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Characterizing cell-type spatial relationships
across length scales in spatially resolved
omics data

Rafael dos Santos Peixoto 1,2, Brendan F. Miller1,2, Maigan A. Brusko3,
Gohta Aihara1,2, Lyla Atta 1,2, Manjari Anant1,4, Mark A. Atkinson3,
Todd M. Brusko 3, Clive H. Wasserfall3 & Jean Fan 1,2

Spatially resolved omics (SRO) technologies enable the identification of cell
types while preserving their organization within tissues. Application of such
technologies offers the opportunity to delineate cell-type spatial relationships,
particularly across different length scales, and enhance our understanding of
tissue organization and function. To quantify suchmulti-scale cell-type spatial
relationships, we present CRAWDAD, Cell-type Relationship Analysis Work-
flowDone Across Distances, as an open-source R package. To demonstrate the
utility of such multi-scale characterization, recapitulate expected cell-type
spatial relationships, and evaluate against other cell-type spatial analyses, we
apply CRAWDAD to various simulated and real SRO datasets of diverse tissues
assayed bydiverse SRO technologies.We further demonstrate how suchmulti-
scale characterization enabled by CRAWDAD can be used to compare cell-type
spatial relationships across multiple samples. Finally, we apply CRAWDAD to
SRO datasets of the human spleen to identify consistent as well as patient and
sample-specific cell-type spatial relationships. In general, we anticipate such
multi-scale analysis of SRO data enabled by CRAWDAD will provide useful
quantitative metrics to facilitate the identification, characterization, and
comparison of cell-type spatial relationships across axes of interest.

Spatially resolved omics (SRO) technologies enable molecular profil-
ing to facilitate the identification of distinct cell types while preserving
their spatial organization within tissues, providing an opportunity to
evaluate cell-type spatial relationships. Cell-type spatial relationships
such as colocalizations, defined as which cell types are spatially near
each other, and separations, defined as which cell types are spatially
away from each other, may exhibit distinct trends relevant to healthy
tissue function1 as well as disease2. As such, evaluating these cell-type
spatial relationships provide an opportunity to advance our under-
standing of the association between cell-type organization, tissue
function, and disease.

Cell-type spatial relationships can occur at different length
scales, with some cell types colocalizing to engage in paracrine
signaling and other close-range interactions at a fine, micrometer
length scale3; others colocalizing into distinct environments and
functional tissue units at a more meso-scale1; while others coloca-
lizing into anatomical structures at a more macro-scale (Fig. 1a, b).
Whether we consider two cell types as being colocalized is often a
function of the spatial extent that we analyze (Fig. 1b). For example,
two cell types uniquely present in distinct layers of the brainmay be
considered separated if we analyze only the spatial extent of the
brain. However, we may consider these cell types to be colocalized
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in the same organ if we analyze the spatial extent of the whole body.
Thus, we sought to consider the effects of spatial extent by inves-
tigating cell-type spatial relationships across different length
scales.

To quantitatively evaluate such cell-type spatial relationships
across length scales, we present Cell-type Relationship Analysis
Workflow Done Across Distances (CRAWDAD). We demonstrate

CRAWDADon simulated aswell as real SROdatasets for diverse tissues
assayed by Slide-seqV24, seqFISH5, Xenium6, MERFISH7, and CODEX8,
though CRAWDAD is amenable to any SRO data for which cell posi-
tions and cell-type annotations canbeobtained. CRAWDAD is available
as an open-source R package at https://github.com/JEFworks-Lab/
CRAWDAD with additional documentation and tutorials available at
https://jef.works/CRAWDAD/.
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Results
Overview of method
Given cell centroid positions and their cell-type annotations, CRAW-
DAD evaluates the statistical enrichment or depletion of each cell type
within the spatial neighborhood around cells of a reference cell type at
a particular spatial length scale. To achieve this, CRAWDAD first draws
a neighborhood around cells of a reference cell type based on a user-
defined neighborhood distance d and calculates the proportion of
every cell type inside this neighborhood, excluding the original
reference cell that seeded it (Fig. 1c). Next, CRAWDAD creates a series
of non-overlapping grids of square or hexagonal tiles where the size of
each tile corresponds to a user-defined spatial length scale. Then, it
shuffles the cell-type annotations for all cells within each tile to create
an empirical null background at the specified spatial length scale
(Fig. 1d). Lastly, given the observed and shuffled cell-type annotations,
CRAWDADuses a binomial proportion testing framework to evaluate if
the observed cell-type proportions are significantly different from
what is expected by chance based on the shuffled data. In this process,
we obtain a Z-score for each neighbor and reference cell-type pair at
the given spatial length scale. To assess statistical significance, we use
default Z-scores of ±1.96 (p-value = 0.05) with multiple testing cor-
rection based on the number of cell-type combinations evaluated. For
a given cell-type pair, if their Z-score is above the positive significance
threshold, we interpret the neighbor cell type as being enriched in the
neighborhood of the reference cell type; if their Z-score is below the
negative significance threshold, we interpret the neighbor cell type as
being depleted in the neighborhood of the reference cell type. In
addition, we define colocalization as the mutual enrichment of cell
types within each other’s neighborhoods. Alternatively, we define
separation as themutual depletion of the cell types within eachother’s
neighborhoods.

To evaluate spatial relationships with different spatial extents,
CRAWDAD repeats this process for a series of spatial length scales. In
this manner, we obtain a Z-score for each cell-type pair in each spatial
length scale. We can visualize the results by plotting the Z-scores on
the yaxis and the length scales on the x-axis, creating a multi-scale
spatial relationship trend plot for each cell-type pair. Here, we refer to
the scale of the relationship between two cell types as the first eval-
uated spatial length scale inwhich the Z-score is above the significance
threshold. To summarize spatial relationships across all cell-type pairs,
we plot the scale of the relationships and associated Z-scores as a dot
plot. Tomitigate potential grid edge effects, CRAWDAD uses different
random seeds and grid offsets to create multiple permutations of the
shuffled data. The Z-scores obtained for each cell-type pair at each
length scale are then averaged across permutations.

CRAWDAD characterizes cell-type spatial relationships at mul-
tiple length scales in simulated data
To highlight the utility of evaluating cell-type spatial relationships
across multiple length scales, we first simulated 8000 cells repre-
senting four cell types in a 2000 µm-by-2000 µm tissue sample
(Methods). In this simulated dataset, cell-types B and C are spatially
intermixed with one another, while cell-type A forms a distinct

structure around them that further isolate cell-types B and C from cell-
type D (Fig. 1b). We applied CRAWDAD to characterize the spatial
relationships between each cell-type pair across length scales ranging
from 100 µm to 1000 µm using a neighborhood size of 50 µm (Meth-
ods). We found that the neighborhood around reference cell-type C is
significantly enrichedwith cells of cell-typeB fromafine length scale of
~150 µm (Fig. 1e, g). Likewise, we observed that the neighborhood
around reference cell-type B is significantly enriched with cells of cell-
type C from a similarly fine length scale (Supp. Fig. 1a). Given this
mutual enrichment relationship, we interpret cell-types B and C to be
spatially colocalized from this fine length scale. In contrast, we noted
cell-types A and B to be spatially colocalized from a comparably
coarser length scale of ~800 µm (Fig. 1f, g, Supp. Fig. 1b).

We note that somemulti-scale cell-type spatial relationship trends
will exhibit amonotonic behavior, tending towards only enrichment or
depletion, while others might oscillate between enrichment and
depletion. For example, the neighborhood around reference cell-type
C exhibits an increasing Z-score with respect to neighbor cell-type B
across length scales, resulting in a monotonically increasing spatial
trend towards enrichment (Fig. 1e). In contrast, the neighborhood
around reference cell-type A exhibits an initially decreasing Z-score
with respect to neighbor cell-type B that eventually becomes a positive
Z-score at larger length scales, resulting in an oscillatory spatial trend
(Fig. 1f). Such an oscillatory spatial trend better reflects how cell-types
A and B are separated in different compartments but ultimately
comprise the same structures evident only at larger spatial extents.
Other methods that evaluate spatial relationships only at the whole
tissue scale may miss these distinctions regarding monotonic and
oscillatory spatial trends. For example, Squidpy’s neighborhood
enrichment implementation of the approach described by Schapiro
et al.9 calculates an enrichment score based on the proximity of cell
types from a spatial neighborhood graph created using a fixed
distance10. Therefore, it does not capture the dynamics of such multi-
scale cell-type spatial relationships (Supp. Fig. 1c).

CRAWDAD’s quantified cell-type spatial relationships are also
robust as the spatial extent is broadened to a larger tissue section
inclusive of new cell types. To demonstrate this, we expanded the
tissue in the simulateddata to include another cell type, cell-type E, not
present in the original tissue (Supp. Fig. 1d).Whenwe apply CRAWDAD
to this expanded tissue, the spatial relationships for cell-types A, B, and
C in terms of the quantified Z-scores remain the same (Fig. 1e, Supp.
Fig. 1f). In this manner, the spatial relationships for cell-types A, B, and
C are robust to the addition of the new cell type in expanded regions
not considered in the original analysis. In contrast, when we apply
Squidpy’s neighborhood enrichment implementation to the original
versus the expanded tissue, the neighborhood enrichment metrics for
cell-types A, B, and C are altered (Supp. Fig. 1c, e).

To furtherbenchmarkand compareCRAWDAD’s functionality, we
simulated a variety of SRO datasets using a previously developed
simulation framework11 (Methods). Briefly, we simulated cells by sam-
pling from a uniform distribution to create x-y positions. We split the
cells into two groups, and, for each group, we associated a value to
each cell using independent, autocorrelated Gaussian random fields

Fig. 1 | Motivating Cell-type Relationship Analysis Workflow Done Across Dis-
tances (CRAWDAD) using simulated data. a Illustration of the cell-type spatial
relationships found at different length scales.b Simulated spatial omics tissue data,
visualized at different scales. Each point is a cell, colored by cell type. Scale bars
correspond to 250μm. c Representation of the creation of the neighborhood and
the null background. CRAWDAD draws a circle (neighborhood distance as the
radius) around each cell of the reference cell type and merges them into one
neighborhood.dCRAWDADcreates a grid of side-by-side tiles (length scale defined
as the side length for square tiles and the distance between opposite edges for
hexagonal tiles) and shuffles the labels inside each tile to create the null

background.e, fThemulti-scale spatial relationship trendplots fore. referencecell-
type C and neighbor cell-type B and f. reference cell-type A and neighbor cell-type
B. The horizontal black dotted lines represent the Z-score significance threshold
corrected for multiple testing (Z-score = ±2.96). The vertical red bars represent the
error bars of ± one standard deviation from the mean Z-score estimated using
permutations.gSummary visualizationof all cell-type spatial relationships. The size
of the dot represents the scale in which a neighbor cell type first reaches a sig-
nificant spatial relationship with respect to a reference cell type. The color of the
dot is theZ-scoreat such scale. Created inBioRender. Fan, J. (2023)BioRender.com/
y47n964.

Article https://doi.org/10.1038/s41467-024-55700-1

Nature Communications |          (2025) 16:350 3

www.nature.com/naturecommunications


(Supp. Fig. 2a). We binarized the values, splitting the cells into two
cell types based on the underlying simulated value (Supp. Fig. 2b). In
thismanner, we created a simulated dataset with four cell types (Supp.
Fig. 2c) where we expect each cell type to be enriched with itself due
our use of spatially autocorrelated simulation values. Likewise, we can
expect the two cell types simulated from the same Gaussian random
field to be spatially mutually exclusive and therefore identified to be
separated. Additionally, we expect the cell types from different ran-
dom fields to exhibit no significant spatial relationship due to the
Gaussian random fields being independent. We repeated this process
to create a total of ten random simulated datasets.

We used these simulated datasets to benchmark and compare
CRAWDADwith two other spatial relationship analysismethods that
also consider spatial length scales, Ripley’s K Cross12 and Squidpy’s
co-occurrence implementation of the approach described in Tosti
et al.13. Although all evaluated methods perform cell-type enrich-
ment analysis across length scales, their definition of length scales
differs. Briefly, Ripley’s K Cross evaluates multiple length scales by
increasing the neighborhood size while comparing the cell-type
proportion in the neighborhood to the global proportion. On the
other hand, Squidpy’s co-occurrence implementation evaluates
multiple length scales by increasing the size of an annulus neigh-
borhood and calculating the conditional probability of the neighbor
cell types given the reference cell type. In addition, as Ripley’s K
Cross and Squidpy’s co-occurrence implementation do not present
a threshold to determine statistical significance, for comparative
purposes, we opted to assess each method’s ability to distinguish
between cell-type spatial enrichment and depletion. Specifically,
given a reference cell type, we considered a method as achieving a
true positive prediction if the cell type identified with the most
enriched relationship trend was itself. Alternatively, we also con-
sidered a method as achieving a true positive prediction if the cell
type identified with the most depleted relationship trend was the
other cell type from the same Gaussian random field. We identified
the cell type with themost enriched andmost depleted spatial trend
using their area under the trend curve value (Methods). Using this
approach, we evaluated all four cell types across all ten simulated
datasets using all three methods (Supp. Fig. 2d). Based on this
simulation framework, we obtained a true positive rate of 0.95 for
CRAWDAD, 0.86 for Squidpy’s co-occurrence implementation, and
0.8 for Ripley’s K Cross. In this manner, cell-type spatial relation-
ships identified by CRAWDAD can more accurately distinguish
between cell-type spatial enrichment and depletion compared to
other evaluated methods.

CRAWDAD recapitulates expected cell-type spatial relation-
ships in the real spatial omics datasets of tissues
We next applied CRAWDAD to evaluate cell-type spatial relationships
in SRO datasets of real tissues. First, we analyzed a spatial tran-
scriptomics dataset obtained from a highly spatially organized tissue,
the mouse cerebellum, assayed by Slide-seqV24 and previously anno-
tated by RCTD14 (Fig. 2a). Because Slide-seqV2 uses 10μm barcoded
beads to profile the gene expression within tissues in a spatially
resolved manner, spatially resolved measurements may not necessa-
rily correspond to single cells. However, given that a typical animal cell
is also roughly 10–20μm in size15, we assumed here that the observed
spatial position and cell-type assignments associated with each bead
generally reflects the spatial position and cell-type annotations of the
cell within the immediate vicinity of that bead. As such, we treat Slide-
seqV2 beads with non-doublet RCTD annotations as effectively single
cells for the CRAWDAD analysis. We applied CRAWDAD to evaluate
10,098 annotated cells representing 19 cell types using a neighbor-
hood size of 50 µm across length scales ranging from 100 µm to
1000 µm (Fig. 2b, Methods). Among the significantly colocalized cell-
type pairs identified were Purkinje neurons and Bergmann glia

(Fig. 2b, c, Supp. Fig. 3a), which are known to interact at close distances
within the Purkinje cell layer of the cerebellum16. Likewise, the neigh-
borhood around Purkinje neurons was significantly depleted of oli-
godendrocytes and vice versa (Fig. 2b, c, Supp. Fig. 3b). As such, we
may interpret these cell types as being spatially separated, consistent
with the known spatially distinct layer structure of the cerebellum.
Additionally, we applied Ripley’s K Cross (Fig. 2d) and Squidpy’s co-
occurrence implementation (Fig. 2e) to the same dataset. We find that
these other methods do not as clearly distinguish these expected cell-
type spatial relationships. Specifically, when analyzing cell-type spatial
relationships with Purkinje neurons as the reference cell type, we note
that CRAWDAD’s Z-score trend for Bergmann glia increases as the
length scale increases, crossing the upper significance threshold and
defining an enrichment of Bergmann glia among the neighborhood of
Purkinje neurons, as expected (Fig. 2c). Likewise, CRAWDAD’s Z-score
trend for oligodendrocytes decreases as the length scale increases,
crossing the lower significance threshold and defining a depletion of
oligodendrocytes among the neighborhood of Purkinje neurons, as
expected (Fig. 2c). These two cell-type trends are further distinct from
other cell types in the cerebellum. This clear separation between these
two cell-type trends is not observed in the other evaluated spatial
analysis methods (Fig. 2d, e).

Next, we analyzed a single-cell resolution spatial transcriptomics
dataset of a whole developing embryo assayed by seqFISH5 (Fig. 2f).
We applied CRAWDAD to evaluate cell-type spatial relationships for
19,416 cells representing 22 cell types using a neighborhood size of
50 µm across length scales ranging from 100 µm to 1000 µm (Fig. 2g,
Methods). Consistent with the original publication’s observations,
CRAWDAD identified significant spatial colocalization between the
intermediate and lateral plate mesoderm cells and significant spatial
separation between intermediate mesoderm and cardiomyocyte cells
(Fig. 2g, h, Supp. Fig. 3c, d). Again, such differences between cell-type
spatial relationships are difficult to discern using on other evaluated
spatial analysis methods (Fig. 2i, j).

To further exemplify CRAWDAD’s applicability to potentially less
well-organized tissues such as cancer tissues, we applied it to a breast
cancer dataset assayed by Xenium6 (Fig. 3a). We applied CRAWDAD to
evaluate 162,107 annotated cells representing 19 cell types using a
neighborhood size of 100 µm across length scales ranging from
100 µm to 1000 µm (Fig. 3, Methods). CRAWDAD identified three
groups of cell types based on their cell-type spatial relationships,
corresponding to histologically distinct structures (Fig. 3b, c).

In general, we note that the cell-type spatial relationships identi-
fied in CRAWDAD are not always symmetric. Asymmetric results may
be causedby twoscenarios: location imbalance anddensity imbalance.
In location imbalance, cells of one cell type may be close to only some
cells of the other cell type, but not all. For example, the neighborhood
ofUBCs is enrichedwith granule cells (Supp. Fig. 4a, c). However,UBCs
are rare and present in only a small proportion of the granule cells’
neighborhood and therefore does not represent a significant rela-
tionship (Supp. Fig. 4b, d). In density imbalance, cells from one type
are highly concentrated in one region, with a few dispersed across
other parts of the tissue. Therefore, the sparse cells will contribute to
the creation of the neighborhood as the reference cell type butwill not
significantly contribute to the proportions as the neighbor cell type,
due to their small number. For example, a large part of the presomitic
mesoderm’s neighborhood is created by its sparse cells, which
encapsulate spinal cord cells, creating a relationship of enrichment
(Supp. Fig. 4e, g). On the other hand, most of the presomitic meso-
derm cells are outside the spinal cord’s neighborhood creating a
relationship of depletion (Supp. Fig. 4f, h). Such asymmetric cell-type
spatial relationships may reflect non-exclusive cell-type interactions.
For example, immune cells may infiltrate a focal tumor such that the
neighborhood of tumor cells will be enriched with immune cells, but
the neighborhood of immune cells might not be enriched by tumor
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cells given their widespread spatial distribution throughout the body,
consistent with a non-exclusive cell-type spatial relationship at a
whole-body spatial extent17. Therefore, CRAWDAD can quantitatively
capture such asymmetric cell-type spatial relationships and effectively
delineate cell-type spatial relationships across multiple length scales
for diverse tissues and SRO technologies.

CRAWDADenables comparison of cell-type spatial relationships
across multiple samples
Beyond characterizing cell-type spatial relationships within a single
sample, such multi-scale characterization enabled by CRAWDAD can
also be used to compare cell-type spatial relationships across samples
spanning different conditions, such as health and disease,
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development, or replicates. To demonstrate this functionality, we
applied CRAWDAD to nine mouse brain samples assayed by MERFISH
comprised of three replicates from three distinct Bregma locations7

with cell-type annotations obtained previously using unified
clustering18 (Fig. 4a). We applied CRAWDAD to evaluate 734,693
annotated cells across all datasets representing 14 cell types using a
neighborhood size of 50 µm across length scales ranging from 100 µm
to 1000 µm (Methods). To compare multi-scale cell-type spatial rela-
tionships across samples, we calculated the signed area under the
curve (AUC) for each Z-score trend for each cell-type pair. We then
performed dimensionality reduction with principal component ana-
lysis (PCA) on all signed AUC values to find that cell-type spatial rela-
tionships of replicates from the same Bregma location are highly
similar, as they are positioned closer together in PC space (Fig. 4b). We
likewise overall observed a smaller variance in the signed AUC values
within replicates from the same Bregma location compared to across
locations (Fig. 4c). These results suggests that samples from the same
Bregma location have cell-type spatial relationships that are more
similar than those from different Bregma locations, as expected.
Importantly, this similarity in cell-type spatial relationships is robust to
tissue rotation and small local diffeomorphisms, as some of the brain
tissue sections profiled are rotated with small tissue distortions com-
pared to others. To further investigate specific highly variable cell-type
spatial relationships, we visualized the spatial relationship trends for
the cell-type pair with the highest signed AUC variance across loca-
tions: GABAergic Estrogen-Receptive Neurons as reference and Exci-
tatory Neurons as neighbor (Fig. 4d). Despite its comparatively higher
signed AUC variance across locations, samples from the same Bregma
location still generally exhibited the same depletion trend whereas
samples across Bregma locations varied (Fig. 4d). Visual inspection of
GABAergic Estrogen-Receptive Neurons and Excitatory Neurons also
suggested high consistency in terms of spatial relationships within
replicates from the same Bregma location compared to across loca-
tions (Fig. 4e). As such, cell-type spatial relationship trends quantified
byCRAWDADcanbeused to contrast samples to confirm that cell-type
spatial relationships in themouse brain are generally highly consistent
within replicates from the same Bregma location compared to across
locations.

CRAWDAD reveals functionally relevant cell-type spatial rela-
tionships in the human spleen
Finally,we sought to applyCRAWDAD tocharacterize and compare cell-
type spatial relationships in SRO datasets of the human spleen. The
spleen is a highly structured organ where cell types interact to filter
blood and initiate immune responses. Delineating the spatial organi-
zation of cell types in the spleen can provide insights into how these
different cellular populations may achieve such diverse immunologic
functions. Therefore, we focused on six single-cell resolution spatial
proteomics datasets of the human spleen comprised of two replicates
from three individuals each assayed by CODEX8 as part of The Human
BioMolecular Atlas Program (HuBMAP)19. We first performed graph-

based clustering for one representative section of a human spleen with
154,446 cells to identify 12 cell types based on 28 protein markers
(Fig. 5a–c, Methods). Applying CRAWDAD with a neighborhood of
50 µm and length scales ranging from 100 µm to 1750 µm, we observe
cell-type spatial relationships to broadly recapitulate known splenic
architecture. Cell types primarily colocalized at a coarse length scale
into two major compartments defined by follicle B cells and red pulp B
cells corresponding to the white pulp (WP) and red pulp (RP),
respectively20 (Fig. 5d). Consistent with the functional roles of these
compartments, cell types identified to colocalize with red pulp B cells
include macrophages, neutrophils, and monocytes that may remove
old and dead red blood cells within the RP21. Likewise, cell types iden-
tified to colocalize with follicle B cells include CD4+memory T cells and
podoplanin-expressing cells within the WP (Fig. 5d). Podoplanin-
expression has been previously associated with T-cell zone reticular
cells22 and observed to surround large arteries23 within the WP.

To determine whether such cell-type spatial colocalization rela-
tionships are consistent both within and across individuals, we further
repeated these analyses with 837,952 cells from five additional spleen
samples. To ensure all datasets were annotated in a uniform manner,
we applied batch correction24 and used a linear discriminant analysis
model to transfer cell-type annotations to these new datasets (Meth-
ods, Supp. Fig. 5a–c). We then applied CRAWDAD to identify similar
cell-type spatial relationships corresponding to the WP and RP com-
partments both within and across individuals (Fig. 5d, Supp. Fig. 6a).
Further analyzing the variance of the relationship trend’s AUC values
(Fig. 5e), we noticed that most cell-type spatial relationship trends
were highly consistent across patients and samples, reflecting the
ordered patterning of the functional tissue regions (Fig. 5e, f, Supp.
Fig. 7a). Select cell-type spatial relationship trends had patient-specific
relationships, exhibiting consistent trends within replicates from the
same patient but varying across patients, suggestive of potential
patient-specific variation (Fig. 5f, Supp. Fig. 7b). Other cell-type spatial
relationship trends varied even within replicates, suggestive of
potential tissue sample-specific patterns (Fig. 5f, Supp. Fig. 7c). In
general, we anticipate assessing these variations in cell spatial rela-
tionships can give insight into inter- and intra-individual variation
linked to donor and tissue-specific features.

Although our clustering analysis identified a cluster of cells highly
expressing CD4 and CD45RO proteins, which we interpreted as CD4+
memory T cells, we were unable to distinguish follicular helper T cells,
a specialized subset of CD4+ memory T cells that play a critical role in
the adaptive immune response, due to limitations of our 28 protein-
marker panel. However, we know that follicular helper T cells interact
with B cells during the B cell maturation and differentiation process
within the B cell follicles. As such, we hypothesized that follicular
helper T cells would represent a spatially defined subset of these CD4+
memory T cells that are colocalized with follicular B cells25. To identify
putative follicular helper T cells, we therefore applied the same bino-
mial testing framework used in CRAWDAD’s pairwise spatial relation-
ship testing to identify CD4+ memory T cells that are statistically

Fig. 2 | CRAWDAD characterizes cell-type spatial relationships in the mouse
cerebellumassayedbySlide-seqV2 and themouse embryo assayed by seqFISH.
a Spatial visualization of cell-type annotations from RCTD in the cerebellum. Scale
bars correspond to 250μm. b Summary visualization all cell-type spatial relation-
ships in the cerebellumdata. Select cell types highlighted to correspondwith (c–e).
c–e The multi-scale spatial relationship trend plot for Purkinje neurons as the
reference cell type for (c) CRAWDAD, (d) Ripley’s K Cross, and (e) squidpy co-
occurrence implementation of Tosti et al. with neighboring cell-types Bergmann
glia and Oligodendrocytes highlighted in red and blue, respectively. All other
neighboring cell types in gray. The horizontal black dotted lines in (c) represent the
Z-score significance threshold corrected for multiple testing (Z-score = ±3.81). The
vertical red bars in (c) represent the error bars of ± one standarddeviation from the

mean Z-score estimated using permutations. f Spatial visualization of annotated
cell types in the embryo data. Scale bars correspond to 250 μm. g Summary
visualization all cell-type spatial relationships in the embryo data. Select cell types
highlighted to correspond with (h–j). h–j The multi-scale cell-type spatial rela-
tionship trend plot for Intermediate mesoderm cells as the reference cell type for
(h) CRAWDAD, (i) Ripley’s K Cross and (j) Squidpy co-occurrence implementation
of Tosti et al. with neighboring cell-types Lateral plate mesoderm and Cardio-
myocytes highlighted in red and blue, respectively. All other neighboring cell types
in gray. The horizontal black dotted lines in (h) represent the Z-score significance
threshold corrected for multiple testing (Z-score= ±3.88). The vertical red bars (h)
represent the error bars of ± one standard deviation from the mean Z-score esti-
mated using permutations.
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enriched around follicle B cells (Fig. 5g, Supp. Fig. 6b, Methods).
Briefly, for each given cell, we perform an exact binomial test to verify
if the proportion of each cell type inside the cell’s neighborhood is
significantly greater than the global proportion. We observed that the
distribution of theseputative follicularhelper T cells as a percentageof
all CD4+ memory T cells (37% to 52%, Fig. 5h) is consistent with pre-
vious characterizations within the spleen from healthy donors
achieved through orthogonal fluorescence-activated cell sorting
approaches26,27.

Discussion
In this paper, we present CRAWDAD, to quantify cell-type spatial
relationships across spatial length scales. We validated CRAWDAD by

recapitulating expected cell-type spatial relationships in simulated and
real SRO datasets of diverse tissues assayed by diverse SRO technol-
ogies. We demonstrated that our tool was able to provide distinct
insights compared to existing spatial enrichment and multi-scale
analyses. We emphasize that cell-type spatial relationships may vary
across spatial scales and such multi-scale characterization enabled by
tools like CRAWDAD can reveal distinct insights not apparent in eva-
luations of spatial relationships that consider only the whole tissue
scale. Additionally, we emphasize that such quantified cell-type spatial
relationships trends can be used to compare across SRO datasets and
demonstrate its application in identifying consistent spatial trends
within mouse brain replicates that are distinct across Bregma loca-
tions. We further apply CRAWDAD to characterize cell-type spatial
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relationships toHuBMAP SROdatasets of the human spleen to identify
generally consistent spatial trends reflective of the organization of the
red and white pulp but also reproducible patient-specific variation,
though the sample sizes evaluated here limit our ability to make gen-
eral significant conclusions. As atlasing efforts such as HuBMAP19, the
Human Cell Atlas28, and others continue to profile the spatial organi-
zation of cells within tissues, we anticipate identifying significant

spatial variation across axes of interest will become more feasible in
the future, though additional scalable, comparative meta-analysis
tools to integrate statistics frommany samples acrossmultiple studies
in a manner that is robust to batch effects may be then needed. We
expect that the incorporation of quantitative spatial trend metrics
such as those provided by CRAWDAD will be useful in such meta-
analyses to ultimately facilitate in the identification and
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characterization of cell-type spatial relationships in complex tissues to
advance our understanding of the relationship between cell-type
organization and tissue function.

Although we have demonstrated CRAWDAD to be a potentially
useful tool in identifying, characterizing, and comparing cell-type
spatial relationships, there are several considerations worth noting as
they may influence interpretation. First, CRAWDAD results rely on a
few user-defined parameters. In particular, it uses a fixed neighbor-
hood distance d to determine the size of the neighborhood used to
consider neighboring cells. In the context of geospatial analysis, such
sensitivity of results to the neighborhood distance has been previously
characterized as the sensitivity to kernel bandwidth29. We note that if
the defined d is too small, the neighborhood will only contain cells
from the reference cell type. In such a scenario, the total number of
neighbor cells would be zero, leading to non-significant results.
Alternatively, if d is too large, the neighborhoodwill encompass all the
cells in the sample. In this case, the proportions of cell types within the
neighborhood before and after shuffling will remain the same, leading
to non-significant results. Generally, we recommend choosing d based
on the biological constraints of the analysis. For example, to identify
cell-type spatial relationships that may be relevant to cell-cell interac-
tions, one may choose a neighborhood distance d up to 100 μm to
reflect the limits of diffusion of epidermal growth factor that cellsmay
use in paracrine signaling30. Additionally, visualizing the neighborhood
maybeused to guide the choice of d (Supp. Fig. 8a, c). For example, for
the mouse cerebellum and embryo SRO datasets analyzed (Supp.
Fig. 8a, b), we highlight how a neighborhood of 10μm would be too
small as it does not enclose a significant proportion of the cells given
thedensity of cells in the tissues.On the other hand, a neighborhoodof
100μmwould be too large as someof the cell typeswould incorporate
all cells of other cell types inside the neighborhood buffer. Hence, a
d = 50μm was used for these SRO datasets. In general, the neighbor-
hood distance should be chosen based on guidance from data visua-
lization as well as biological prior knowledge.

Second, to create empirical null backgrounds of cell-type spatial
relationships, CRAWDAD shuffles cell-type labels within non-
overlapping tiles to create different null backgrounds. Although
square tiles are used by default, hexagonal tiles are also available. To
evaluate the robustness of trends given these different grid shapes, we
created hexagonal tiles in our simulated dataset and repeated analysis
(Supp. Fig. 9a). Comparing the Z-scores obtained at each scale on the
different tiles, we noted a high correlation (R =0.99) across all eval-
uated scales (Supp. Fig. 9b), suggesting the shape of the tiles is likely
not a key factor in identifying spatial relationships, though both are
available as options. The choice of the length scales should reflect the
biological analysis of interest. However, choosing values smaller than
the neighborhood distance may lead to trivial insignificant results.

Third, since CRAWDAD takes annotated cell types as input, the
quality of the results directly depends on the quality of the annotation.
Misannotated cell types could shift the proportions of other cell types
inside spatial neighborhoods to alter the spatial relationships identi-
fied by CRAWDAD. Thus, cell-type annotations may be evaluated for

robustness and cleaned if needed prior to CRAWDAD analysis31,32. Or
alternatively, identified cell-type spatial relationships may be re-
evaluated given multiple potential cell-type annotations to ensure
the robustness of identified trends.

Finally, although we have elected to demonstrate CRAWDAD
analysis on datasets from select SRO technologies, in general, CRAW-
DAD is amenable to any SRO technology for which spatial positions
and associated labels can be derived. However, we caution that for
some multi-cellular spot-based SRO technologies, additional decon-
volution may be needed to ensure appropriate interpretation of
results. In general, we recommend applying CRAWDAD to datasets
with single-cell resolution to facilitate interpretation.

Overall, when used appropriately, such cell-type spatial relation-
ship analysis enabled by CRAWDAD will provide another quantitative
metric to facilitate the identification, characterization, and comparison
of structural differences in tissues across axes of interest such as health
and disease or development. Combined with the improvement in cell
segmentation, we anticipate that future applications of spatial sub-
setting analysis such as that achieved with CRAWDAD can enable
spatially-informed differential expression analysis to characterize
subtle changes in cell state for cells of the same type colocalizedwithin
different microenvironment. Likewise, combined with other tools for
identifying spatial niches or domains33–35, we anticipate such cell-type
spatial relationships may be characterized in a niche or domain-
specificmanner. Ultimately, we anticipate the analysis of SROdatawith
CRAWDAD can enable amore detailed quantitative characterization of
cell-type spatial organization to contribute to our understanding of
how spatial context and tissue architecture vary across conditions.

Methods
CRAWDAD overview
CRAWDAD characterizes cell-type spatial relationship trends by com-
paring observed pairwise cell-type spatial relationships to a set of
empirical null distributions inwhich cell-type labels have been shuffled
at different length scales.

Creating null distributions at different length scales. To generate
empirical null distributions against which observed cell-type spatial
relationships can be compared to evaluate for statistical significance,
CRAWDAD employs a grid-based cell-type label shuffling strategy.
Given a tissue containing cells represented by x-y spatial coordinates
with cell-type annotations, we partition the tissue into non-
overlapping side-by-side tiles. By default, tiles are squares of area r2,
where r is the size of the spatial length scale of analysis. Then for all
cells that reside within the same square, cell-type labels are shuffled to
create a null distribution for the given r. These shuffled null distribu-
tions are created for multiple r values to achieve a set of empirical null
distribution at different length scales. We further create multiple
permutations at each length scale by applying different random seeds
and a grid-offsetting approach to mitigate the influence of spatial
patterns that would benefit specific grid divisions. Specifically, the
offsets are calculated by creating a sequence from 0 to r, in equally

Fig. 5 | CRAWDAD characterize cell-type spatial relationships in the human
spleen assayed by CODEX. a–c From the PKHL tissue section from patient
HBM966.VNKN.965, a heatmap of marker protein expression for annotated cell
types; b UMAP reduced-dimensional visualization of annotated cell types; c spatial
visualization of annotated cell types in one representative tissue section. Scale bars
correspond to 250μm. d Summary visualization of the multi-scale cell-type spatial
relationship analysis for tissue sections PKHL and XXCD from patient
HBM966.VNKN.965. Cell types consistently colocalized in the white and red bulk
are highlighted with small and large squares, respectively. e Variability of multi-
scale cell-type spatial relationship trends calculated as the variance of the signed
AUC values across samples. f The multi-scale cell-type spatial relationship trend

plots are shown for select cell-type pairs exhibiting low variability across different
samples, high variability across patients but low variability within replicates, and
high variability across samples including within patients. The vertical red bars
represent the error bars of ± one standard deviation from the mean Z-score esti-
mated using permutations. g Subset of CD4+ Memory T cells near Follicle B cells.
The number of CD4+ Memory T cells (n) and the proportion of subsets (left) and
spatial visualization of subsets (right) in tissue sections PKHL and XXCD from
patient HBM966.VNKN.965. h Proportion of CD4+ Memory T cells near Follicle B
cells overall CD4+ Memory T cells in each sample. The black bars represent the
error bars of ± one standard deviation from the mean proportion estimated using
the samples.
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spaced intervals of rdivided by the number of permutations. In eachof
the permutations, a different offset of the sequence will be applied. In
addition to square tiles, CRAWDAD allows the creation of side-by-side
non-overlapping hexagon tiles. In this case, the size of the scale is
represented by the distance between opposite edges of the hexagon
(Supp. Fig. 9a).

Computing cell-type spatial relationship trends. To evaluate the
statistical significance of an observed pairwise cell-type spatial rela-
tionship, CRAWDAD uses a binomial testing framework. For a given
reference cell type, CRAWDAD defines neighboring cells as those
within a Euclidean distance of a user-defined neighbor distance d
(default: 50 units) of any reference cell-type cells. CRAWDAD then
calculates the proportion p1 of neighboring cells that aremembers of a
given query cell type:

p1 =
y1
n

ð1Þ

where n is the total number of total neighboring cells for a given
reference cell type, and y1 is the total number of cells of a given query
cell type that are neighboring cells for a given reference cell type. By
default, the reference cells, used to create the neighborhood, are
removed from the proportion calculation.

This proportion p2 of is also computed for the previously created
null distributions:

p2 =
y2
n

ð2Þ

where y2 is the total number of cells of the query cell type in the
shuffled null distribution datasets that are inside the reference cell-
type neighborhood calculated from the original data.

A two-sidedbinomial proportion test is thenperformed to test the
equality of p1 and p2 against the alternative that they are not equal:
H0 : p1 = p2 versus HA : p1≠p2. This is defined by a test statistic Z ,
which is:

Z =
p1 � p2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2p 1�pð Þ
n

q ð3Þ

where:

p=
y1 + y2
2n

ð4Þ

Defining the significance threshold.We used a significance threshold
of 5% (p-value < 0.05 or |Z-score|>1.96) corrected for multiple testing
(Bonferroni method by default) based on the number of unique
reference-neighbor cell-type pairs evaluated. In addition, when there
were multiple permutations, we considered a Z-score significant if the
mean value obtained across permutations was beyond the significance
threshold.

Summarizingandvisualizing spatial relationship trends. Tovisualize
the spatial relationship results for a particular cell-type pair across
different spatial extents, CRAWDAD uses trend plots where the x-axis
represents the length scale and the y-axis represents the Z-score such
that the trend represents how the spatial relationship of the cell-type
pair changes as the spatial length scales increases. This visualization
includes the Z-score threshold to determine significant relationships.
When there are various permutations, the mean Z-score across all
permutations is visualized alongside with an error bar of one standard
deviation above and one bellow the mean.

To visually summarize results for all cell-type pairs, CRAWDAD
creates a dot plot to show the length scale at which the spatial rela-
tionship trend for each cell-type pair first becomes statistically sig-
nificant, encoded as the size ofdots, aswell as the associatedZ-score at
that scale, encoded as the color hue of dots. If a relationship is not
significant, there will be no dot associated with it. Smaller scales are
represented as larger dots to visually emphasize the potential impor-
tance of these small-scale colocalization relationships. Notably, such
summaries do not fully capture the dynamics of pairwise cell-type
spatial relationships as a function of length scale. Specifically, if a
pairwise cell-type spatial relationship becomes significant at a scale of
n, but not significant again at a scale ofm (m > n), only the n scale will
be represented in the plot.

Spatial subsetting of cells. CRAWDAD can further assign cells of a
given cell type to subsets based on the enrichment or depletion of
cell types within their neighbors using its binomial testing framework.
Given a tissue containing cells represented as x-y spatial coordinates
with cell-type annotations, we again define a neighbor distance d.
Given a reference and a query cell type, for every cell of the reference
cell type we perform a one-sided binomial exact test to assess if the
proportion of query cell type among the cell’s neighbors are sig-
nificantly greater than the proportion of the query cell type in the
population. Cells of the given reference cell typewith a p-value below a
user-defined significance threshold can then be further subtyped as
cells of the reference cell type that are enriched with cells of the query
cell type.

Creating, analyzing, and comparing simulated data across
methods
Simulating SRO data with manually defined spatial patterns. To
simulate a SRO dataset, we created 8000 cells randomly positioned
from 0 to 2000 microns in the x and y coordinates. We chose four
points P = [(500, 500), (500, 1500), (1500, 500), (1500, 1500)] to be the
centers of the circular neighborhoods defining the cell populations,
where d(P) represents the distance from a cell to its closest point in P.
We labeled the cells with d(P) ≤ 100 microns as cell-types B or C (50%
chance each). Then, we labeled the cells with 100 <d(P) ≤ 300microns
as cell-type A. Finally, all the other cells were labeled cell-type D. For
CRAWDAD, a set of shuffled null distribution was created at length
scales of 100 to 1000 separated by 50microns for 10 permutations. To
identify significant trends with multiple testing correction, we used a
Z-score threshold of 2.96.

To extend the simulated dataset and incorporate cell-type E, we
copied the original cell positions, changed the labels to cell-type E, and
placed one copy on the right, one on the top, and one on the top right
of the original data. Therefore, the extended dataset has 32000 cells,
24000 from cell-type E, and ranges from 0 to 4000 microns in both x
and y coordinates. We applied CRAWDAD to this dataset using the
same parameters as those from the original simulated dataset analysis
but increased the Z-score threshold to 3.09 to accommodate for
multiple testing correction.

Simulating SRO data using Gaussian random fields. To create the
simulated datasets with self-enrichment patterns, we followed the pro-
cedure previously described11. First, we simulate the position of 2000
cells by sampling from a uniform distribution ranging from 0 to 1 for
both x- and y-axis. Then, we randomly split the cells in two groups of
1000 instances each. Using theMatern functionwith nugget variance of
0.1, shape parameter of 0.5, and smoothness parameter of 0.3, we cre-
ated a covariance function to generate a Gaussian random field for each
group. We binarize each field by assigning positive cells to one cell type
andnegative cells to theother. Finally,wemergebothgroups and scaled
the cells’ positions to 1000microns. To generate all the ten datasets, we
repeated this process using a different random seed for each.
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Comparing methods using simulated data. To benchmark CRAW-
DAD without relying on a significance threshold we performed a
relative comparison between the relationship trends. For CRAWDAD, a
set of shuffled null distribution was created at length scales of 100 to
500 separated by 50 microns for 10 permutations. We classified a
cell type as enriched in the neighborhood of the reference cell type if it
had the trend with the highest AUC value in the reference cell-type
trend plot. Likewise, we classified a cell type as depleted if it had the
most negative AUC value. We focused on measuring each method’s
capacity to distinguish trends, not the ability to identify statistically
significant results.

Analyzing real SRO data
Analysis of themouse cerebellum. A pre-processed subset of a Slide-
seqV2 dataset collected from an ~3000 µm-by-~2500 µm section of the
mouse cerebellum was obtained from the original publication4. This
dataset contained 10,098 beads with x-y coordinates and 19 cell-type
annotations previously predicted by RCTD14. Poorly represented cell
types defined as those being annotated in less than 20 beads (Choroid,
Candelabrum, Ependymal, Globular, Macrophages) were not con-
sidered in the CRAWDAD cell-type colocalization, resulting in 14
remaining cell types. For interpretability, we converted the provided
x-y coordinate units to micrometers by estimating the resolution
values based on aligning the original publication’s figure with anno-
tated scale bars to the dataset coordinates. This led to an estimate of
0.64, which was multiplied to the x and y coordinate values of the
original dataset to convert their units to micrometers.

For CRAWDAD, a set of shuffled null distributions were created at
length scales of 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000
microns for 10 permutations. A neighbor distance of 50 microns was
used to evaluate every pairwise combination of cell types at each
length scale. To identify significant trends with multiple testing cor-
rection, we used a Z-score threshold of 3.81.

Analysis of the developing mouse embryo. A pre-processed subset
of the seqFISH data of an 8-12 somite stage embryo (Embryo 1) was
obtained from the original publication5. This ~1000µm-by-1600µm
dataset contained 19416 cells with x-y coordinates and 22 cell-type
annotations. For interpretability, we converted the provided x-y
coordinate units to micrometers by estimating the resolution values
based on aligning the original publication’s figurewith annotated scale
bars to the dataset coordinates. This led to an estimate of
1067.27784044, whichwasmultiplied to the x coordinate values of the
original dataset, and an estimate of 1578.21592795, which was multi-
plied to the y coordinate values of the original dataset to convert their
units to micrometers.

For CRAWDAD, a set of shuffled null distributions was created at
length scales of 100 to 1000 by 50 microns for 10 permutations. A
neighbor distance of 50 microns was used to evaluate every pairwise
combination of cell types at each length scale. To identify significant
trends with multiple testing correction, we used a Z-score thresh-
old of 3.88.

Analysis of the human breast cancer. We obtained a 7520.95µm-by-
5471.17 µm Xenium breast cancer dataset (in situ sample 1, replicate 1)
and with annotated cell types from the original publication6. We fil-
tered the original data by removing cells with less than 3 gene counts,
obtaining 162107 cells with x-y coordinates and 20 cell-type
annotations.

For CRAWDAD, a set of shuffled null distributions was created at
length scales of 100 to a 1000 by intervals of 100 microns for 3 per-
mutations. A neighbor distance of 50 microns was used to evaluate
every pairwise combination of cell types at each length scale. To
identify significant trends with multiple testing correction, we used a
Z-score threshold of 3.84.

Analysis of the mouse brains. We obtained the nine MERFISH mouse
brain datasets from the Vizgen Data Release V1.0. May 20217 with cell
types previously annotated through unified clustering18. We filtered
the original data by removing cells with less than 3 gene counts and
merging sub-cell types. The resulting number of cells and cell-type
annotations by sample is provided in Supplementary Table 1.

For CRAWDAD, a set of shuffled null distributions was created at
length scales of 100 to a 1000 by intervals of 100 microns for 3 per-
mutations. A neighbor distance of 50 microns was used to evaluate
every pairwise combination of cell types at each length scale.

Analysis of the human spleen. Pre-processed and compensated
Akoya CODEX datasets of six human spleens tissue sections ranging
from 3550.24µm-by-3423.43 µm to 4564.7µm-by-3423.43 µm in size
from three different donors were downloaded from the HuBMAP Data
Portal (https://portal.hubmapconsortium.org/) corresponding to
dataset IDs: HBM389.PKHL.936, HBM772.XXCD.697,
HBM556.KSFB.592, HBM825.PBVN.284, HBM568.NGPL.345, and
HBM342.FSLD.938. These datasets contained protein expression for
28 markers, x-y coordinates, and cell segmentation area measure-
ments for 154,446, 150,311, 152,896, 130,584, 177,777, and
226,384 segmented cells, respectively. Protein expression was nor-
malizedby cell area and log10 transformedwith apseudocount of 1. For
interpretability, we converted the provided x-y coordinate units to
micrometers using the resolution parameters provided by the HuB-
MAP Data Portal. We multiplied the x and y coordinate values of the
original datasets by 0.3774038462 to convert their units frompixels to
micrometers.

Unified clustering and cell-type annotation. Using dataset
HBM389.PKHL.936, cells were clustered via Louvain graph-based
clustering36 based on a nearest neighbor-graph with k = 50. Protein
expression values were summed together for cells assigned to each
cluster, and then the values were scaled across protein expression
measurements within each cluster. The scaled expression values were
used to assign cell-type annotations, which initially resulted in 13 cell
types and one unlabeled group. Outer and inner Follicular B cells
annotations were combined into a single Follicular B cells annotation.
Linear discriminant analysis (LDA) was performed to transfer cell-type
labels between the datasets. Prior to label transfer, paired donor data-
sets HBM556.KSFB.592 and HBM568.NGPL.345, and HBM825.PBVN.284
and HBM342.FSLD.938 were harmonized24 due to observed batch
effects. LDA cell-type label transfers were done between the following
reference and query datasets: HBM389.PKHL.936 − >
HBM772.XXCD.697, HBM389.PKHL.936 − >HBM556.KSFB.592,
HBM389.PKHL.936 − >HBM825.PBVN.284, HBM556.KSFB.592 − >
HBM568.NGPL.345, HBM825.PBVN.284 − >HBM342.FSLD.938.

CRAWDAD analysis of the human spleen. For CRAWDAD, a set of
shuffled null distributions were created at resolutions of length scales
of 100 to 1750 by intervals of 50 microns for 10 permutations. A
neighbor distance of 50 microns was used to evaluate every pairwise
combination of cell types at each scale. The corrected Z-score
threshold used was 3.58.

Spatial subsetting of the human spleen. CD4+ memory T cells were
further subsetted based on their proximity to Follicle B cells using a
one-sided exact binomial test, a neighbor distance defined as 50
microns and a p-value threshold of 0.05. With the subsets, we calcu-
lated the proportion of CD4+ memory T cells near Follicle B cells with
respect to all CD4+ memory T cells and compared across datasets.

Comparing across different samples
To compare different samples, we opted to use the AUC of the Z-score
trend to represent each relationship instead of the scale of when the
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relationship reaches significance as not all of themdo.We represented
each sample by the AUC values of each cell-type pair, creating an AUC
high-dimensional space. By applying PCA to this space, we used the
first two components to visualize the samples. In this case, instances
that are similar in the high-dimensional space should also be similar in
the low-dimensional one. Additionally, we investigated the variance of
AUC across samples by plotting the variance for each cell-type pair in a
dot plot. Lastly, we visualized the relationship trends for the cell-type
pair with highest AUC variance across conditions.

Analysis with other methods
Ripley’s Cross-K analysis. Ripley’s Cross K function draws a circular
neighborhood around each reference cell, counts the number of cells
of each type inside this region, and divide it by the cell-type density.
This value is compared to the theoretical K. The multi-scale aspect of
this analysis comes from varying the neighborhood size. Additionally,
cells in the border of the tissue will consider areas that do not present
any cell, requiring the application of border correction methods to
mitigate this effect.

We used the spatstat (version 3.0-6) package37 to compute dif-
ferent Ripley’s Cross-K values for each pairwise combination of cell
types. To compare with the theoretical K and perform border correc-
tion, we subtracted the theoretical K for a Poisson homogeneous
processes from the isotropic edge corrected Ripley’s Cross-K. For
consistency in visualization, we set the maximum radius size to be the
same as the maximum length scale evaluated in CRAWDAD.

Squidpy’s neighborhood enrichment. We used Squidpy10 (version
1.2.3) to apply its neighborhood enrichment implementation of the
approach described by Schapiro et al.9. We defined the spatial neigh-
bors using a radius of 50 and calculated Squidpy’s neighborhood
enrichment using default parameters. The results were plotted as a
heatmap of Z-scores.

Squidpy’s co-occurrence probability. Squidpy10 implements the co-
occurrence probability method originally presented in Tosti et al.13.
The function works by drawing annular neighborhoods around each
cell of the reference cell type. Then, it calculates the conditional
probability of a cell type being enriched in that region. Themulti-scale
aspect of this analysis comes from varying the neighborhood size.

Using Squidpy (version 1.2.3) and its co_occurrence function with
default parameters, we calculated the co-occurrence probability of
clusters for each cell type. For consistency in visualization, we set the
maximum distance to be the same as the maximum length scale
evaluated in CRAWDAD.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data analyzed with CRAWDAD is publicly available. The simulated
datasets are available in CRAWDAD’s Zenodo data repository38

(https://doi.org/10.5281/zenodo.14004432). The Slide-seqV2 mouse
cerebellum dataset was obtained from the original publication4, with
cell types previously annotated in RCTD14, available at the Broad
Institute Single Cell Portal at https://singlecell.broadinstitute.org/
single_cell/study/SCP948. The seqFISH mouse embryo data was
obtained from the original publication5, available at https://doi.org/10.
18129/B9.bioc.MouseGastrulationData. The Xenium human breast
cancer datasetwasobtained from the original publication6, available at
the GEO database under accession code GSE243280 https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE243280. The MERFISH mouse
brain datasets were obtained from the Vizgen Data Release V1.0. May
20217, with cell types previously annotated in STalign18, available at

https://doi.org/10.5281/zenodo.10724029. The CODEX human spleen
sampleswere obtained fromHuBMAP’s data portal (https://doi.org/10.
35079/HBM389.PKHL.936, https://doi.org/10.35079/HBM772.XXCD.
697, https://doi.org/10.35079/HBM342.FSLD.938, https://doi.org/10.
35079/HBM825.PBVN.284, https://doi.org/10.35079/HBM556.KSFB.
592, https://doi.org/10.35079/HBM568.NGPL.345), with the cell type
annotations performed in this paper available in CRAWDAD’s Zenodo
data repository39 (https://doi.org/10.5281/zenodo.14004432). The
source data files with the indication of which figures they relate to are
provided in CRAWDAD’s Zenodo data repository38 (https://doi.org/10.
5281/zenodo.14004432).

Code availability
CRAWDAD is available as an open-source R package at https://github.
com/jefworks-lab/crawdad, compressed and provided as Supplemen-
tary Software 1, with additional documentation and tutorials available
at https://jef.works/CRAWDAD/39. Code to reproduce the analyses and
results of this study is available on GitHub at https://github.com/
rafaeldossantospeixoto/crawdad_revision_analysis40.
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