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maintenance, and more requirements for space and facility, 
compared to in vitro model [2]. Thus, establishment of a 
representative in vitro disease model is of great convenience 
and significance to study disease pathogenesis and investi-
gate effective drugs [3]. With the development of biomedical 
technology, a variety of cell-based models mimicking real 
organs and tissues have been established [4]. Nonetheless, 
the classical 2D culture of cell lines and primary cells have 
obvious limitations to not fully recapitulate cell types, phe-
notypes, functions and microenvironment, thus are hard to 
faithfully mimic and reflect in vivo situation [5]. Recently, 
organoid, which is analogous to the architecture and func-
tionality of original organs and tissues were established [6]. 
Organoids possess three-dimensional structures formed by 
progenitor/stem cells cultured in vitro [7]. The growth and 
differentiation in organoids are regulated by various growth 
factors and chemical cocktails, making organoids have 
similar cell composition, physiological functions and even 
structure as original tissues and organs [8]. Establishment 
of this highly bionic model in vitro facilitates to understand-
ing the molecular mechanism of diseases and screening tar-
geted drugs [9]. Massive production of organoids will have 

Introduction

Although model organisms, such as mice and rats, are widely 
used in study on disease pathogenesis and drug screening, 
there still exists a tremendous gap between animal models 
and human body [1]. Besides, animal models have higher 
economic cost for feeding, transgenic line construction and 
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Abstract
Organoid is an ideal in vitro model with cellular heterogeneity and genetic stability when passaging. Currently, organoids 
are exploited as new tools in a variety of preclinical researches and applications for disease modeling, drug screening, 
host-microbial interactions, and regenerative therapy. Advances have been made in the establishment of nasal and olfac-
tory epithelium organoids that are used to investigate the pathogenesis of smell-related diseases and cellular/molecular 
mechanism underlying the regeneration of olfactory epithelium. A set of critical genes are identified to function in cell 
proliferation and neuronal differentiation in olfactory epithelium organoids. Besides, nasal epithelium organoids derived 
from chronic rhinosinusitis patients have been established to reveal the pathogenesis of this disease, potentially applied in 
drug responses in individual patient. The present article reviews recent research progresses of nasal and olfactory epithe-
lium organoids in fundamental and preclinical researches, and proposes current advances and potential future direction in 
the field of organoid research and application.
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potential benefits in many fields, such as establishing new 
disease models, screening personalized drugs, and investi-
gating pathogenesis [10].

Nasal mucosa, the transitional zone between squamous 
and columnar epithelium in the nasal vestibule, extends into 
the nasal cavity and is widely distributed in various walls 
and passages of the nasal cavity, as well as in the continuous 
mucosa of the nasopharynx, sinuses, and nasolacrimal ducts 
[11]. According to the histological structure and physiologi-
cal function, nasal mucosa is divided into two parts: olfac-
tory mucosa and respiratory mucosa. The olfactory mucosa 
is distributed in the middle of the nasal cavity, which is a 
pseudo-stratified columnar epithelium and is mainly com-
posed of supporting cells, basal cells, and olfactory sensory 
neurons (OSNs), etc [12]. The olfactory mucosa is respon-
sible for the regulation and control of olfaction. External 
odorants are first inhaled into nasal cavity and bind with 
olfactory receptors (ORs) expressed on the cilia of OSNs. 
These neurons then convert odor signals into electrical sig-
nals, which are subsequently transmitted to the olfactory 
bulb through olfactory nerve fibers. The olfactory bulb fur-
ther processes signal and transmits to the olfactory cortex 
of the brain to complete the olfactory perception [13]. The 
respiratory mucosa in the anterior one-third of the nasal cav-
ity is a pseudostratified and ciliated columnar epithelium, 
consisting of ciliated cells, columnar cells, goblet cells, and 
basal cells [14]. The respiratory mucosa mainly functions in 
defensing against airborne pollutants and inhaled pathogens 
as well as facilitating mucociliary clearance. The mucus 
secreted by respiratory mucosa construct a stable barrier to 
defense against various pathogens and particles, while the 
directional movement of cilia promotes the mucus secretion 
from the nasal cavity towards the esophagus, where it is 
transported to the digestive tract by swallowing [15]. These 
two mucosal epithelia provide a direct contact site to inhal-
able irritants, symbiotic organisms, and pathogens.

Olfactory and nasal epithelium organoids are mainly 
derived from olfactory and nasal epithelium, and are uti-
lized to illuminate the mechanism underlying olfactory 
epithelium homeostasis and regeneration, as well as patho-
genesis of nasal-related diseases. In this review, we sum-
marized the recent advances in studies of olfactory and 
nasal epithelium organoids, especially in both fundamental 
research and preclinical applications. We further discussed 
current breakthroughs and challenges in the field of organ-
oid research, and proposed the new progress in olfactory 
and nasal epithelium organoid technology.

Organoids derived from different sources

Organoid model is a technological breakthrough and has 
become an important tool for fundamental research and pre-
clinical applications. The ‘organoid’ was firstly termed by 
Smith and Cochrae in 1946 to describe cystic teratoma [16]. 
The current organoid technology was firstly established by 
Hans Clevers and colleagues in 2009, when they succeeded 
to culture murine intestinal epithelial organoids in vitro [17]. 
These organ-like 3D cultures with stacked cell clusters were 
called organoids. Organoid growth simulates the formation 
of organs and differentiation into various types of functional 
cells [18]. The initiation of organoid culture requires the 
cultivation of stem/progenitor cells, either pluripotent stem 
cells (PSCs) or tissue-specific stem cells.

Organoids derived from adult tissue-specific stem 
cells

Adult stem cells (ASCs) are responsible for homeostasis 
and regeneration of epithelial tissues [19]. Epithelial organ-
oid cultivation derived from adult tissue-resident stem cells 
provide ideal tools to advance epithelial tissue research 
[20]. In 2009, intestine organoid was firstly established by 
embedding ASCs from murine small intestinal epithelium 
into extracellular matrix (ECM)-rich hydrogel with spe-
cific chemical cocktail [17]. Subsequently, this technology 
has been widely applied to establish organoids from vari-
ous tissues, while it mainly depends on the regenerative 
and renewal ability of epithelial cells [21]. Previous reports 
showed that versatile epithelial organoids derived from dif-
ferent organs have been constructed for multiple research 
purposes [22–24]. For instance, human lung organoids 
derived from single adult alveolar epithelial type II (AT2) 
cells significantly promoted the study for pathogenesis of 
lung diseases [25]. Besides, murine skin organoids generated 
from epidermal stem cells possessed the long-term expan-
sion property (over 6 months), acting as a powerful model to 
investigate the epidermal homeostasis and disease progres-
sion in vitro [26]. This epithelial organoid type also includes 
mucosal organoid derived from murine oral epithelial stem 
cell [27], colon organoid derived from human colonic epi-
thelium [28], kidney organoid from human tubular epi-
thelium [29], and prostate organoids from murine luminal 
progenitor cells [30], and olfactory epithelium organoids 
from mouse Leucine-rich repeat-containing G-protein-cou-
pled receptor 5(Lgr5) + basal cells [31] (Fig. 1).

One of the important determinants for organoid culture 
is the growth medium containing a tissue-specific growth 
factor cocktail. It was reported that Wnt signaling pathway 
plays a pivotal role in the maintenance of ASC stemness, 
which facilitates the generation of murine ASC-derived 
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organoids [32]. Lgr5, an essential member of Wnt signal-
ing, played crucial roles in regulating adult cell proliferation 
and stemness maintenance in versatile tissues, and thus was 
regarded as an important marker of adult stem cell [33]. A 
few types of ASC-derived organoids were constructed by 
using Lgr5 + stem cells. Murine intestinal, stomach and 
liver Lgr5(+) stem cells cultivated in 3D structures formed 
long-term passaging organoids, which simulated tissues of 
origin [34–36]. However, some normal adult tissues such 
as pancreas did not contain Lgr5 + stem cells, while injured 
pancreas by partial duct ligation showed increasing number 
of Lgr5 + cells. This also occurred in the olfactory epithe-
lium, showing the recruitment of Lgr5 + cells in the injured 
tissue [37]. Thus, Lgr5 + cells were employed to guarantee 
long-term expansion of murine pancreatic or olfactory epi-
thelium organoids in Rspondin1-based cultures [31, 38]. 
Rspondin1 is mainly used as an enhancer of Wnt signal-
ing pathway to promote the proliferation of stem cells and 
maintain the stemness, which thus propels the proliferation 
and growth of organoids. Taken together, organoids were 
well established from tissue-specific stem cells. However, 
detailed comparison among various culture conditions for 
different organoid types are still lack, and it is hard to evalu-
ate each condition for a specific type of organoid.

Organoids derived from pluripotent stem cells

Multiple types of organoids are derived from either induced 
pluripotent stem cells (iPSCs) or embryonic stem cells 
(ESCs) [39]. iPSC is a special subtype with self-renewal 
and capacity of pluripotent differentiation, forming vari-
ous types of organoids under certain chemical induction 
[40]. Recent studies showed that three-dimensional culture 
technology combining with sequential addition of different 
growth factors facilitates the generation of brain organoids 
with typical cortical like structures from iPSCs [41]. Impor-
tantly, human brain organoids replicate the dynamic devel-
opmental process of human cerebral cortex and resemble 
the outer subventricular zone (oSVZ) region containing 
outer radial glia cells (oRGC). This provides an optimal 
model for studying cortex-related diseases such as autism 
spectrum disorder [42]. The hippocampus is important to 
memory formation and is severely damaged during the 
onset of Alzheimer’s disease [43]. Therefore, human hip-
pocampal organoid derived from iPSCs have the potential 
to act as a promising tool to investigate pathogenesis of 
Alzheimer’s disease [44, 45]. An innovative strategy was 
described concerning differentiation of human iPSCs into 
hippocampal spheroids (HSs). This model was harnessed 

Fig. 1 Various organoids derived from either pluripotent stem cells 
(PSCs) or tissue-specific stem cells. Organoids derived from different 
tissues were established by using various adult tissue-specific progeni-
tor cells, belonging to adult stem cells (ASCs). Meanwhile, organoids 
were also established via differentiation from induced pluripotent stem 

cells (iPSCs) or embryonic stem cells (ESCs) into cells of three germ 
layers (endoderm, mesoderm, ectoderm) through adding combination 
of growth factors. Currently, there is no report showing the generation 
of olfactory organoid from ESCs or iPSCs, and the specific growth 
factors necessary for this induction was unknown
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Disease and Parkinson’s disease [57]. The olfactory epithe-
lium undergoes continuous renewal throughout life, which 
mainly attributes to the presence of olfactory epithelium 
stem cells including mitotically active globose basal cells 
(GBC) and dormant horizontal basal cells (HBC) [58]. 
Once olfactory epithelium is severely damaged, HBCs are 
recruited from resting to active state, then generate GBCs 
to produce neurons and also differentiate into various types 
of olfactory epithelial cells, eventually regenerating olfac-
tory epithelium [59]. Thus, the tissue-specific stem cells in 
olfactory epithelium provide an ideal source for organoid 
cultivation in vitro (Fig. 2).

Multiple attempts have been made in culturing stem/
progenitor cells and other cell types isolated from olfactory 
epithelium (Table 1). Previous study showed that P63 act 
as a ‘main controller’ of HBCs’ dormancy and activation 
[60]. Peterson and colleagues demonstrated that P63+ mul-
tipotent HBCs can be cultivated and passaged in vitro. This 
culture closely recapitulates the phenotype of HBCs in vivo, 
forming a 3D-culture spheroidal structure when embedded 
into growth factor-reduced Matrigel [61]. To investigate the 
alteration of HBCs with chronic inflammation, Chen and 
colleagues explained a crucial role of NF-kappaB signaling 
pathway using TNFα-treated primary-cultured HBCs [62]. 
Our team is committed to the establishment and develop-
ment of olfactory epithelium organoid platform. We have 
successfully established clonal expansion of cultures from 
murine olfactory epithelium as well as from human olfac-
tory mucosa using Matrigel-based three-dimensional sys-
tem (Fig. 3). By using mouse olfactory epithelium organoid, 
we identified a few critical genes that regulates olfactory 
epithelial homeostasis and regeneration. Through activat-
ing or repressing Notch signaling by specific activator or 
inhibitor, we found that Notch signaling mainly affected 
aging-induced morphological alteration, cell proliferation 
and neuronal differentiation in olfactory epithelium organ-
oids [63, 64]. Moreover, Lgr5 + stem cells in the olfactory 
epithelium formed 3D organoids in vitro. Importantly, 
proliferative capacity and neuronal generation in these 
Lgr5 + cells-derived organoids varied under different culture 
conditions, whereas VPA (a histone deacetylase inhibitor) 
and CHIR99021 (a Wnt agonist) induced the highest Lgr5 
expression level, and LY411575 (a Notch inhibitor) resulted 
in the most abundant yield of OMP + mature sensory neurons 
[31]. Using this organoid platform, we revealed a new role 
of Chil4 (a chitinase-like protein expressed in supporting 
cells) in olfactory epithelium regeneration via communicat-
ing with inflammation, providing evidence that supporting 
cells modulate regeneration of sensory neurons [65]. Addi-
tionally, transmembrane protein 59 (Tmem59) was reported 
to be necessary in proliferation and neuronal generation in 
OE organoids [66]. Using OE organoids from aged mice, 

to reveal incipient pathogenic alteration in the hippocampi 
of AD patients, and offered a platform for screening treat-
ment options against early stage of AD [46]. Apart from 
brain organoid, significant progress was achieved in other 
types of human iPSC-derived organoids, including heart 
organoid [47], retinal organoid [48], spinal cord organoid 
[49], kidney organoid [50], and skin organoid [51] (Fig. 1). 
In summary, simplicity and accessibility of iPSCs-derived 
organoids may replace the human tissues and avoid ethical 
issues, providing ideal and promising models for studying 
pathogenesis of some currently incurable diseases.

However, procedures for generating olfactory organoid 
from iPSCs was not reported yet. A few studies indicated 
potential growth factors regulating olfactory tissue develop-
ment. To investigate the signal that initiated the formation of 
olfactory placode, Andrew et al. reported that activation of 
FGF pathway was required for olfactory placode formation 
and sufficient to induce it from cells within the preplacodal 
region in chicken lens. They also showed that FGF8 induced 
expression of genes specific for the presumptive olfactory 
region, subsequently functioning as olfactory markers [52]. 
In mouse, FGF8 altered stem cell marker expression and 
neurogenic patterns that directly reflected changes in bone 
morphogenetic protein (BMP) and Noggin expression in 
the nasal mesenchyme [53]. Besides, FGF8 has been impli-
cated in patterning of both olfactory placode and subjacent 
frontonasal mesenchyme in mouse [54]. Recently, Rebecca 
and colleagues showed that BMP inhibition, wingless/
integrated protein inhibition, retinoic acid inhibition, trans-
forming growth factor alpha (TGFα) activation, and FGF8 
activation were required in the induction of olfactory plac-
ode and differentiation of OSNs in human pluripotent stem 
cells [55]. Moreover, a recent study showed that functional 
OSNs were generated from human iPSCs via supplemen-
tation of FGF8 and dual SMAD inhibition, in which they 
analyzed the expression of OSN markers and validated their 
selective responsiveness to odorant compounds by measur-
ing the membrane potentials [56]. In conclusion, although 
there are currently no reports on the cultivation of olfactory 
organoids derived from iPSCs, a few studies provide clues 
for potential growth factor candidates serving as critical ele-
ments to establish the induction procedures.

Advances in nasal organoids

Olfactory epithelium organoids

The sense of smell is of great significance to the life and 
health of mammals. Loss of olfactory function not only 
affects life quality, but also serves as an early indicator to 
many neurodegenerative diseases, such as Alzheimer’s 
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Table 1 Summary of reported methods for olfactory epithelium stem/progenitor cell culture
Ref Year Source Cultured Cell Type Summary
[61] 2019 Mouse, 

rat, 
human

P63 + multipotent cells P63 + multipotent olfactory epithelial cells were cultivated and passaged, and the 
cultured HBCs were modeled into a 3D-culture spheroidal structure embedded with 
growth factor-reduced Matrigel.

[62] 2019 Mouse HBCs Chronic inflammation by TNFα led to NF-κB activation in primary cultured HBCs.
[63] 2020 Mouse Olfactory epithelium cells Chemical cocktail regulated olfactory organoid growth and morphology via Notch 

signaling pathway.
[64] 2018 Mouse Olfactory epithelium cells Lesion induced generation of Notch1 + horizontal basal cells in olfactory epithelium 

organoids.
[31] 2021 Mouse, 

human
Lgr5 + olfactory epithelium 
progenitor cells

Expansion of olfactory epithelium/mucosa organoids was established in vitro, with 
generation of mature sensory neuron and functional response to odor stimulation.

[65] 2021 Mouse Olfactory epithelium cells Chil4 regulated cell proliferation and differentiation in olfactory epithelium organoids.
[66] 2023 Mouse Olfactory epithelium cells Tmem59 regulated cell proliferation, sustentacular and neuronal generation in olfac-

tory epithelium organoids.
[68] 2020 Mouse Olfactory epithelium cells MMP and EGFR inhibition suppressed HBC proliferation in olfactory organoids.
[115] 2024 Mouse Olfactory epithelium cells 

with impedance biosensors
The impedance device enabled real-time observation of morphological and physi-
ological features in olfactory organoids from AD mice.

[67] 2024 Mouse Aged olfactory epithelium 
cells

Egr1 overexpression recovered cell proliferation and neuronal generation in aged 
olfactory epithelium organoids.

Fig. 3 Method for olfactory organoid culture. Olfactory epithelial tis-
sues were dissected under a stereomicroscope, and the tissues were cut 
into small pieces. Single cell suspension was made by adding 0.25% 

Trypsin, and then the cells were seeded into 24-well plate within 
Matrigel drops or in Matrigel-based medium. After cultivation for 7 
days, organoids were formed and passaged for long-term expansion

 

Fig. 2 Schematic diagram of cellular composition in the olfactory epi-
thelium. The olfactory epithelium shows a pseudostratified epithelial 
structure composed of supporting cells (SCs), mature and immature 
olfactory sensory neurons (OSNs), globose basal cells (GBCs), and 

horizontal basal cells (HBCs). Under normal condition, the HBCs are 
flat and adherent to the basal lamina, whereas these cells are activated 
and switched into triangular shape after severe OE injury

 

1 3

Page 5 of 14    33 



J. Liu et al.

Nasal epithelium organoids

The nasal mucosal epithelium, as an important physiological 
barrier, is the first defense line for the nose against external 
invasion. The formation of special tight junctions between 
nasal epithelial cells protect the mucosa from damage caused 
by pathogens such as bacteria, fungi, viruses, inhaled aller-
gens, and other irritants [69]. Destruction of this epithelial 
barrier exposes nasal mucosa to the external substances, 
causing innate and adaptive immune responses. Human 
nasal epithelial stem and progenitor cells (hNESPCs) are 
important pluripotent stem cells for repairing nasal muco-
sal injury [70]. Tissue repairing maintains epithelial barrier 
function of nasal mucosa, while aberrant repair leads to the 
occurrence of nasal mucosal diseases [71]. Recently, there 
is an increasing number of studies on hNESPCs. However, 
due to complex experimental conditions and long culturing 
period, establishment of nasal epithelium model in vitro is 
challenging [72]. At present, the establishment of organoid 
model is an important carrier for studying the physiological 
functions of nasal mucosa. These in vitro cultured cells are 
close to the natural growth state of nasal mucosal epithelial 
cells, laying a good foundation for the study of function of 
nasal mucosal epithelium and related diseases (Table 2).

Chronic rhinosinusitis (CRS) is a common inflammatory 
disease affecting the mucosa and paranasal sinuses of the 

we found that Egr1 overexpression improves cell prolif-
eration and sensory neuronal generation [67]. Study from 
Huang’s group showed that restraining matrix metalloprote-
ases (MMPs) and prompting epidermal growth factor recep-
tor (EGFR) expression not only restricted cell proliferation 
in mouse OE organoids, but also strongly repressed HBC 
proliferation post methimazole-induced OE injury [68]. 
The cultivation condition of murine olfactory organoids 
was applied in culture of human olfactory mucosa organ-
oid, with a few modifications on addition of chemical cock-
tail. The olfactory cleft and superior turbinate tissue used 
for human olfactory organoid culture was dissected from 
patients undergoing surgery to access tumors on the skull 
base. These human olfactory organoids expressed marker 
genes such as Lgr5 (a marker for stem cell), NCAM1 (a 
marker for neuron cell), NGFR (a marker for neuronal cell), 
OMP (a marker of mature olfactory sensory neuron) and 
Krt5 (a marker for horizontal basal cell) [31]. In summary, 
the successful establishment of murine and human olfac-
tory organoids provide reliable models for the investigation 
of molecular mechanisms underlying olfactory epithelium 
regeneration and other smell-related issues. This will be 
potentially applied in disease modeling, drug screening and 
establishing individualized precision medicine in the future.

Table 2 Summary of reported nasal epithelial organoids
Ref Year Source Technique Summary
[78] 2023 Nasal epithelial cells from CRS 

patients
Air-liquid 
interface 
(ALI) culture

Vitamin D facilitated nasal epithelial recovery and host defense 
responses against influenza H1N1 and Staphylococcus Aureus 
infections.

[79] 2020 Primary human nasal epithelial 
cells from CRS patients

ALI culture Different nasal irrigation solution had different effect on ALI-cultured 
human nasal epithelial cells.

[80] 2018 Nasal epithelial cells from CRS 
patients

ALI culture IL-13Rα2 had a potential role in facilitating the genesis of CRS via 
interacting with ERK1/2 signal pathway in the nasal epithelium.

[81] 2015 Nasal epithelial cells from CRS 
patients

ALI culture The positive interaction between TSLP, IL33, and Th2 contributed to the 
progress of nasal epithelial inflammation.

[82] 2021 Nasal epithelial cells from CRS 
patients

ALI culture BMP-2 acted as a biomarker of CRS due to its capability to reflect the 
pathophysiology of nasal mucosa.

[83] 2021 Primary polyp and nasal epithe-
lial cells of CRS patients

ALI culture Staphylococcus aureus colonization and release of enterotoxin B 
destructed nasal epithelium structure via driving TLR, thus disrupting 
TLR triggering was a potential strategy to repress the CRS exacerbation.

[84] 2017 Primary human nasal epithelial 
cell cultures

ALI culture Wnt/β-catenin signaling pathway prompted the inflammation and 
caused serious alterations coincident with those seen in the reconstruc-
tion process of nasal epithelium.

[85] 2022 Primary human nasal epithelial 
cells from CRS patients

3D cul-
ture nasal 
organoids

Cultured nasal organoids were maintained for 20 days, with expression 
of markers for stem cells, goblet cells and ciliated cells.

[86] 2018 Sinonasal fibroblasts and sinona-
sal epithelial organoids from CRS 
patients and controls

Co-culture of 
organoids with 
fibroblasts

Malfunctional interaction between fibroblasts and epithelial cells 
prompted CRSwNP onset via dysregulated Wnt signaling pathway

[87] 2022 Nasal polyp tissue from CRS 
patients

3D cul-
ture nasal 
organoids

Polyp-derived cells were cultivated in a 3D environment, with remain-
ing differentiated state for a longer time and ciliary beating

[88] 2023 Nasal polyp tissues from CRS 
patients

Explant organ-
oids culture

Crocin restrained nasal inflammation caused by ILC2 activation at low 
concentrations via blocking the activation of NF-κB signaling pathway.
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nasal inflammation induced by ILC2 activation at low con-
centration via blocking the activation of NF-κB signaling 
pathway [88]. Collectively, nasal epithelial organoid, espe-
cially from CRS patients, will facilitate investigating patho-
genesis of CRS, and potentially put forward personalized 
precision treatment for CRS.

Recent advances in organoid technology

Vascularized organoid

To better simulate the complexity in physiological struc-
ture in vivo of originated tissues, multiple bioengineering 
manipulation have been implemented to improve organoid 
technology. Based on the crucial role of blood supply in tis-
sue genesis and function, it is preferable to generate vascular 
networks within organoids to realize the preclinical applica-
tion [89]. A recent study reported vascularized human brain 
organoids equipped with blood-brain barrier like structures. 
In this study, vessel and brain organoids were cultured sepa-
rately, and then co-cultured two types of organoids in single 
Matrigel droplet (one brain organoid was surrounded by 
two vessel organoids). After 40 days, the fused vascular-
ized brain organoids were generated, and these organoids 
contained vascular network-like structures and displayed 
more neural progenitors, suggesting that increased blood 
supply promoted neural growth in brain organoid [90]. 
Different protocols of vascularized organoids have been 
developed (Fig. 4). From an anatomical perspective, ves-
sel originates from mesoderm while cerebrum is from ecto-
derm [91]. Cakir et al. established a protocol for developing 
embryonic vasculature, beginning with the differentiation of 
mesoderm-originated angioblasts. In this strategy, appropri-
ate combination of growth factors or genetic engineering 
induced the development of mesoderm together with ecto-
derm to generate vascularized brain organoids [92]. Human 
ETS variant 2 (hETV2) positive human embryonic stem 
cells (hESCs) boosted the formation of vascular-like net-
work in human cortical organoids [92]. Vascularized brain 
organoids exhibited blood-brain barrier characteristic, such 
as enhanced tight junctions, accelerated nutrient transport-
ers, and improved trans-endothelial electrical resistance 
[90]. Besides, Shi et al. developed a neoteric method for the 
production of vascularized human brain organoids through 
co-culturing hiPSCs with human umbilical vein endothelial 
cells (hUVECs) in vitro. These organoids formed a func-
tional vascularization system as well as intercellular syn-
aptic connections [93]. Above-mentioned methods were 
widely used to cultivate vascularized organoids from vari-
ous human tissues and organs with specific modifications, 
including heart organoid [94, 95], retinal organoid [96], 

nasal cavity [73]. The pathological and physiological mani-
festations of CRS include inflammatory infiltration and tis-
sue remodeling of the nasal mucosa, including eosinophil 
and neutrophil infiltration, polyp formation, goblet cell 
proliferation, and abnormal epithelial barrier function [74]. 
CRS is divided into two clinical subtypes based on the pres-
ence or absence of nasal polyps, including chronic rhinosi-
nusitis with nasal polys (CRSwNP) and without nasal polys 
(CRSsNP) [75]. CRS is a multifactorial inflammatory dis-
ease. Development of effective disease model is essential 
for revealing the pathogenesis of CRS. The organoid tech-
nology facilitates establishing an optimal model to better 
understand CRS progression. Nasal mucosa epithelial cells 
were cultured on a porous support precoated with collagen 
by air-liquid interface (ALI) technology, with formation of 
pseudostratified ciliated columnar epithelium [76, 77]. ALI-
based technology was harnessed to investigate the patho-
genesis of CRS. For example, Fan et al. determined the role 
of Vitamin D in promoting epithelial repair and host defense 
against influenza H1N1 virus and Staphylococcus Aureus 
infections using an ALI-based nasal epithelial cell model 
[78]. Likewise, a similar ALI-cultured human nasal epithe-
lial cell (hNEC) model was utilized to examine the effect of 
different nasal irrigation solution on epithelial mucociliary 
and barrier functionality [79]. Given to the essential func-
tion of human nasal epithelial cells (hNECs) inflammatory 
response in the onset of CRS, tremendous studies have 
illustrated various inflammatory factors using ALI-cultured 
hNECs, including IL-13Rα2 [80], Thymic stromal lympho-
poietin (TSLP)-IL33-Th2 loop [81], BMP-2 [82], Toll-like 
receptor 2 (TLR2) [83], Wnt/β-catenin signaling [84], etc.

Comparatively, 3D-cultured organoid is superior in repli-
cating the intricacy of originated organs and tissues than 2D 
culture. Ramezanpour and colleagues successfully cultured 
nasal epithelial organoids from primary hNECs, which were 
obtained by sterile nasal brushes from the inferior turbinate 
surface of CRS patients. These nasal epithelium organoids 
underwent multiple freeze-thaw cycles, thus facilitated 
constructing a biobank of nasal epithelial organoids from 
different patients and allow drug screening and potential 
preclinical applications in the future [85]. To verify the 
interactions between nasal epithelial cells and human sino-
nasal fibroblasts (hSNFs), Dobzanski et al. determined that 
nasal epithelial organoids co-cultured with hSNFs from 
CRSwNP patients altered epithelial cell morphology, and 
increased colony forming efficiency compared to epithelial 
cells co-cultured with healthy hSNFs [86]. Another study 
illustrated nasal organoids derived from CRSwNP patients, 
with observation of the ciliary beating for up to 20 days 
[87]. In addition, Xu et al. constructed an explant organoid 
model using nasal polyp tissues from CRSwNP patients. 
Using this model, they discovered that Crocin restrained 
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produced a vertically stacked-channel polydimethylsiloxane 
(PDMS)-free microfluidic chip that simulated blood vessel 
and pancreatic duct lumens, separated by a porous mem-
brane and providing separate outflow collection. Besides, 
their device offered control of media flow rate. This sys-
tem closely mimics the in vivo structure of PDAC and can 
be applied to assess drug sensitivity and predict therapy 
response [102]. By seeding organoid into chip, organoid-
on-chip technology establishes culture conditions suitable 
for cells, such as flowing mechanical force and physiologi-
cal hypoxia, thereby guaranteeing consistency between cell 
types, growth conditions and in vivo microenvironment 
mimicking [103]. This provides more efficient technological 
tool for disease modelling, drug screening, transplantation 
therapy exploitation, pathological mechanism uncovering, 
and gene editing (Fig. 5) [104]. Three aspects including 
more controllable microenvironment, modelling of multi-
organ systems, increasing congruity between parallel exper-
iments ensure that organoid-on-chip enables significant 
progresses in organoid research [99]. Multiple teams have 
devoted to recapitulating in vivo microenvironment using 
organoid chips. For instance, Zou et al. established a hepa-
tocellular carcinoma organoid-on-chip simulating tumor 
microenvironment combining with mesenchymal stromal 

kidney organoid [97], and liver organoid [98]. Vascularized 
organoids promoted nutrient transportation, and facilitated 
to take away metabolites to prevent waste accumulation. In 
addition, vascularization in organoids was conducive to the 
growth and maturation, making them alike to the real organ, 
providing a certain physiological basis for in vivo transplan-
tation, and facilitating in vivo revascularization and long-
term survival after transplantation.

Organoid-on-chip

Organoid-on-chip, a cutting-edge technique, integrates the 
advantages of both organ chips and organoid technology, 
simulating different organs in vitro through a micro-device 
for cell culture [99]. Organ chip technology is developed 
based on microfluidic technology through implanting cells 
into a chip to mimic in vivo microenvironment, such as fluid 
and mechanical environment [100]. For instance, Rousset 
and colleagues established an experimental setup to con-
trol the residence time of single cells around 3D organ by 
combination of particle-flow control and organoid models 
in hanging drop networks [101]. Karina et al. established 
a personalized pancreatic ductal adenocarcinoma (PDAC) 
chip with functional vascular barrier. In this platform, they 

Fig. 4 Overview of protocols for generation of vascularized organoids. Vascularized organoids are generated through co-culturing with vascular 
organoids, co-culturing with vascular cells, and organoid co-differentiation
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endothelium, brain, and testis organoids, which was utilized 
for precise presentation of drug interactions in vitro [109]. 
In contrary to high replication of biological process in vivo, 
in vitro-cultured organoids exhibit significant variability in 
size, structural organization, functional ability, and gene 
expression. Latest advances in organoid-on-chip technology 
proposes a tool to solve this problem by micro-engineering 
culture equipment. For example, Au et al. introduced a digi-
tal microfluidic system on human liver organoids, which 
allowed the organoids to move, merge, and split in a stylized 
category. Upon this platform, acetaminophen-mediated cell 
toxicity was analyzed without manual intervention [110]. To 
sum up, organoid-on-chip technology enhances the through-
put and automation of organoid culture systems, which is of 
great significance for achieving large-scale, homogeneous, 
and standardized cultivation of organoids.

Conclusions and future directions

The sense of smell is an indispensable sensory function in 
human life, and its impact on the quality of human life exists 
in all aspects. Olfactory function affects the nutritional sta-
tus of the human body via appetite and food preference, 
and helps people quickly identify dangers existing in the 
environment, such as leakage of natural gas, fire, dangerous 
chemical gases and rotten food [111]. Olfactory dysfunction 
not only impairs physical health, reduces the quality of life, 
and increases individual mortality, but also is the first symp-
tom of many major neurodegenerative diseases [57]. Since 
the pathogenesis of olfactory dysfunction is unknown, there 
is still no targeted and effective therapy against this disease. 
In vitro disease model to study the pathogenesis of olfactory 
dysfunction is still lacking, while most of studies mainly 
depend on animal models [112, 113]. Establishment of a 
cell-based model in vitro will greatly reduce the number 
of animals to improve animal welfare, and will accelerate 
progress in understanding the pathogenesis of olfactory dys-
function due to lower cost, easier maintenance and simpler 
experimental operation of in vitro model. The current organ-
oid models do not completely replace the animal model due 
to the limitation on faithfully simulating mucosa structure, 
including cell composition, alignment and microenviron-
ment [114]. Recently, Liu and colleagues established a 
device combining impedance biosensor with olfactory 
organoids derived from Alzheimer’s disease (AD) mouse 
models, which were used to perform real-time detection 
for morphological and physiological alteration in olfactory 
organoids with progression of AD. This provided a novel 
model determining the pathogenesis and early diagnosis 
of olfactory dysfunction related neurodegenerative disease 
[115]. This is a breakthrough for the application of olfactory 

cells, peripheral blood mononuclear cells, and cancer-asso-
ciated fibroblasts. Using this microengineered organoid-
on-chip, they performed high-throughput drug screening 
to investigate potential immunological therapeutic strategy 
against hepatocellular carcinoma [105]. A mouse intestinal 
organoid-on-chip closely mimicked oxygen dynamics of 
damaged intestine and uncovered potential therapies [106]. 
Lee et al. developed a human kidney organoid-on-chip rep-
licating shear stress of kidney using superior extracellular 
matrix, and this model was more sensitive to nephrotoxic 
drugs [107].

Traditional organoid model showed limitation in mim-
icking organ-organ interactions, while organoid-on-chip 
may provide optimal solution for this dilemma. Promising 
works on organoid-on-chip technology put forward novel 
direction for organ-organ communication research during 
intricate physiological condition. Skardal et al. established 
a human heart-lung-liver model, consisted of 3D printed 
liver and heart organoids with microengineered lung tissues. 
Using this model, they investigated inter-organic response 
to bleomycin in term of cytokine-induced interactions 
between heart, lung, and liver [108]. Likewise, a similar 
device contained human liver, cardiac, and lung organoids 
was harnessed to evaluate the metabolic effect of liver drug 
on downstream toxicity in lung and cardiac organoids. 
More importantly, this device was expanded to construct a 
six-organoid model, including human liver, cardiac, lung, 

Fig. 5 Multiple applications of organoid-on-chip. Organoid-on-chip 
provides ideal tools for drug screening and mechanism revealing, due 
to the faithful simulation of microenvironment and accurate disease 
modelling. As a promising platform, organoid-on-chip will be har-
nessed to exploit gene editing in vitro as well as transplantation therapy
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