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While ultrasonography effectively diagnoses Hashimoto’s thyroiditis (HT), exploring its transcriptomic 
landscape could reveal valuable insights into disease mechanisms. This study aimed to identify HT-
associated RNA signatures and investigate their potential for enhanced molecular characterization. 
Samples comprising 31 HT patients and 30 healthy controls underwent RNA sequencing of peripheral 
blood. Differential expression analysis identified transcriptomic features, which were integrated using 
multi-omics factor analysis. Pathway enrichment, co-expression, and regulatory network analyses 
were performed. A novel machine-learning model was developed for HT molecular characterization 
using stacking techniques. HT patients exhibited increased thyroid volume, elevated tissue hardness, 
and higher antibody levels despite being in the early subclinical stage. Analysis identified 79 HT-
associated transcriptomic features (3 mRNA, 6 miRNA, 64 lncRNA, 6 circRNA). Co-expression (77 
nodes, 266 edges) and regulatory (18 nodes, 45 edges) networks revealed significant hub genes and 
modules associated with HT. Enrichment analysis highlighted dysregulation in immune system, cell 
adhesion and migration, and RNA/protein regulation pathways. The novel stacking-model achieved 
95% accuracy and 97% AUC for HT molecular characterization. This study demonstrates the value 
of transcriptome analysis in uncovering HT-associated signatures, providing insights into molecular 
changes and potentially guiding future research on disease mechanisms and therapeutic strategies.
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Abbreviations
ACC  Accuracy
AI  Artificial intelligence
AUC  Area under the curve
CatBoost  Categorical boosting
circRNA  Circular RNA
CNN  Convolutional neural network
DT  Decision tree
ET  Extra tree
HT  Hashimoto’s thyroiditis
ENCI  Experimental non-coding RNA interactome
EPC  Edge Percolated Component
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FPKM  Fragments per kilobase of exon model per million reads mapped
FT3  Free triiodothyronine
FT4  Free thyroxine
GBDT  Gradient boosting decision tree
GO  Gene ontology
HC  Healthy control
HGNC  HUGO gene nomenclature committee
KEGG  Kyoto encyclopedia of genes and genomes
KNN  K-nearest neighbor
LR  Logistic regression
lncRNA  Long non-coding RNA
ML  Machine learning
miRNA  Micro RNA
MOFA  Multi-omics factor analysis
MCC  Maximal clique centrality
MLP  Multilayer perceptron
ncRNA  Non-coding RNAs
rRNA  Ribosomal RNA
RNA-seq  RNA-sequencing
RF  Random forest
SVM  Support vector machine
SWE  Shear wave elastography
TPE  Tree-structured Parzen Estimator approach
TGAb  Thyroglobulin antibodies
TPOAb  Thyroid peroxidase antibodies
TSH  Thyrotropin
XGBoost  EXtreme gradient boosting

Hashimoto’s thyroiditis (HT) is an autoimmune disease characterized by specific thyroid pathology1. Its 
prevalence has increased in recent decades, affecting approximately 0.3–1.5 cases per 1000 individuals2,3. 
Pathological features include lymphocyte infiltration, thyroid enlargement, cell destruction, atrophy, and 
fibrosis4. Thyroglobulin antibodies (TGAb) and thyroid peroxidase antibodies (TPOAb) 5 are serological 
markers indicating autoimmune attack on the thyroid. HT often presents with thyroid morphological changes 
and elevated antibody levels, sometimes without obvious symptoms or significant thyroid dysfunction6, posing 
challenges in molecular characterization.

Non-coding RNAs (ncRNAs) are RNA transcripts that don’t encode proteins but play vital roles in regulating 
gene transcription and protein translation. Altered expression patterns and regulatory networks of ncRNAs have 
shown potential for enhancing our understanding of chronic diseases like cancer, neurodegenerative disorders, 
and cardiovascular diseases7–9. Specific ncRNA expression studies offer promise as molecular signatures10. In 
HT research, Zhao et al. identified 6 miRNAs as potential plasma markers11, Peng et al. found that upregulated 
lncRNA-IFNG-AS1 contributes to HT’s pathogenesis12, and Xiong et al. highlighted the role of has_cir_0089172 
in HT pathogenesis by sequestering miR-125-3p13. However, identifying expression patterns and regulatory 
network changes in HT remains challenging, with implications for understanding disease mechanisms and 
potential therapeutic strategies.

Traditional methods of analyzing differential expression focus on individual RNA types, providing detailed 
biological information but neglecting interrelationships and joint regulation between different RNA types14. 
Integrative analysis methods, such as multi-omics factor analysis (MOFA), are needed to capture complex 
relationships by combining multiple RNA sequencing data types15,16. However, careful feature selection, 
appropriate data preprocessing, and efficient computing methods are necessary to enhance MOFA’s performance 
with high-dimensional RNA-seq data. Artificial intelligence models, including machine learning, have shown 
promise in disease characterization and personalized medicine17,18. In HT research, Zhao et al. used a deep 
learning model based on CNN to analyze ultrasound images19, while Peng et al. developed a machine learning 
model using clinical and laboratory data to characterize HT and identify key factors20. Integrating differential 
expression analysis, MOFA, and machine learning to identify RNA signatures and transcriptional regulatory 
networks in HT requires further research.

This study aims to analyze whole-transcriptome sequencing data from HT patients. By integrating differential 
expression analysis and MOFA models, we seek to identify transcriptomic signatures for characterizing HT and 
potential regulatory mechanisms. Co-expression and regulatory networks will be constructed to reveal changes 
in gene regulation. Additionally, a novel machine learning stacking model will be developed to assess the 
potential of these signatures for enhanced molecular characterization of HT. This comprehensive approach aims 
to provide valuable insights into HT molecular mechanisms and identify potential targets for future research 
and therapeutic strategies.

Methods
Study participants
This study involved two distinct cohorts from different medical centers. Between June 2022 and May 2023, 
a total of 31 early HT patients and 30 healthy controls (HC) were recruited from Qilu Hospital of Shandong 
University and the Second Affiliated Hospital of Xi’an Jiaotong University. The diagnosis of HT was based on 
specific criteria such as thyroid enlargement, characteristic ultrasound images, and elevated thyroid antibodies, 
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with no clinical or biochemical evidence of thyroid dysfunction. To further identify early HT, a longitudinal 
assessment was conducted over a period of six months, with evaluations performed every two months, to 
observe the development of autoantibodies and ultrasound changes. If subjects experience thyroid dysfunction 
during the assessment period, they are considered to be in a stage other than early HT and excluded from 
this study. Participants with prior history of thyroid diseases, thyroid cancer, or thyroid surgery were excluded. 
The healthy control group exhibited normal thyroid function, no ultrasound abnormalities, and tested 
negative for thyroid autoantibodies. Exclusion criteria included the presence of cardiovascular, autoimmune, 
infectious, musculoskeletal, or malignant diseases, as well as recent surgery or trauma. Thyroid function tests 
were conducted using the Roche Cobas 6000 E601 module immunoassay analyzer. Demographic information 
was collected through a questionnaire. The study was ethically approved by the Medical Ethics Committee of 
Xi’an Jiaotong University and conducted following the Helsinki Declaration guidelines (NO. 2020844). Written 
informed consent was obtained from all participants.

RNA sequencing and data pre-processing
Peripheral blood samples were collected during the confirmed early HT assessment for transcriptome 
sequencing. Total RNA was extracted from peripheral blood samples of each individual using the PAXgene 
Blood RNA Kit (BD Biosciences, USA). Ribosomal RNA (rRNA) was depleted, and libraries were prepared 
using the TruSeq Small RNA Library Preparation Kit. The libraries were sequenced on the NovaSeq 6000 
platform, generating 150 bp paired-end reads. Raw data quality control was conducted using FastQC (v0.11.8)21. 
miRNA identification was performed using Bowtie (v1.1.2)22, and miRNA expression profiles were generated 
with miRDeep2. The filtered and quality-controlled sequences, referred to as “clean reads”, were aligned using 
HISAT2 (v2.0.4)23. Transcript assembly and gene expression estimation were performed using StringTie 
(v1.3.1)24. After quality control and alignment, transcripts were classified through a systematic pipeline. For 
protein-coding genes, transcripts were mapped to the human reference genome (GRCh38) and annotated based 
on RefSeq database using StringTie. miRNAs were identified through alignment to miRBase (v22) using Bowtie 
and quantified with miRDeep2. For lncRNA identification, we first excluded known protein-coding transcripts 
and small RNAs, then selected transcripts longer than 200 nucleotides, and assessed their coding potential using 
CPC2 and CNCI tools. circRNAs were identified by detecting back-spliced junction reads using find_circ and 
CIRI2 algorithms, with at least two unique back-spliced reads required for circRNA annotation. All identified 
transcripts were further filtered based on expression level (FPKM > 0.1) to ensure reliable quantification. The 
resulting gene expression matrices for mRNA, miRNA, lncRNA, and circRNA were utilized for subsequent 
analysis.

Identification of HT-associated RNA signatures
Differential expression analysis
Differential expression analysis was conducted on four RNA expression matrices (mRNA, miRNA, lncRNA, 
and circRNA) using the limma25 and edgeR26 packages. The parallel implementation of both limma and edgeR 
packages for identifying DEGs was strategically chosen to leverage their complementary strengths. Limma 
excels in handling complex experimental designs through its sophisticated linear modeling framework and 
empirical Bayes methods, which are particularly effective for controlling false discovery rates in multi-factor 
analyses. Meanwhile, edgeR specifically addresses the challenges of RNA-seq count data through its negative 
binomial distribution-based statistical framework, making it especially robust for analyzing genes with low 
expression levels. This dual-package approach enhances the reliability of our differential expression analysis by 
combining limma’s statistical power in handling experimental complexity with edgeR’s specialized capabilities 
for RNA-seq data characteristics. The intersection of results from both methods provides a more stringent and 
confident set of differentially expressed genes. Differentially expressed RNAs meeting the significance criteria 
were identified (P-value < 0.05&|log2FC| > 1). The intersection of differentially expressed RNA lists obtained 
from both packages was used for further analysis.

Multi-omics factor analysis
MOFA16 was employed to integrate the expression matrices of the four RNA types identified in the differential 
expression analysis. Prior to generating the MOFA model, z-score normalization was applied to eliminate biases 
caused by library size discrepancies. The normalization was performed using the formula:

 
x∗

ij = xij − µi

σi

Where xij represents the expression value of RNA j in sample i, µi represents the mean expression value of sample 
i, and σi represents the standard deviation of sample i. A 15-factor MOFA model was generated using 10,000 
iterations in ‘slow’ convergence mode.

Subsequent analysis was performed using the MOFA + tool15. The sample factor matrix was extracted 
to examine correlations between factors and clinical variables. Factors showing significant differences 
between the HT and control groups were identified. High-contributing weight features meeting the criteria 
(weight ≥ mean + 2 * standard deviation & weight ≤ mean − 2 * standard deviation) under these factors were 
selected as the characteristic RNA signatures.

Pathway enrichment analysis
For the mRNAs among the characteristic RNA signatures, we performed enrichment analysis based on Gene 
Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) using the clusterProfiler package27. 
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Enrichment information for cellular components, biological processes, molecular functions, and KEGG 
pathways with P-value < 0.05 was considered statistically significant. This analysis aimed to provide insights into 
the biological processes and pathways potentially involved in HT pathogenesis.

Analysis of the biological basis underlying HT-associated RNA signatures
Construction of co-expression networks
To identify potential regulatory relationships, we conducted a co-expression network analysis for the 
characteristic RNA signatures, focusing on lncRNA-miRNA, lncRNA-mRNA, miRNA-mRNA, and circRNA-
miRNA interactions. Pearson correlation coefficient was used to examine the correlation between RNA pairs. 
RNA pairs with a statistical significance (P-value < 0.05) and meaningful correlation strength (|r| > 0.2) were 
included to construct the co-expression network, where RNAs represented nodes and significant correlations 
were depicted as edges. Visualization of the co-expression network was performed using Cytoscape. For node 
ranking, we employed CytoHubba with five attribute-ranking methods: Betweenness, Closeness, Degree, Edge 
Percolated Component (EPC), and Maximal Clique Centrality (MCC). The shared top 5 ranking nodes in 
attributes were considered as hub RNAs in the co-expression network. To identify modules with potential similar 
expression patterns, we utilized ClusterONE with the following parameters: Minimum size = 3, Minimum 
density = Auto, Edge weight = unweighted, Node penalty = 2, Haircut threshold = 0, Merging method = Single-
pass, Similarity = Match coefficient, Overlap threshold = 0.8, Seeding method = From unused nodes.

Development of regulatory networks based on experimental non-coding RNA interactome
To construct a novel human Experimental Non-coding RNA Interactome (ENCI), we integrated the latest data 
from ten databases, including DIANA28, lncBook29, miRTarBase30,31, miRNet32, NPinter433, RAIN34, RISE35, 
Starbase36, Circbank37, RNAInter38, and data from a study by Morselli et al.39. Standardized IDs were used 
for different RNA types, with HUGO Gene Nomenclature Committee (HGNC)40 ID for mRNA and lncRNA, 
ENSEMBL ID for lncRNA not in HGNC, miRBase41 ID for miRNA, and circBase42 ID for circRNA. Self-
interactions and duplicate records were removed for data quality assurance. Based on the ENCI, regulatory 
networks were constructed for characteristic RNA signatures, and CytoHubba and clusterONE software were 
used to identify hub RNAs and modules in these networks.

Development of a stacking machine learning model for enhanced HT molecular 
characterization
We extracted and integrated expression matrices corresponding to characteristic RNA signatures as the dataset 
for machine learning (ML) model construction. The dataset was randomly split into two independent subsets: 
one for model training (training set: 21 HT, 20 HC) and the other for model evaluation (testing set: 10 HT, 10 
HC). Our modeling strategy involved combining 10-fold bagging and two-layer stacking. In the first layer, we 
trained 10 base models using 9/10 of the training set and made predictions on the remaining 1/10 of the data. 
The base models included logistic regression (LR)43, decision tree (DT)44, random forest (RF)45, extra tree (ET)46, 
gradient boosting decision tree (GBDT)47, XGBoost (eXtreme Gradient Boosting)48, support vector machine 
(SVM)49, multilayer perceptron (MLP)50, CatBoost51, and K-nearest neighbors (KNN)52. In the second layer, we 
concatenated the predictions from the first layer with the original training set as input. The second-layer models 
included the ten ML models from the first layer, and the final model was a logistic regression model. The selection 
of logistic regression as the final model was based on several key considerations. First, logistic regression excels 
in binary classification tasks and is particularly effective when combining predictions from multiple models, 
making it ideal for our stacking architecture. Second, its linear nature helps prevent overfitting when integrating 
diverse predictions from the double-layer models. Third, the model provides interpretable probability outputs 
and clear insights into the contribution of each base model, which is crucial for understanding the relative 
importance of different RNA signatures in HT characterization. Furthermore, in our preliminary evaluations, 
logistic regression demonstrated stable performance in handling the transformed feature space created by 
the double-layer predictions, while maintaining computational efficiency. Hyperparameter optimization and 
fine-tuning of the models were performed using the Tree-structured Parzen Estimator Approach (TPE)-based 
Bayesian optimization algorithm. Model performance and reliability were assessed using accuracy (ACC) and 
area under the curve (AUC) metrics on the testing set.

Results
Demographic and clinical features of the study participants
This study included 61 participants (31 HT, 30 HC), with similar demographic variables between the groups. 
Laboratory examinations revealed significant differences in thyroid morphology, function, hormone, and 
immunity levels (all p values < 0.05). The HT group showed increased thyroid volume, elevated tissue hardness, 
and higher levels of TPOAb and TGAb antibodies. Thyroid function indicators (FT3, FT4) showed varying 
degrees of abnormality, reflecting different stages of HT progression. Table 1 summarizes the demographic and 
clinical characteristics of the participants.

Identification and characterization of HT-associated RNA signatures
Distinct RNA profiles in HT by differential expression analyses
Differential expression analysis using the limma and edgeR packages identified significant mRNAs, miRNAs, 
lncRNAs, and circRNAs. The intersection analysis of both methods revealed distinct regulatory patterns across 
different RNA types. Specifically, we identified 1279 differentially expressed mRNAs (52 up-regulated, 1227 
down-regulated), 9 miRNAs (3 up-regulated, 6 down-regulated), 652 lncRNAs (35 up-regulated, 617 down-
regulated), and 18 circRNAs (3 up-regulated, 15 down-regulated) (Fig.  1). Notably, the predominant down-
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regulation pattern, particularly evident in mRNAs (96% down-regulated) and lncRNAs (95% down-regulated), 
suggests a broad transcriptional suppression in HT pathogenesis. The detailed results can be found in the 
supplementary materials (Table S1).

Key RNA signatures in HT by multi-omics factor analyses
MOFA model was used to identify key RNA signatures for HT molecular characterization. The model explained 
variances of 3.7%, 39.4%, 8.8%, and 39.9% for mRNA, miRNA, lncRNA, and circRNA data, respectively 
(Fig. 2A, Table S2). Factor correlation analysis indicated low correlations, reflecting a good model fit (Fig. 2B, 
Table S2). Variance decomposition analysis revealed that Factor7 explained the main mRNA variance, while 
miRNA variance was primarily explained by Factor1 and Factor3. lncRNA variance was distributed across 
multiple factors, with Factor2, Factor4, and Factor12 being prominent. Factors 1 and 2 predominantly explained 
circRNA variance (Fig. 2C, Table S2). Significant differences were observed in Factor3 (p = 0.016) and Factor10 
(p = 0.006) between HT and HC groups (Fig.  2D and E, Table S2). RNA signatures meeting specific criteria 
(weight ≥ mean + 2 * standard deviation & weight ≤ mean − 2 * standard deviation) were identified based on 
feature weight matrices for Factor3 and Factor10, resulting in 79 characteristic RNA signatures including 3 
mRNAs, 6 miRNAs, 64 lncRNAs, and 6 circRNAs (Table S2). The expression heatmap of these RNA signatures 
was presented in Fig.  2F. Enrichment analysis revealed the involvement of these RNA signatures in various 
biological processes, including peroxisome organization, peroxisomal membrane transport, immune system 
processes, Golgi apparatus function, and lipid metabolism (Fig. 2G, Table S2). These findings provide insights 
into the molecular mechanisms potentially involved in HT pathogenesis and progression.

Molecular interactions and regulatory mechanisms in HT
Hub genes and modules in HT by co-expression networks
We categorized RNA signatures based on RNA interactions (lncRNA-miRNA, lncRNA-mRNA, miRNA-mRNA, 
circRNA-miRNA) and performed correlation tests, resulting in co-expression networks. The networks comprised 
77 nodes and 266 edges, including lncRNA-miRNA (65 nodes, 121 edges), lncRNA-mRNA (66 nodes, 122 
edges), miRNA-mRNA (7 nodes, 8 edges), and circRNA-miRNA (9 nodes, 15 edges) (Fig. 3A, Table S3). Using 
CytoHubba, we identified hsa-miR-548aq-3p, PEX13, MARCHF1, and hsa-miR-374a-5p as hub RNAs from the 
top shared nodes in attributes (Table S3). ClusterONE software extracted two modules with similar expression 
patterns, containing 5 RNAs each (Fig. 3B,I). Module 1 exhibited significant patterns among its RNA pairs (all p 
values < 0.05, Fig. 3C–H). Module 2 showed significant patterns for all pairs except between ENSG00000214955 
and hsa-miR-6767-3p (p = 0.36) (all other p values < 0.05, Fig. 3J–P).

Dysregulation of multiple processes in HT by regulatory networks
By integrating information from 10 databases and the study by Morselli et al., an ENCI with 210,672 nodes 
and 30,392,876 edges was constructed (Table S4). Analysis of the 79 characteristic RNA signatures using the 
ENCI identified 18 RNAs with direct interactions, forming a regulatory network with 18 nodes and 45 edges 
(Fig. 4A). Hub RNAs in the network, ranked by CytoHubba, included hsa-miR-144-3p, hsa-miR-424-5p, hsa-
miR-374a-5p, and hsa-miR-548aq-3p (Table S4). The regulatory network was clustered into four modules using 
ClusterONE software (Fig. 4B–E). The first module comprised 6 RNAs (hsa-miR-548aq-3p, hsa-miR-374a-5p, 
PEX13, MARCHF1, hsa-miR-144-3p, PTENP1-AS). The second module consisted of 5 RNAs (BACH1-IT2, hsa-
miR-1178-3p, PDC-AS1, hsa-miR-374a-5p, PTENP1-A). The third module included 5 RNAs (hsa-miR-1178-3p, 
NUTM2B-AS1, hsa-miR-424-5p, hsa-miR-6767-3p, ARHGAP15-AS1). The fourth module contained 5 RNAs 
(BACH1-IT2, hsa-miR-1178-3p, HIF1A-AS3, hsa-miR-374a-5p, PTENP1-AS). GO and KEGG enrichment 

Parameters Controls HT cases P-value

Gender (Female) 28(93%) 31(100%) 0.458

Marital status (Married) 26(87%) 25(81%) 0.772

Age (Y) 41.8 ± 13.6 42.1 ± 12.2 0.921

Weight (kg) 59.2 ± 7.6 60.1 ± 9.6 0.705

Thyroid volume (cm3) 0.2 ± 0.0 0.3 ± 0.1 3.95E-05

SWE (KPa) 14.3 ± 5.2 43.3 ± 10.0 1.11E-20

FT3 (pmol/l)* 3.7 ± 0.6 4.3 ± 0.8 1.10E-03

FT4 (pmol/l)* 14.2 ± 1.7 16.6 ± 2.6 9.02E-05

TSH (µIU/ml)* 1.7 ± 1.1 5.0 ± 0.8 3.17E-20

TPO-Ab (IU/ml)* 11.9 ± 7.6 568.4 ± 294.9 7.50E-15

TG-Ab (IU/ml)* 31.9 ± 25.4 697.8 ± 270.2 1.32E-19

Table 1. The demographic and clinical characteristics of the subjects. Fisher’s exact tests were utilized for 
categorical variables, such as gender and marital status. For continuous variables, t-tests were employed. 
If the variances are unequal, Welch’s t-test was used instead. Significant values are in bold. HT: Hashimoto 
thyroiditis, SD: Standard Deviation. Data are shown as mean ± SD. *The normal value ranges of the five 
biochemical indicators FT3, FT4, TSH, TPOAb, and TGAb in the sample recruitment hospitals are as follows: 
FT3 (3.0-8.1), FT4 (12–22), TSH (0.3–4.5), TPOAb (0–34), and TGAb (0-115).
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analysis of the 18 nodes revealed their involvement in key biological processes and pathways, such as immune 
system regulation, cell adhesion and migration, RNA and protein regulation, lipid metabolism, and vesicle and 
membrane regulation (Table S4, Fig. 4F). These findings suggest that HT is characterized by dysregulation of 
multiple biological processes and pathways, potentially contributing to its complex pathogenesis and progression.

Enhanced HT molecular characterization via ensemble machine learning
We utilized the expression matrix of 79 RNA signatures to build ML models. Twenty randomly selected samples 
(10 HT, 10 HC) were used for testing, while the rest were used for training. Ten ML models mentioned in the 
methods were employed, along with a stacking model for cross-model comparison (hyperparameter settings 
in Table S5). Figure 5A showed the overview of our newly constructed stacking model. Figure 5B displayed the 
prediction results on the testing set (showing only models with ACC > 80%). The stacking model showed the 
best performance, achieving an ACC of 95% and an AUC of 97%. These results demonstrate the superiority 
of the multi-model fusion approach over individual models in characterizing HT molecular features using a 
small sample dataset. Our RNA signature selection method combined with the stacking model has potential for 
enhancing HT molecular characterization.

Fig. 1. Differential expression analysis of RNA signatures in Hashimoto’s thyroiditis.  (A-D) Volcano plots 
depicting the results of differential expression analysis based on limma for four RNA-seq datasets. Significantly 
differentially expressed RNAs were identified: 1743 mRNAs (342 Up, 1401 Down), 13 miRNAs (5 Up, 8 
Down), 969 lncRNAs (198 Up, 771 Down), and 24 circRNAs (9 Up, 15 Down). (E-H) Volcano plots showing 
the results of differential expression analysis based on edgeR for the same four RNA-seq datasets. Significantly 
differentially expressed RNAs were identified: 1919 mRNAs (71 Up, 1848 Down), 20 miRNAs (7 Up, 13 
Down), 873 lncRNAs (53 Up, 820 Down), and 33 circRNAs (9 Up, 24 Down). (I-L) Venn diagrams illustrating 
the intersection of upregulated differentially expressed RNAs identified by both limma and edgeR for the four 
RNA-seq datasets. (M-P) Venn diagrams displaying the intersection of downregulated differentially expressed 
RNAs identified by both limma and edgeR for the four RNA-seq datasets. Intersection analysis of the two 
methods resulted in a final set of preliminary RNA signature candidates: 1279 mRNAs (52 Up, 1227 Down), 
9 miRNAs (3 Up, 6 Down), 652 lncRNAs (35 Up, 617 Down), and 18 circRNAs (3 Up, 15 Down). ENSEMBL 
IDs are shown only for transcripts without officially assigned gene symbols, primarily novel lncRNAs; all other 
transcripts are displayed using their HGNC gene symbols.

 

Scientific Reports |          (2025) 15:677 6| https://doi.org/10.1038/s41598-024-80728-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 2. Multi-omic factor analysis of RNA signatures in Hashimoto’s thyroiditis. (A) Bar plot demonstrating 
the total variance explanation of the model for the four RNA-seq datasets. (B) Heatmap representing the 
correlation between factors. (C) Heatmap displaying the variance explanation for each factor across the four 
RNA types. (D, E) Violin plots indicating the values of Factor 3 and Factor 10 across Hashimoto’s thyroiditis 
and healthy control samples. (F) Expression heatmap visualizing the characteristic RNA signatures identified 
through multi-omic factor analysis. (G) Bar plot presenting the results of GO and KEGG enrichment analysis 
for the mRNAs included in the characteristic RNA signatures. ENSEMBL IDs are shown only for transcripts 
without officially assigned gene symbols, primarily novel lncRNAs; all other transcripts are displayed using 
their HGNC gene symbols.
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Fig. 3. Results of co-expression network analysis in Hashimoto’s thyroiditis. (A) Visualization of the co-
expression network. The yellow nodes represent hub genes, “V”-shaped nodes indicate modules, and lines 
between nodes represent interactions. (B) Visualization of Module 1. This module consisted of 5 RNA 
signatures (MARCHF1, PDC-AS1, ENSG00000236308, ENSG00000279098, PEX13). (C–H) Expression 
correlation plots for molecular pairs within Module 1. Red points represent the HT group, purple 
points represent the healthy control group, the black line indicates the fitted line, and the gray interval 
represents the confidence interval. (I) Visualization of Module 2. This module comprised 5 RNA signatures 
(ENSG00000272372, GAL3ST2, hsa-miR-6767-3p, ENSG00000214955, ENSG00000229660). (J–P) Expression 
correlation plots for molecular pairs within Module 2. Red points represent the HT group, purple points 
represent the healthy control group, the black line indicates the fitted line, and the gray interval represents the 
confidence interval. ENSEMBL IDs are shown only for transcripts without officially assigned gene symbols, 
primarily novel lncRNAs; all other transcripts are displayed using their HGNC gene symbols.
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Fig. 4. Regulatory network analysis of RNA signatures in Hashimoto’s thyroiditis. (A) Visualization of the 
regulatory network. Gray circular nodes represent mRNAs, red “V”-shaped nodes represent miRNAs, yellow 
diamond-shaped nodes represent lncRNAs, and green square nodes represent circRNAs. (B–F) Visualization 
of four modules within the regulatory network, highlighting potential functional RNA signature clusters. (G) 
Bar plot presenting the results of GO and KEGG enrichment analysis for the regulatory network, providing 
insights into the biological processes and pathways associated with the identified RNA signatures.
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Fig. 5. Stacking model construction and performance evaluation for molecular characterization of 
Hashimoto’s thyroiditis. (A) Overview of the proposed stacking model integrating multiple machine learning 
algorithms for enhanced molecular characterization of HT. (B) Comparison of various machine learning 
models, including the stacking model, on the independent testing set, demonstrating the performance in 
distinguishing Hashimoto’s thyroiditis from healthy controls based on the identified RNA signatures.
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Discussion
In this study, performed a comprehensive transcriptomic analysis of HT patients and healthy individuals, 
identifying 79 characteristic RNA signatures. We constructed co-expression and regulatory networks based on 
these signatures and developed a Stacking model for enhanced molecular characterization of HT. Our model 
demonstrated excellent performance on an independent testing set, highlighting its potential for improving 
HT molecular profiling. These findings provide valuable insights into HT’s molecular mechanisms and may 
contribute to the development of more precise diagnostic and therapeutic strategies.

The widespread down-regulation observed across different RNA types provides important insights into HT 
pathogenesis. The down-regulated mRNAs were primarily enriched in pathways related to thyroid hormone 
synthesis and metabolism, suggesting compromised thyroid function. The dysregulated miRNAs, particularly 
the up-regulated hsa-miR-144-3p and hsa-miR-374a-5p, may contribute to immune dysregulation through their 
targeting of immune-related genes. The extensive down-regulation of lncRNAs implies altered transcriptional 
regulation, potentially affecting thyroid-specific gene expression programs. These regulatory patterns align with 
the progressive nature of HT and may represent early molecular events in disease development.

Previous transcriptomic studies often focused solely on differential expression analysis, overlooking the 
complex interactions between multiple RNA types. To address this limitation, we introduced MOFA, which 
simultaneously identifies factors explaining variation across different omics datasets. However, MOFA’s 
computational demands and sensitivity to data quality posed challenges. As noise or outliers can impact its 
accuracy, it is very necessary to reduce the dimensionality of RNA-seq data and remove irrelevant variables. To 
overcome these, we combined differential expression analysis with MOFA for screening HT characteristic RNA 
signatures and employed a fusion strategy using Bagging and Stacking to characterize HT based on the identified 
signatures. Bagging reduces overfitting by training diverse learners on subsets53, while stacking integrates 
different learners to reduce variance54. This strategy significantly mitigates model fluctuations caused by data 
changes and enhances performance for the complex task of molecularly characterizing HT.

HT is a complex autoimmune disease with a multifaceted pathogenesis. Integrating different RNA data 
types provides comprehensive insights into gene regulation, potentially identifying novel factors and pathways 
involved in HT55. Analysis of characteristic RNA signatures and enrichment helps uncover key molecules and 
processes involved in HT dysregulation. For instance, PEX13 and MARCHF1 impact immune cell activity. PEX13 
regulates peroxisome balance, while MARCHF1 influences MHC II expression and immune recognition56,57. 
MiRNAs like hsa-miR-144-3p and hsa-miR-374a-5p control inflammation and autoimmune-associated genes58. 
While these molecules have known roles in immune regulation and inflammation, their specific involvement 
in HT pathogenesis and identification as hub genes in HT-specific regulatory networks represents a novel 
finding. Similarly, hsa-miR-1178-3p interacts with BRCA2, potentially influencing thyroid cancer risk59. 
HIF1A-AS3 expression is higher in multiple sclerosis60. This combination of known immune regulators and 
novel HT-associated RNAs suggests both the biological relevance of our findings and their potential to reveal 
previously unknown aspects of HT pathogenesis. These findings suggest common expression patterns and 
regulatory changes among autoimmune diseases, with PEX13, MARCHF1, hsa-miR-144-3p, hsa-miR-374a-5p, 
hsa-miR-1178-3p, and HIF1A-AS3 potentially playing significant roles in HT pathogenesis. Our enrichment 
analysis supports these findings, indicating the involvement of immune system processes, cell processes, and 
RNA/protein regulation in HT pathogenesis. Notably, the characteristic RNA signature co-expression network 
resembles the regulatory network but contains more nodes and edges, suggesting additional molecules and 
relationships worth exploring further.

While our study provides valuable insights into HT’s molecular landscape, there are limitations to consider. 
The sample size was relatively small, and the study population was homogeneous, which may limit the 
generalizability of our findings. Although we implemented several strategies to maximize reliability, including 
rigorous patient selection with longitudinal assessment, 10-fold bagging in our stacking model, and balanced 
training-testing sets, external validation using larger and more diverse cohorts remains essential. This validation 
should include independent cohorts from different populations, cross-center studies, and testing across various 
disease stages and subtypes. Further research is necessary to functionally characterize the identified RNA 
signatures and explore their potential as therapeutic targets. Cellular and animal models can help elucidate 
their mechanisms in HT pathogenesis. Integrating other omics data, such as proteomics and metabolomics, will 
further enhance our understanding of HT’s molecular features. Addressing these limitations through additional 
investigations will advance our understanding of HT and potentially uncover novel therapeutic targets.

Conclusions
Our study has yielded several novel and significant findings in HT research. First, we identified a unique set 
of 79 characteristic RNA signatures specific to early-stage HT, including previously unreported associations 
such as hsa-miR-548aq-3p. Second, we constructed the first comprehensive experimental non-coding RNA 
interactome (ENCI) for HT, integrating data from ten databases and revealing novel regulatory networks with 18 
nodes and 45 edges. Third, we discovered two distinct co-expression modules and four regulatory modules that 
provide new insights into potential HT pathogenic mechanisms. Finally, our innovative stacking model achieved 
superior performance (95% accuracy, 97% AUC) in molecular characterization of early HT, demonstrating the 
potential of machine learning in disease diagnosis. These computational findings establish a foundation for 
future experimental validation and potential therapeutic development.

In summary, this study performed a comprehensive transcriptomic analysis of peripheral blood from 
HT patients, identifying 79 characteristic RNA signatures through the integration of differential expression 
analysis and MOFA. Our co-expression and regulatory network analyses revealed key molecular interactions, 
including previously unreported RNA relationships and functional modules in HT. The constructed stacking 
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model achieved promising performance in molecular characterization, suggesting the potential utility of RNA 
signatures in HT diagnosis. While experimental validation is needed, our findings provide new insights into the 
complex RNA regulatory networks in HT and establish a foundation for future mechanistic studies and potential 
therapeutic developments. This computational framework also demonstrates the value of integrative approaches 
in understanding autoimmune disease pathogenesis.

Data availability
The datasets generated and/or analysed during the current study are available in the GitHub repository  ( h t t p s : / / 
g i t h u b . c o m / z e f e n g l e e / H T ) . Interested parties can contact Dr. Miao Li for data access.
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