melanomapatients intocase andcontrol groupsaccording to their response to
PD-1 therapy. Matson et al. contribute another dataset, focusing on the
association between the gut microbiome andmelanoma in a separate cohort.

We excluded samples with sequencing depths lower than 50,000 reads
in these six independentdatasets. Subsequently,weprocessed rawsequences
using the dada2 pipeline (v1.16.0)40 with default settings in R (version 3.6.3)
to generate amplicon sequence variants (ASVs) and assign taxonomy using
the SILVA (v138.1) short-subunit reference database41. Following this, we
normalized the abundance tables of ASVs for each dataset using variance
stabilizing transformation (VST) from the DESeq2 package4, VST is spe-
cifically applied to normalize samples within a dataset instead of its features.
The primary goal of VST is to stabilize the variance across samples by
transforming the data so that the relationship between the mean and var-
iance becomes approximately constant. We then performed z-score stan-
dardization to normalize the features. This step ensures that features with
different scales or units are comparable42 and do not disproportionately
influence the model performance (Supplementary Fig. 17).

PreLect algorithm
In the context of high-sparsity settings, we consider the feature selection
problem for a dataset (Xi, yi) with i 2 n½ � ¼ f1; 2; . . . :; ng, where Xi 2 Rd

represents the ith sample with d features and yi 2 0; 1½ � denotes binary
labels.We introduce an innovative feature selection framework—PreLect—
that integrates feature prevalence with LASSO in logistic loss (binary cross-
entropy, BCE) by minimizing the following objective function:

min f wð Þ ¼ BCE y; ŷ
� �þ λ

Xd

j

jwjj
pj

ð1Þ

where pj denotes the prevalence of feature j, which is the proportion of non-

zero sample numbers to the total sample numbers for each feature

j 2 d½ � ¼ f1; 2; :::; dg.wj denotes the weight of feature j. The term λ
Pd

j
jwj j
pj

represents a modified L1-norm regularization that uses feature prevalence
to address the high sparsity problem. The user-defined parameter, lambda
(λ), represents the intensity of the regularization term intensity and is used
as the cut-off in the feature selection procedure. A detailed process for
determining an appropriate λ value to select informative features in the real-
sim dataset is depicted in Supplementary Fig. 18.

To solve the non-differentiable convex optimization problem arising
from the L1-norm, we employ the proximal gradient descent (PGD) algo-
rithm. PGD is particularly suitable for solving optimization problems
involvingnon-differentiable convex functions.Using theproximaloperator,
PGD can effectively optimize the objective function while handling non-
differentiability. PGD calculates intermediate weights sequentially and
updates the new weights at each iteration using the soft-threshold function:
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pj
< zj <

λ
pj

zj � λ
pj

; zj < � λ
pj

8
>>><

>>>:

ð2Þ

where zj is the intermediate weight during the kth iteration for feature j. As
weightupdates also involvedetermining the learning rate,we introduced the
root mean square propagation (RMSprop), combined with prevalence, to
adjust each weight’s learning rate. RMSprop is a method that adaptively
optimizes learning rate the learning rate for each parameter based on the
magnitude of its gradients. TheRMSprop function inPreLect is described as

zj ¼ wk
j �

η

σkj
� pj � ∇f ðwk

j Þ ð3:1Þ

σkj ¼
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where η is the basic learning rate (default: 0.001), α is the discounting factor
for the history and present gradient (default: 0.9), and ϵ is a small constant
fornumerical stability (default: 10−8). ThePreLect training terminates after a
maximum of 100,000 iterations or when convergence is achieved with an
error <10−4.

Lambda optimization strategy
PreLect leverages the regularization parameter, λ, to identify informative
features.Therefore,weproposed a two-layer scanningprocedure to select an
appropriate λ. For each dataset, we initially conducted a preliminary scan of
λ values ranging from 10−10 to 1, with intervals of 0.1, using the entire
dataset. Based on the initial scan, we established a lower bound, defined as
the λ value retaining fewer than 90% of the features, and an upper bound,
defined as the λ value retaining fewer than ten features. Subsequently, we
divided the regionbetween the lower andupperbounds into 50 equally sized
segments and performed a 5-fold cross-validation (CV) for each λ value
within this refined range. The PreLect algorithm offers several evaluation
metrics, including the area under the precision-recall curve (AUCPR), the
Matthews correlation coefficient (MCC), convergence, and minimal BCE
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loss, to facilitate the selection of a suitable lambda that captures informative
features.

This study employed the BCE loss to ascertain the optimal λ value.
Specifically, we pinpointed the inflection point on theBCE loss curve, where
it transitions into a gentle slope towards the pull-up region on the curve.
PreLect used the segmented regression algorithm to identify this inflection
point. The segmented regression algorithm applied a decision tree regres-
sion to detect the segmented signal at the k-point, which users can define
according to the gradient of the BCE loss curve. In this study, we defined k,
which varies from 5 to 7 for different datasets (see Supplementary Data 1),
and the first break point was denoted as the inflection point. Consequently,
PreLect identified the λ corresponding to the inflection point as optimal for
selecting informative features. This inflection point balances regularization
strength andmodel loss, ensuring the selection ofmeaningful features while
avoiding overfitting.

Benchmarked methods
To assess the effectiveness of PreLect, we compared it with six statistics-
based methods: ALDEx243, ANCOM244, edgeR5, LEfSe6, metagenomeSeq11

and NBZIMM22; and nine ML-based methods: LASSO8, EN45, RF9,
XGBoost10, MI16, mRMR17, Relief-F46, Fisher Score47, and FDC23. The details
of these benchmarkedmethods are described in Supplementary Note 3. All
the statistics-based methods use raw count table as input except edgeR and
AMCOM2, which use pseudo count. The input data for ML-based
benchmarked methods were processed through z-standardization and
variance stabilizing transformation (VST). Prior to performingVST,we add
a pseudo count to aid in data smoothing, ensuring stable transformation.
Furthermore, in comparing PreLect withML-basedmethods, we employed
two criteria to determine the number of features selected by each method.
(1) Equivalent size model: only the top nweighted features of each method
were used for comparison, where n is the number of features selected by
PreLect. (2) Full feature size model: the default number (non-zero impor-
tance features) of features for each method was applied.

The parameters for ML-based methods were tuned using a “grid
search” strategy through a five-fold CV procedure. We adopted evaluation
metrics such as AUC, AUCPR, and accuracy. We determined the final
parameter set via a voting procedure, focusing on the combination boasting
the highest mean metric value. In cases where multiple parameter combi-
nations received equal votes, priority was assigned to the combination with
the highest prevalence among selected features.

In summary, our benchmarking of PreLect against a diverse array of
statistical andML-based feature selectionmethodologies offers an extensive
evaluation of its capabilities. Through this meticulous comparison, we
elucidated thepotentialmerits ofPreLect, emphasizing its prowess in feature
identification and subsequent enhancement of model performance for
downstream analyses.

Cross-cohort consistency analysis
In this study, we conducted a cross-cohort consistency analysis based on
data from Nearing’s research, which includes five independent datasets
related to diarrhea and nine cohorts of obesity (Supplementary Data 1). In
each dataset, ASVs were classified taxonomically utilizing the SILVA
(v138.1) short-subunit reference database41, subsequently aggregating their
abundance at the genus level. We used benchmarked methods and PreLect
to select features from all fourteen datasets. We compared the selected
genera within each disease category, employing metrics like overlap count,
Jaccard similarity, and odds ratio via pairwise comparisons. The primary
objective of this analysis was to evaluate the robustness and reliability of the
microbial features identified.

Synthetic data evaluation
To assess PreLect’s capacity in identifying prevalent and informative fea-
tures, we analyzedfive diverse datasets ArcticFireSoils, crc_zeller, ibd_lloyd,
melanoma_mcculloch, and sw_sed_detender representing various diseases
or ecological niches. We selected the top 100 prevalent features as true

positives, enhancing case-control distinctions by sorting their non-zero
values. The other features are considered as true negatives, with their non-
zero values shuffled randomly to diminish biological signals. We compared
PreLect with 15 benchmarking methods quantitatively using Precision and
F1-score metrics (Supplementary Fig. 6).

Functional annotation and enrichment analysis of PreLect-
selected ASVs
We conducted a series of functional enrichment analyses to elucidate the
enriched and suppressed functions associated with the featuredmicrobes in
colorectal cancer.We first utilized PICRUSt2 (phylogenetic investigation of
communities by reconstruction of unobserved states)48 to predict the Kyoto
encyclopedia of genes and genomes (KEGG) orthologs (KO) for each ASV.
Next, we performed gene set enrichment analysis (GSEA)49 to assess the
activity of the KOs associated with PreLect-selected ASVs in cancer. During
the GSEA, we arranged the ASVs in descending order based on their log-
fold changes (logFC) when comparing cancer to normal samples. The
enrichment score was then calculated by hitting the PreLect-selected ASVs
associated with the tested KO. KOs with a z-score > 2, as determined by
GSEA organized by descending and ascending fold change values, were
classified as being enriched in cancer and normal conditions, respectively.

Subsequently, using the KEGGREST package50, we interrogated the
KEGG database to identify pathways associated with the predicted KOs.
Subsequently, we performed Fisher’s exact test to assess the enrichment of
KOs enriched in cancer or normal for each pathway. Pathways with
significant enrichment of cancer-enriched KOs were termed ‘enhanced
in cancer.’ Those enriched with normal-enriched KOs were labeled
‘suppressed in cancer. P-values obtained from Fisher’s exact test underwent
correction using the Benjamini and Hochberg (BH) method, with a set
q-value threshold of <0.05.

Construction of bacteria-pathway association network
We utilized significant KO terms derived from CRC’s enriched and sup-
pressed pathways to build the bacteria-pathway association network, as
identified through GSEA. We measured the correlation of normalized
abundances between these KO terms and the selected ASVs using the
Pearson correlation coefficient (PCC) after centered log-ratio transforma-
tion.Thenetworkwas generated by applying a thresholdof an absolutePCC
value > 0.5 and a significance level of BH-adjusted q-value < 0.001.

miRNA dataset preprocessing
The miRNA profiling data were obtained from TCGA encompassing 14
distinct cancer types. We specifically opted for the ‘Isoform Expression
Quantification’data type, processedusing the BCGSCpipeline51. To discern
the 5’ end isoforms,we relied uponmiRBase (v21)52. Isoformexpressionwas
quantified by calculating reads per million miRNA mapped (RPM). To
evaluate PreLect’s performance, we gathered ‘primary tumor’ and ‘normal
solid tissue’ samples for the binary classification task, and we employed z-
standardization before PreLect and allML-based benchmarkedmethods. In
PreLect, a 5-fold cross-validation was performed during the lambda scan-
ning process, using segmented regression with k = 5 to determine the
optimal lambda across all cancer types. Simultaneously, a grid-search
approach, as described earlier, was used for the ML-based methods.

Shotgun dataset preprocessing
The six benchmarking datasets30,53–56 consisted of raw sequencing FASTQ
files obtained from the NCBI SRA Archive. We processed these files by
removing low-quality or host-contaminated reads using KneadData (ver-
sion 0.10.0) with the hg37 human reference genome and default settings.
Taxonomic profiling and quantification were then performed using
MetaPhlAn 4.0.257 (with the database updated as of October 2022). In this
study, our analysis focused on the class, order, family, genus, and species
levels. Relative abundance data was standardized using the z-score method
before being input into PreLect and other benchmarking methods for
comparison.
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BMI dataset preprocessing and analysis
In the four datasets58–61, with the exception of Kennedy (KM_2023), where
the ASV count table was directly sourced from the author’s GitHub repo-
sitory, the remaining datasets were processed using the dada2 pipeline to
generate ASV tables from raw sequence files. Taxonomic assignments were
carried out using the SILVA database. For consistency across cohorts, raw
ASV counts were aggregated at the genus level and underwent variance-
stabilizing transformations. In the classification analysis using PreLect, we
categorized samples with a BMI > 30 as obese and the rest as normal. We
then compared the feature selection patterns of PreLect with those of 15
other benchmarking methods.

Limitations
In this version of PreLect, we have adopted the sub-gradient method of
proximal gradient descent (PGD) to address the non-differentiability
issue associated with L1 regularization. However, the PGD algorithm is
not the most efficient approach. To enhance optimization speed, we
incorporated RMSprop, yet thousands of iterations are still required to
achieve convergence for some larger datasets, such as real-sim and
gwmc_hot_cold. Additionally, to determine the optimal lambda value,
PreLect employs k-fold cross-validation (CV) scanning across multiple
lambda values, which significantly extends the computational time.
Although GPU acceleration can speed up PreLect, larger datasets like
gwmc_hot_cold, which includes 1021 samples and 92,126 taxa, still
require several days to process. Moving forward, we plan to incorporate a
more efficient L1 regularization solver to improve runtime efficiency.
Moreover, while PreLect has shown the capability to handle bias derived
from imbalanced datasets, it still struggles with datasets that have an
extremely skewed case-control ratio. To enhance PreLect’s general-
izability, developing a solution to effectively address dataset imbalance is
a necessary future step.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The accessions of 42 microbiota datasets, shotgun and BMI study are listed
in (Supplementary Data 1). The processed datasets, which include micro-
biota and miRNA, are available at zenodo [https://doi.org/10.5281/zenodo.
10062236].

Code availability
The data processing and analysis code is available in this GitHub repository
at https://github.com/YinchengChen23/PreLect_manuscript. The PreLect
toolkit iswritten inPythonusing thePytorch library. The codewith theUser
Manual is available on GitHub at https://github.com/YinchengChen23/
PreLect under theMIT license.Additionally,wehaveprovided anRpackage
for the PreLect toolkit, which implements multi-class classification and
time-to-event analysis, available at https://github.com/YinchengChen23/
PreLectR/tree/main.
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