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Abstract
Background Chronic lymphocytic leukemia (CLL) is a common hematologic malignancy. Although previous research 
has explored associations between plasma proteins and CLL, the causal relationships remain unclear. This study used 
Mendelian randomization (MR) to investigate the causal relationship between 7156 plasma proteins and CLL risk.
Methods A two-sample MR analysis assessed the impact of specific plasma proteins on CLL risk, using data from the 
Finngen Proteomics project (analyzing 828 participants) and the UK Biobank. Additional analyses included colocaliza-
tion, phenomenon-wide MR, and protein–protein interaction networks.
Results The study identified nine plasma proteins significantly associated with CLL risk. Increased levels of Peptidyl-
prolyl cis-trans isomerase E (PPIE) (OR = 1.66, 95% CI 1.22–2.27, P = 0.001) were associated with an increased risk of 
developing CLL, whereas Protein O-Mannosyltransferase 2 (POMGNT2) (OR = 0.62, 95% CI 0.41–0.91, P = 0.017) and C–C 
Motif Chemokine Ligand 14(CCL14) (OR = 0.80, 95% CI 0.67–0.94, P = 0.010) were associated with a reduced risk of CLL. 
Colocalization analysis suggested that PPIE may share pathogenic variants with CLL (PP.H4 = 0.758). Phenomenon-wide 
MR analysis of PPIE also indicated associations with other clinical features, including rheumatic diseases and type 2 
diabetes. Protein–protein interaction and drug-gene interaction analyses highlighted CDC5L and SNW1 as potential 
therapeutic targets.
Conclusion This study identifies nine plasma proteins linked to CLL risk, with PPIE offering new insights into the disease’s 
pathogenesis. Further research is needed to validate these findings and explore their potential as therapeutic targets.
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1 Introduction

Chronic lymphocytic leukemia is a neoplastic disease characterized by the proliferation of small lymphocytes with the 
markers CD5, CD19, CD20, CD23, as well as the expression of kappa and lambda light chains either on the cell surface 
or intracellularly [1, 2]. The clinical course of CLL is very variable; While some patients experience stable disease with a 
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favorable prognosis, others may develop refractory and relapsed CLL, leading to reduced survival [3]. Key prognostic 
factors include IGHV mutations, 17p deletions (del[17p]), and abnormalities in TP53 [4]. From 1990 to 2017, the global 
incidence of CLL has more than doubled, with over 85% of countries or regions experiencing an upward trend in incidence 
[5]. Therefore, studying the risk factors associated with CLL represents an extremely important scientific task.

Plasma proteins play a central role in various biological processes, serve as important biomarkers for the diagnosis 
of specific diseases, and represent important sources of potential therapeutic targets [6]. These proteins can enter the 
bloodstream through active secretion or cell leakage, providing insights into the current state of human health [7]. Previ-
ous studies have confirmed the possible causal relationships between 65 proteins and 52 disease-related phenotypes, 
suggesting that the occurrence of malignant melanoma is related to proteins such as ASIP and FUT3, while SHISA3 is 
identified as a risk factor for breast cancer [8].

In the context of CLL, previous research has shown that elevated levels of circulating interleukin-8, interleukin-6, and 
interleukin-10 correlate with survival outcomes and deleterious disease features [9–11]. Research has also shown that 
defects in the apoptotic pathway lead to the presence of numerous survival signals in the microenvironment of CLL cells, 
such as: chemokines and cytokines. These signals enhance the overexpression of nuclear factor-κB and phosphorylated 
3-phosphoinositide-dependent protein kinases, particularly members of the Bcl-2 family, and ultimately contribute to 
tumorigenesis. [12]. Nevertheless, these studies are often limited by factors such as observational designs, small sample 
sizes, and a limited range of proteins analyzed.

MR (Mendelian randomization) is a well-established method in genetic epidemiology and acts as an instrumental 
variable in nonexperimental designs to infer causal relationships between modifiable exposures and disease outcomes. 
This approach exploits the presumed random assignment of genetic variations that are unaffected by disease processes, 
thereby mitigating confounding factors and reversing causal biases [13]. A recently published genome-wide associa-
tion study of plasma proteins revealed independent single nucleotide polymorphisms linked to 7156 proteins [14]. 
Consequently, we integrated two-sample MR analysis, colocalization analysis, phenom-wide MR, and protein–protein 
interaction analysis to identify potential pathogenic plasma proteins in CLL.

2  Methods

2.1  Study design

We implemented a comprehensive analytical framework: 1. We identified disease-related protein targets using a proteom-
ics-wide association study (PWAS) using the two-sample MR method and selected from a database of 7156 proteins from 
FinnGen. Somascan high-throughput protein analysis technology. 2. We validated the shared coding loci between the 
identified proteins and CLL using colocalization analysis. 3. We performed Phe-MR analysis of key CLL-related proteins to 
investigate causal relationships between different disease phenotypes and genetic variants. To reduce data redundancy, 
we used the UK Biobank SAIGE cohort and excluded diseases with fewer than 500 cases. This resulted in 783 phenotypes 
being available for Phe-MR analysis. 4. We investigated the potential biological mechanisms of the derived protein targets 
using PPI network analysis. 5. We identified potential drug targets using a drug-gene interaction database.

2.2  Sources of exposure and outcome data

The FinnGen study is a large-scale genomics initiative that analyzes over 500,000 Finnish biobank samples and corre-
lates genetic variations with health data to understand disease mechanisms and susceptibility. This project represents a 
collaboration between Finnish research institutions, biobanks and international industrial partners [14]. FinnGen used 
Somascan’s high-throughput protein analysis technology to perform proteomic analyzes on 828 plasma samples, col-
lecting data on 7156 proteins (https:// r10. finng en. fi/). Result data comes from the UK Biobank database, the world’s 
largest biobank, containing phenotypic and genomic data from over 500,000 individuals. These data facilitate research 
into gene-phenotype or gene-disease relationship s and help researchers identify drug targets or biomarkers for disease 
diagnosis and treatment. Disease GWAS from this database used scalable and accurately implemented generalized linear 
mixed models (SAIGE V.0.29) to address imbalanced case–control ratios [15] (https:// pheweb. org/ UKB- SAIGE/). Public 
data on CLL includes 506 cases and 404,466 controls (Fig. 1).

https://r10.finngen.fi/
https://pheweb.org/UKB-SAIGE/
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2.3  Mendelian randomization analysis

MR analysis is based on three basic assumptions: (1) genetic variation is strongly associated with plasma proteins; (2) 
Genetic variation is not influenced by confounding factors that could influence the relationship between plasma proteins 
and CLL. and (3) genetic variation influences CLL solely through its influence on plasma proteins, without other pathways. 
We selected pQTLs as instrumental variables (IVs) based on the following criteria: (1) SNPs within ± 10,000 kb of gene 
regions; (2) Selection of highly associated SNPs (P < 5 ×  10–8) for 7156 plasma proteins across the genome; (3) an LD 
threshold  (r2) of 0.001 and a distance of 10,000 kb to ensure independent SNPs and minimize LD effects; 4)  R2 and F 

statistics 
(
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= 2 ×MAF × (1 −MAF) × �2 ;F= R

2
×

(N−2)

(1−R2)

)

 for estimating the strength of genetic tools, where  R2 represents 

the Proportion of variation in protein levels explained by each genetic tool [16]. We selected the protein with the highest 
 R2 value for repeated proteins in the study. For SNP harmonization, the “Harmonize Data” function in the TwoSample MR 
package was used.

Subsequently, methods such as Inverse variance weighted(IVW), Wald ratio, MR Egger and weighted median (WM) 
were used to evaluate causal relationships between plasma proteins and CLL [17]. Variables were further classified as 
cis-pQTLs or trans-pQTLs based on the following criteria: pQTLs that were within 1 Mb of the transcription start site of 
a protein-coding gene were defined as cis-pQTLs, while those outside this region were referred to as trans-pQTLs. The 
Wald ratio and delta method were used to estimate odds ratios (ORs) and corresponding confidence intervals (CIs) for 
proteins with only one cis-pQTL.Estimates were obtained using IVW method for proteins with multiple cis-pQTLs. The 
Wald ratio method is suitable as a basic MR approach for cases involving one or more genetic instruments. It estimates 
the causal effect of exposure on the outcome by calculating the ratio of correlation coefficients between each SNP and 
the exposure and the coefficients between each SNP and the outcome. The IVW method provides the highest statistical 
power and is often used as the primary analysis method in MR studies with multiple genetic variations, assuming that all 
genetic variables are valid instruments. The weighted median method assumes that at least 50% of instruments are valid, 
whereas MR Egger serves as a complementary method in MR studies to test and adjust for pleiotropy MR Egger is sensi-
tive to outliers and provides causal estimates even when all IVs are invalid [18]. MR-Egger regression was used to detect 

Fig. 1  Study design overview
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horizontal pleiotropy when the number of SNPs was three or more, with P values above 0.05 indicating no pleiotropy, 
while heterogeneity was checked using the Cochran Q test, with P values above 0.05 indicating no pleiotropy-influencing 
heterogeneity [19]. To avoid reverse causality, the MR-Steiger test was used [20]. However, due to the limited number 
of instrumental variable SNPs, the MR-PRESSO method could not be used to detect and correct horizontal pleiotropy. 
In this study, all analyses were performed using the “TwoSampleMR” and “coloc”packages in R version 4.2.2. To control 
false positives when testing multiple hypotheses, false discovery rate (FDR) was applied to eliminate statistical bias from 
multiple comparisons [21].

2.4  Colocalization analysis

Colocalization analysis is used to test whether the association of the identified protein with CLL shares the same causal 
variants. This analysis is based on a Bayesian model with posterior probabilities for five hypotheses (PPH): (1) no associa-
tion with any feature (H0), (2) association only with feature 1 (H1), (3) association only with Trait 2 (H2), (4) different causal 
variants associated with both traits (H3), and (5) the same causal variant associated with both traits (H4). The “coloc.abf” 
algorithm uses standard parameters (a priori probabilities of SNP association: with feature 1, p1 = 1 ×  10–4 with feature 
2, p2 = 1 ×  10–4; with both features, p12 = 1 ×  10–5) [22]. An association between the identified protein and CLL is defined 
as colocalized if PPH4 > 0.75, while PPH4 > 0.5 indicates moderate colocalization [16].

2.5  Phenome‑wide MR analysis

To further evaluate potential drug targets and predict adverse drug events, we performed Phe-MR analysis of key proteins 
associated with CLL [23]. To avoid data redundancy, we used the UK Biobank cohort, which includes a sample size of up 
to 408,961 individuals. We excluded disease phenotypes with fewer than 500 cases. The researchers used SAIGE v.0.29 
software to conduct 30 GWAS analyses, using a generalized mixed model approach to eliminate potential confounds 
caused by unbalanced case–control distributions. Phenotypic outcomes for diseases or conditions were defined using the 
“PheCodes” system, which organizes codes from the International Classification of Diseases and Related Health Problems 
(ICD-9/−10) that correspond to specific phenotypic expressions [15].

2.6  PPI network analysis

To validate the interactions of the identified proteins, we performed protein–protein interaction (PPI) network analysis 
on proteins significantly associated with CLL (q < 0.05). All PPI analyzes were performed using the STRING database ver-
sion 11.5 (https:// string- db. org/) with a minimum interaction score threshold of 0.4.

2.7  Drug‑gene interaction

To determine whether the identified proteins could serve as potential therapeutic targets, we utilized the Drug-Gene 
Interaction Database (https:// www. dgidb. org/), which contains information on drug-gene interactions and druggable 
genes from publications and databases and online resources.

3  Results

3.1  Potential positive proteins influencing CLL

A comprehensive analysis of the causal relationship between 7,156 plasma proteins and CLL was performed using the IVW 
or Wald ratio method. The F value, which indicates the strength of the association between genetic variants and exposure, 
ranged from 30 to 1,380 and showed no risk of weak instrument bias. Although all plasma proteins showed no statistically 
significant effect on CLL after FDR correction (p-fdr < 0.05), there are still nine unmatched plasma protein phenotypes with 
low p-value that are noteworthy (Fig. 2).Specifically, type III receptor tyrosine kinase (CD117) (OR = 1.32, 95% CI 1.00–1.72, 
P = 0.045), MHC class I polypeptide-related sequence A (MICA) (OR = 1.18, 95% CI 1.06–1.32, P = 0.003), Sialic Acid Binding 
IG-Like Lectin 5 Recombinant Protein (SIGLEC5) (OR = 1.20, 95% CI 1.03–1.39, P = 0.014), MAM Domain Containing Gly-
cosylphosphatidylinositol Anchor 2 (MDGA2) (OR = 1.47, 95% CI 1.12–1.92, P = 0.005), Leukocyte Immunoglobulin-Like 

https://string-db.org/
https://www.dgidb.org/
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Receptor A1 (LILRA1) (OR = 1.63, 95% CI 1.04–2.57, P = 0.033), Human Leukocyte Antigen C (HLA-C) (OR = 1.14, 95% CI 
1.01–1.29, P = 0.032) and Peptidyl-prolyl cis–trans isomerase E (PPIE) (OR = 1.66, 95% CI 1.22- 2.27, P = 0.001) were associ-
ated with an increased risk of CLL. In contrast, protein O-linked mannose Protein O-Mannosyltransferase 2 (POMGNT2) 
(OR = 0.62, 95% CI 0.41–0.91, P = 0.017) and C–C motif chemokine 14 (CCL14) (OR = 0.80, 95% CI 0.67–0.94, P = 0.011) 
were associated with a reduced risk of CLL (Fig. 3). More details for the association of proteins with CLL are presented in 
Supplementary Tables 1–3.

3.2  Colocalization results

To validate genetic colocalization, PP was assessed. A PP.H4 ≥ 0.75 was defined as positive colocalization, while a 
PP.H4 ≥ 0.50 was defined as moderate colocalization (Supplementary Tables 4). In this study, gene colocalization analysis 
of five proteins suggested that PPIE may have a pathogenic variant in this region (PP.H4 = 0.758); POMGNT2 (PP.H4 = 0.603) 
and CCL14 (PP.H4 = 0.549) showed moderate colocalization with CLL (Fig. 4).

3.3  Phenome‑wide MR analysis results

To comprehensively elucidate the influence of the CLL-associated PPIE protein on other clinical features, we per-
formed PHEWAS on the UK Biobank dataset, which included 1403 diseases. Our study shows that PPIE is associated 
with 45 traits (Pval < 0.05). In particular, PPIE shows a positive correlation with 22 clinical characteristics, suggesting 

Fig. 2  MR correlation analysis 
of plasma proteins with 
chronic lymphoid leukemia, 
Pval < 0.05 was considered as 
significant association

Fig. 3  Association of protein expression in the blood with CLL risk. The forest map for estimates of the relationship between genetically pre-
dicted protein levels and CLL
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that PPIE not only increases the risk of CLL, but also the associated risks of endocrine disorders such as rheumatoid 
diseases (OR = 1.14, 95% CI 1.01–1.29. Pval = 0.014) and type 2 diabetes (OR = 1.30, 95% CI 1.05–1.62, Pval = 0.040). 
Furthermore, PPIE is negatively correlated with 23 clinical features, suggesting a potential protective effect (Fig. 5). 
Consequently, any development of the plasma protein PPIE as a therapeutic target for CLL must take into account 
its potential side effects and safety.

3.4  PPI networks and drug‑gene interactions.

Using the STRING interaction gene and protein search tool, we analyzed the protein–protein interaction network 
(PPI) of 885 DEGs. The CytoHubba plugin grading algorithm identified 20 protein genes that interact with PPIE: 
AQR, ZNF830, ISY1, SYF2, CWC15, SNRPF, SNRNP40, DHX8, SNW1, BUD31, PLRG1, PPIE, XAB2, RBM22, CDC5L, BCAS2, 
PRPF19, CDC40, EFTUD2 and CRNKL1 (Fig. 6). We then used the drug-gene interaction database to identify two 
potential therapeutic targets for CLL–CDC5L and SNW1–from the 21 proteins, including PPIE, within the PPI network.

Fig. 4  Genetic colocalization of CLL (A) CCL14 (B) PPIE (C) POGNT2. In this view, each dot is a genetic variant. Te SNP with the most notable 
P value with CLL is marked, and the colors of other SNPs depends on the digit size ordering of linkage disequilibrium (r2). SNPs with missing 
linkage disequilibrium information are also coded dark blue. In the LocusZoom plots, -log10 (P.gwas) for links with CLL risk are on the x-axes, 
and -log10 (P.pqtl) for relationship with the protein levels on the y-axes
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4  Discussion

By integrating plasma proteomics with genome-wide association data, this study systematically identified plasma pro-
teins associated with chronic lymphocytic leukemia through MR and Bayesian colocalization analyzes with the aim 
of uncovering potential drug targets. The discovery and evaluation of diverse therapeutic targets provides additional 
options for CLL treatment, including small molecule inhibitors, monoclonal antibodies, and other biologics. Neverthe-
less, individual patient responses may vary, highlighting the need to explore new strategies. Our MR analysis identified 
nine CLL-associated proteins, seven (CD177, SIGLEC5, MDGA2, LILRA1, HLA-C, MICA, PPIE) significantly increased CLL 
risk, while POGNT2 and CCL14 were associated with reduced risk. Colocalization analysis suggests that PPIE may be a 
promising therapeutic target. Further investigations using Phe-MR are planned to evaluate possible side effects and 
safety of targeted PPIE.

PPIE, an enzyme from the peptidyl prolyl isomerase (PPIase) family, was recognized as a CLL-related plasma protein 
in this study. The PPIase family plays a crucial role in various diseases. For example, PPIA, a prominent member called 
cyclophilin A (CyPA), facilitates the isomerization of proline residues in proteins. Previous studies using single-cell tran-
scriptomics revealed high PPIA expression in primary refractory multiple myeloma patients and those unresponsive 
to KYDAR chemotherapy. CRISPR knockout of PPIA in the RPMI-8226 cell line showed that PPIA depletion or treatment 
with the CyPA inhibitor CsA increased sensitivity to the proteasome inhibitor CFZ, suggesting the role of PPIA in drug 
resistance and the potential for overcoming them [21]. B-cell malignancies such as multiple myeloma (MM) and CLL 
often colonize the bone marrow, where the microenvironment plays a critical role in their proliferation and protection 

Fig. 5  The phenome-wide MR analysis for PPIE
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[24–26]. Exogenous CyPA (eCyPA) secreted by bone marrow endothelial cells promotes proliferation and homing of 
MM cells by binding to the receptor CD147 [27].In addition to MM cells, eCyPA also promotes the migration of chronic 
lymphocytic leukemia (CLL) and lymphoplasmacytic lymphoma (LPL) cells, both of which express CD147 and tend to 
colonize the bone marrow.This suggests that PPIE, a member of the same family as PPIA, may play an important role 
in cellular signaling pathways. PPIE encodes an N-terminal RNA recognition motif (RRM) and a C-terminal isomerase 
domain [28]. It regulates chromatin modification, transcription and pre-mRNA splicing by directly interacting with the 
PHD3 domain of the histone reader MLL1 and associating with the XAB2 complex [29–33]. PPIE interacts with various 
splicing factors, including SF3B4, SF3A2, snRNPA’, B/B’ and SmD3, and may influence splicing patterns and thus protein 
production in B cells [34–36].

CLL is characterized by the pathological accumulation of mature B cells. Cellular stresses such as oxidative stress, DNA 
damage, and protein misfolding may contribute to disease progression by affecting apoptosis, cell cycle regulation, DNA 
repair mechanisms, and immune evasion. PPIE, as a molecular chaperone, is central to protein folding and catalyzes the 
isomerization of proline residues to ensure correct protein folding under stressful conditions, thereby preventing misfold-
ing and protecting cells from damage [37]. The PPIase family also regulates the cell cycle and influences proliferation and 
aging, with CyPA being involved in the aging of hematopoietic stem cells. These potential functions and roles suggest 
that abnormal expression of PPIE plays an important role in the pathogenesis of CLL. However, further experimental 
validation is required to evaluate the potential of PPIE as a therapeutic target [38].

MICA, also known as MHC Class I Polypeptide-Related Sequence A, is a stress protein that is rarely expressed in normal 
cells, except in the gastrointestinal epithelium, endothelial cells and fibroblasts. High MICA expression is detected on 
various tumor cells, including non-small cell lung cancer, colon cancer, breast cancer and leukemia, which is consistent 
with our MR analysis. Tumor cells can evade immune surveillance by degrading MICA, leading to its internalization by NK 
cells via NKG2D, thereby silencing NK cell responses [39]. Therefore, anti-MICA antibodies represent a potential therapeu-
tic target for CLL. CD177, also known as NB1 or HNA-2 antigen, is a GPI-anchored surface protein typically expressed on 
neutrophils. CD177 mediates neutrophil adhesion and migration through interactions with PECAM-1 and β2 integrin. 
It is considered a valuable marker in myeloproliferative diseases [40]. Although the association between CD177 and 
CLL risk has not been extensively studied, our findings suggest a potentially positive correlation. Studies have shown 
that CD177-deficient Treg cells reduce tumor growth and TI-Treg frequency in mice [40]. Although the strict correction 
thresholds are not met, several proteins with low p values   are notable in our study. The SIGLEC protein family has been 
shown to contribute to the establishment of an immunosuppressive microenvironment in tumor cells by inducing a 
pro-cancer phenotype in tumor-associated macrophages and inhibiting immune cell activation [41]. Similar to CD177, 
there is limited research on the association of POGNT2 and CCL14 with CLL risk. Our MR results indicate a negative cor-
relation between POGNT2, CCL14 and CLL risk, which warrants further investigation to understand the role of these three 
proteins in the development of CLL.

Fig. 6  Protein–protein inter-
action (PPI) network among 
identified protein targets and 
suggestive protein targets
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However, this study has limitations..Gene expression is highly complex and is influenced by various factors, includ-
ing environmental conditions. The proteomic analysis in this study is limited to pQTL data from individuals of European 
ancestry, potentially introducing a bias for non-European populations. Furthermore, our main data source, plasma pro-
teomics from the FinnGen cohort, is based on hypothesis-based genomic methods and does not include other relevant 
tissue systems, leading to selection bias. Unique pQTLs may have been missed, and unknown rare variants and complex 
counteractions may play an important role in genetics, warranting investigation in larger future studies.Regarding the 
assessment of druggability, it should be emphasized that this study identifies potential drug targets primarily through 
Mendelian randomization and colocalization evidence. There are currently no reports of drugs targeting this candidate 
for the treatment of CLL. Furthermore, the association of PPIE with various other clinical features raises concerns about 
possible off-target side effects, complicating its suitability as a drug target. Therefore, we conducted a protein interac-
tion network analysis where alternative proteins within common signaling pathways may provide therapeutic options 
when the identified proteins are considered untreatable. This is because potential targets do not act in isolation but 
rather interact within a complex network of interconnected signaling pathways that contribute to disease pathology. In 
addition, some studies have shown that β2-microglobulin correlates with tumor burden, disease stage and prognosis in 
CLL, abnormalities in the secretion of plasma proteins such as IL-10 and TNF-α may be involved in the immune regula-
tion of the tumor microenvironment and thereby tumor cell proliferation and affect survival. However, in the absence of 
confirmed tissue-specific roles in CLL, the use of plasma proteins as surrogates limits their explanatory power in directly 
implicating disease mechanisms. Therefore, although our method is based on careful hypotheses and considerations, 
it is crucial to integrate evidence from Mendelian randomization and colocalization, protein interactions with recently 
identified genes, as well as gene functionality and tissue-specific expression patterns to accurately determine disease-
associated drug target genes. Furthermore, further clinical and microexperimental studies are essential to refine the 
evidence and confirm the potential of PPIE as a therapeutic target in CLL.

5  Conclusion

This study identified nine plasma proteins linked to CLL risk, with PPIE offering new insights into CLL pathogenesis. These 
findings establish a solid foundation for further research into the genetic and functional mechanisms underlying CLL and 
highlight potential biomarkers for developing novel therapeutic strategies. Future research should focus on validating 
the specific roles of these proteins in CLL onset and progression, and assessing their potential as therapeutic targets, to 
enhance the development of precise diagnostic and treatment strategies for CLL.
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