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Skillful seasonal predictions of continental
East-Asian summer rainfall by integrating its
spatio-temporal evolution
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Skillful seasonal climate prediction is critical for food and water security over
theworld’s heavily populated regions, such as in continental East Asia. Current
models, however, face significant difficulties in predicting the summer mean
rainfall anomaly over continental East Asia, and forecasting rainfall spatio-
temporal evolution presents an even greater challenge. Here, we benefit from
integrating the spatiotemporal evolution of rainfall to identify themost crucial
patterns intrinsic to continental East-Asian rainfall anomalies. A physical-
statistical prediction model is developed to capture the predictability offered
by these patterns through a detection of precursor signals that describe slowly
varying lower boundary conditions. The presented model demonstrates a
prediction skill of 0.51, at least twice as high as that of the best dynamical
models available (0.26), indicating improved prediction for both the spatio-
temporal evolution and summer mean of rainfall anomalies. This advance
marks a crucial step toward delivering skillful seasonal predictions to popu-
lations in need of new tools for managing risks of both near-term climate
disasters, such as floods and droughts, and long-term climate change.

The spatiotemporal evolution of continental East-Asianmonsoon rainfall
during boreal summer (May to September) displays the unique char-
acteristics of stepwise meridional advances and retreats. It advances
northward from South China primarily in May, abruptly extends to the
Yangtze River Basin and part of Japan in June, and eventually retreats to
parts of North China, Korea, and Japan1. Such a spatiotemporal evolution
exhibits significant year-to-year variability, triggering persistent flood
anddroughtdisasters across timeand regions andgenerating substantial
influences on the economic and societal activities of approximately one-
thirdof theworld’s population2,3. For instance, during theboreal summer
of 2020, a significant portion of continental East Asia experienced the
heaviestmonsoon rainfall since 1961, leading topersistentfloodingof the
Yangtze River and severe droughts in South China4. The disaster

displaced millions of residents, triggered a historic public health crisis,
and brought devastating socioeconomic impacts. Preventing and miti-
gating similar disasters rely on more timely, detailed, and accurate sea-
sonal predictions of the spatiotemporal evolution of continental East-
Asian summer rainfall anomalies, rather than a prediction of their sum-
mer mean patterns1,5,6. Improvements in seasonal predictions of East-
Asian rainfall anomalies can bring substantial socioeconomic benefits for
millions of people. Despite great progress in understanding the basic
physics ofmonsoon rainfall variability since 1886, predicting continental
East-Asian summer rainfall anomalies remains one of the most challen-
ging tasks in climate prediction, which stems from the complicated
interactions among land-ocean-atmospheric modes of variability across
seasonal to interdecadal time scales5–12.
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The predictability of East-Asian monsoon rainfall primarily comes
from slowly varying boundary conditions, including large-scale circu-
lation patterns13–16, sea surface temperature17–22, and land surface
conditions such as snowcover andmoisture23,24. However, the seasonal
predictions of continental East-Asian rainfall anomalies in coupled
global climatemodels have not demonstrated a satisfactory success so
far10,25,26. For example, the multi-model ensemble (MME) mean of the
nine coupled climate models, mainly sourced from the Copernicus
Climate Change Service (C3S) as part of the Copernicus Programme27,
with some dynamic models having participated in the ENSEMBLES
project28, exhibits low prediction skills in predicting the conventional
summer mean of East-Asian rainfall anomalies5,25,29–31. This limitation is
largely attributed to the key factors such as initialization, the ability to
reproduce coupled ocean-atmosphere processes, and model resolu-
tion and performance32–36. Accurately predicting the spatiotemporal
evolution of anomalous summer rainfall over continental East Asia is
even more challenging for these dynamical models, as forecast skills
decrease rapidly with increasing forecast lead time (Fig. 1 and Sup-
plementary Table 1). Seasonal prediction of East-Asian rainfall
anomalies has seen some successes in empirical and statisticalmodels,
where stationary relationships between rainfall anomalies and pre-
cursors have been employed based on observational large-scale
coherent rhythms26,36,37. However, previous statistical models often
focused on specific seasons or months over fixed regions, with less
emphasis on capturing the intricate spatiotemporal evolution of
rainfall anomalies1,6,8. Predicting the latter undoubtedly poses an
extreme challenge. Only few studies have recognized and developed
seasonal predictions for the spatiotemporal evolution of continental
East-Asian rainfall anomalies, despite the fact that such predictions are
more valuable for formulating prevention andmitigationplans dealing
with successive flood and drought disasters11,26. Meanwhile, skillful
seasonal predictions of the spatiotemporal evolution of rainfall
anomalies contribute to improve prediction of rainfall spatial dis-
tribution at specific times, suchas the conventional summermean. The
key question is then how to predict the spatiotemporal evolution of
continental East-Asian rainfall anomalies, given the many failed
attempts from the current dynamical and statistical models.

The objective of this study is to identify the dominant spatio-
temporal evolution patterns of rainfall anomalies over continental
East-Asia from a latitude-time domain perspective, capture their
representative precursors depicting slowly varying lower boundary
conditions, and develop a physically based statistical model utilizing
the identified seasonal patterns and precursors to generate skillful
seasonal predictions of East-Asian rainfall anomalies. Subsequent
section demonstrates that this proposed approach exhibits excellent
skills in predicting both the spatiotemporal evolution and conven-
tional summer mean of continental East-Asian rainfall anomalies,
showcasing notable improvements compared to the current dynami-
cal MME hindcast.

Results
Spatiotemporal evolution patterns of rainfall anomalies
We identify spatiotemporal evolution patterns of the seasonal rainfall
anomalies over continental East Asia by applying empirical orthogonal
function (EOF) analysis in the latitude-time (day) domain to daily pre-
cipitation anomalies zonally averaged from 105° to 123°E (seeMethods).
Figure 2 shows the three leading EOF patterns and the corresponding
year-to-year variationsofprincipal components (PCs). This indicates that
the spatiotemporal evolutionof East-Asian rainfall anomalies,which vary
both seasonally and yearly, can be decomposed into three distinct sea-
sonal spatiotemporal patterns from May to September, each with its
own year-to-year PC variation. The variations of these three patterns
collectively explain 50.2% of the total variance in summer rainfall varia-
tions over continental East Asia. Pattern 1 displays a tripolar pattern
characterized by a negative anomaly in central East Asia, sandwiched by
strong and weak positive anomalies in southern and northern East Asia,
respectively. This tripolarpattern resembles theEastAsianportionof the
global precipitation mode in summer38. However, it undergoes varia-
tions in strengthwith seasons, with the three anomalous rain belts being
strongest in mid-summer, and the central one gradually becomes
dominant in later summer. Thus, pattern 1 is referred to as the persistent
evolving pattern of East-Asian rainfall anomalies. Pattern 2 presents a
seasonal reversal of the dipolar pattern known as South Flood-North
Drought. The anomalous rainfall pattern shifts from floods in south and
droughts in north during May-June to droughts in south and floods in
north during July-September. It also exhibits a seasonal migration of the
rainbelt center with a sudden northward jump around July, consistent
with findings in previous studies39,40. Thus, we name pattern 2 as the
reversal evolving pattern. Pattern 3 displays the north-south propaga-
tion of an anomalous rainbelt dipole, with the southern rainbelt advan-
cing northward and the northern rainbelt retreating southward as
season progresses. Hence, pattern 3 is referred to as the propagating
evolving pattern. It should be pointed out that the three spatiotemporal
patterns aforementioned can also be identified without zonal mean
(Supplementary Fig. 1). These three spatiotemporal patterns and their
year-to-year variations from station-based data are closely resemble
those from other satellite-gauge-based precipitation datasets (Supple-
mentary Figs. 2–5). Therefore, they represent the dominant spatio-
temporal patterns of rainfall anomalies over continental East Asia,
providing an alternative perspective to describe the spatiotemporal
evolution of rainfall anomalies. The sum of the products of the three
distinct spatiotemporal patterns and their yearly time series can effec-
tively represent the rainfall anomalies both at a given instant and
throughout their slow-varying subseasonal to seasonal evolution.

Precursors for year-to-year variations of the spatiotemporal
patterns
To discern potential precursors (early indicators or predictors) con-
tributing to the year-to-year variability of the three spatiotemporal

Fig. 1 | Seasonal prediction skills of current dynamical models for the spatio-
temporal evolution of rainfall anomalies over continental East Asia. The tem-
poral correlation skills for predicting rainfall anomalies in each month using the

multi-model ensemble (MME) mean of the nine dynamical models initiated from
May during 1993–2016. The five columns from left to right are for the skills inMay,
June, July, August, and September, respectively.
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patterns, we conduct a precursor search guided by insights from prior
studies on the Indian monsoon prediction41. Here we focus on two key
variables, sea level pressure (SLP) and surface air temperature (SAT) in
preceding seasons (autumn, winter, and spring) during 1980–2009.
We search for signals of high significance on the correlation maps
between the time series (i.e., PCs) of the three spatiotemporal patterns
and the SLP or SAT anomalies in preceding seasons, as shown in Fig. 3.
Significant early signals in the SLP anomalies associated with PC1 var-
iation are mainly manifested by high correlations during preceding
autumn (Fig. 3a) and preceding spring (Fig. 3b). Upon closer exam-
ination, we identify two precursors that meet the criterion of mutual
independence: One precursor is the areal mean difference of SLP
anomalies over the two yellow boxes in Fig. 3a, denoted as IAP in
Table 1, representing a see-saw pattern of SLP between the southwest
Indian Ocean and southern Africa in the preceding autumn. The other
precursor is the areal mean difference over the two yellow boxes in
Fig. 3b, denoted as EIP in Table 1, representing a see-saw pattern of SLP
between northern East Asia and Mascarene in the preceding spring.
Both the IAP and EIP time series have high correlations with PC1 var-
iation, but only aweakcorrelation between eachother, and thus canbe
regarded as two relatively independent precursors for the year-to-year
variation of the persistent evolving pattern.

Only SLP anomalies in preceding winter and SAT anomalies in
preceding autumn are found to have significant correlations with PC2
variation. Again, to maximize these correlation signals for PC2’

seasonal forecast, we identify two precursors that meet the afore-
mentioned criterion. One precursor is the arealmean difference of SLP
anomalies over the two yellow boxes in Fig. 3c, denoted as EWP in
Table 1, indicating a see-saw pattern of SLP between northern East Asia
and the western Pacific in the preceding winter. The other precursor is
the area-averaged SAT anomalies over the yellow box in Fig. 3d,
denoted by ET in Table 1, representing abnormal pattern of SAT over
themid-latitude Eurasia in the preceding autumn. Both the EWPand ET
precursors have good correlations with PC2 variation, and represent
two independent precursors of year-to-year variation in the reversal
evolving pattern.

Following similar procedures, we identify two precursors for PC3
variation: One precursor is the areal mean difference of SLP anomalies
in theprecedingwinter over the twoyellowboxes inFig. 3e, denoted as
ESAP in Table 1, and the other is the area-averaged SAT anomalies in
the preceding spring over the yellow box in Fig. 3f, denoted as EPT in
Table 1. The former represents a see-saw pattern of SLP between high-
latitude East Asia and northern South Asia and latter represent
abnormal patternof SAT over the eastern tropical Pacific. Both the two
precursors have good correlations with PC3 variation, and represent
independent precursors for the year-to-year variability of the propa-
gating evolving pattern in East-Asian rainfall anomalies.

Collectively, the six precursors account for 50% of the total var-
iance in yearly variations of the three spatiotemporal patterns of
summer rainfall anomalies over continental East Asia. As summarized

Fig. 2 | Spatiotemporal patterns of continental East-Asian summer rainfall
anomalies. The left panels (a, c, e) display the spatiotemporal evolution patterns
corresponding to the leading three modes of empirical orthogonal functions
(EOFs) derived from daily precipitation anomalies zonally averaged over East Asia
during training period of boreal 1980–2009 summers. The unit of the color bar for
the spatiotemporal patterns is mm d–1. The bars in the right panels (b, d, f) are the

year-to-year variability of normalized principal components (PCs) of the three
spatiotemporal patterns, and the 13 gray curves correspond to the PC variations
obtained from the new physical-statistical prediction model (PSM) covering the
periods of 1980–2010, 1980–2011,…, and 1980–2022, respectively. The 13 dots at
the end of the 13 gray curves denote independent retrospective forecasts for the
period of 2010–2022.
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in Supplementary Table 2, these precursors have good correlations
with the climate variabilitymodes, such as El Niño-SouthernOscillation
(ENSO), which are well recognized as important drivers of East-Asian
monsoon rainfall variations through ocean-land-atmospheric
feedbacks1,6,20,42. Specifically, the six precursors correlate with the
dominant climatemodes over the PacificOcean, IndianOcean, Tibetan
Plateau, and East Asia, influencing the interannual variability of con-
tinental East-Asian monsoon rainfall. This suggests that the six pre-
cursors collectively serve as representative early signals of the
associated climatemodes, acting as proxies for their combined effects
anddepicting slowly varying lower boundaryconditions thatmodulate
the spatiotemporal evolution of rainfall anomalies over East Asia.

Skillful seasonal predictions of continental East-Asian rainfall
anomalies
Todemonstrate the utility of the three spatiotemporal patterns and six
precursors in improving seasonal predictions of continental East Asia
rainfall anomalies, we developed a physical-statistical prediction
model (PSM) based on observations in 1980–2009. Such a model
directly bridges the year-to-year variations of each spatiotemporal
pattern and their two corresponding precursors through multi-
regression equations. Then, we used the model to perform a 13-year
retrospective prediction as independent validation for each PC varia-
tion from 2010 to 2022, utilizing a forward-rolling manner that avoids
the use of any future data (see Methods for details). This approach

Fig. 3 | The correlation maps between year-to-year variations of principal
components (PCs) and sea levelpressure (SLP)or surface air temperature (SAT)
anomalies. The correlation maps of yearly PC1 variation and SLP anomalies in (a)
preceding autumn and (b) preceding spring. The correlation coefficients of PC2
variation with (c) SLP anomalies in preceding winter and (d) SAT anomalies in

preceding autumn. The correlationmaps of PC3 variationwith (e) SLP anomalies in
preceding winter and (f) SAT anomalies in preceding spring. Significant values
marked by black dots exceed the 90% confidence level. The yellow boxes outline
the regions used for defining precursors in Table 1.

Table 1 | Definitions of the six precursors associated with year-to-year variations of the three spatiotemporal patterns

Order Name Definition

1 IAP Zonal sea level pressure (SLP) contrast between southwest Indian Ocean (10 to 30°S, 55° to 65°E) and southern Africa (10° to 20°S, 12° to 25°E) in
preceding autumn.

2 EIP Meridional SLP contrast between northern East Asia (30° to 50°N, 120° to 140°E) and Mascarene of Indian Ocean (5° to 20°S, 60° to 90°E) in
preceding spring.

3 EWP Meridional SLP contrast between northern East Asia (40° to 50°N, 125° to 140°E) andwestern Pacific (20° to 35°N, 120° to 140°E) in precedingwinter.

4 ET Spatial mean surface air temperature (SAT) over mid-latitude Eurasian continent (55° to 70°N, 60° to 85°E) in preceding autumn.

5 ESAP Meridional SLPdifference betweenhigh-latitudeEastAsia (50° to 70°N, 110° to 135°E) andnorthernSouthAsia (20° to35°N,60° to 80°E) inpreceding
winter.

6 EPT El Niño-Southern Oscillation (ENSO)-related SAT averaged over eastern Pacific (8°S to 5°N, 110° to 95°W) in preceding spring.
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resembles the procedure adopted in the current operational fore-
casting. Finally, the model generates seasonal forecasts for the spa-
tiotemporal evolution of continental East-Asian rainfall anomalies
reconstructed from the three observed evolution patterns and their
predicted PC variations.

Note that predicting the spatiotemporal evolution of East-Asian
rainfall anomalies, which vary seasonally and yearly, ultimately boils
down to predicting the three PC variations. Illustrated by the grey lines
in Fig. 2b, d, f, the predicted year-to-year PC variations of the three
spatiotemporal patterns by PSM capture the observed counterparts
well. The average correlation skills during the independent validation
period for predicting variations of the three patterns are0.75, 0.71, and
0.70, respectively, very close to those in the training period. This
suggests that the relationships between the yearly variations of spa-
tiotemporal patterns and precursors in PSM are robust. Thus, these
three evolution patterns can be regarded as the predictable modes of
anomalous rainfall evolution over continental East Asia.

Through a linear combination of the three spatiotemporal pat-
terns and their predicted PC variations in Fig. 2, the model is used to
forecasts the year-to-year variability of the spatiotemporal evolutionof
East-Asian summer rainfall anomalies during the training and inde-
pendent prediction periods (Supplementary Fig. 6). PSM forecast
against spatiotemporal evolution based on the three patterns in each
boreal summer exhibits a high average skill of 0.68 during the entire
period (1980–2022), and the average skill remains consistent at 0.68
during both the training and independent prediction periods (Sup-
plementary Fig. 6c). It also illustrates that retrospective prediction
skills are higher than0.5 in 24 out of 30 years from 1980 to 2009,while
independent prediction skills exceed 0.5 in 10 out of 13 years from
2010 to 2022.

Figure 4 highlights the improved prediction capability of the total
spatiotemporal evolution of East-Asian summer rainfall anomalies in
each year (Fig. 4a) in PSM (Fig. 4b) compared to that of theMMEmean

of current dynamicalmodels (Fig. 4c). The year-to-year spatiotemporal
evolution of rainfall anomalies predicted by PSM closely resembles to
that of observations, including the north-south advances and retreats
of the anomalous rainbelt as well as the seasonal flood-drought evo-
lution. However, the MME mean forecast struggles to capture such
spatiotemporal evolution features in observations. Figure 4d also
illustrates the PSM and MME prediction skills for the total observed
spatiotemporal evolution of rainfall anomalies in each year, which is
assessed by spatiotemporal pattern correlation between observed
(Fig. 4a) and predicted (Fig. 4b, c) evolution for each year, as depicted
in Methods section. The results suggest that PSM prediction skills in
capturing the spatiotemporal evolution during boreal summer are
significantly higher than those of MMEmean forecasts in 16 out of the
24 years from 1993 to 2016. The overall prediction skill of PSM during
1993–2016 is 0.51, evaluated by spatiotemporal pattern correlation
between Fig. 4a, b, which is nearly twice as high as the corresponding
skill (0.26) in the MME mean (Fig. 4a, c).

Furthermore, PSM exhibits good performance in predicting
rainfall patterns in individual months over East Asia during the period
of 1980–2022 and 1993–2016 periods (Fig. 5a). PSM forecasts clearly
outperform those of the MME mean in capturing the spatial rainfall
patterns as the lead time increases, except inMay (Fig. 5a).Meanwhile,
the forecasts fromall individual dynamicalmodels performworse than
the MME mean forecasts in capturing spatial patterns of rainfall
anomalies as the lead time increases (Supplementary Fig. 7). The
regions of high forecast skills shift northward as the seasonal rainbelt
advances (Supplementary Fig. 8), with only poor skills observed in a
small part of northwestern East Asia where seasonal predictability is
relatively low1,21. The improvement of PSM is especially evident in
regions where the dynamical MME forecasts show low skills (Fig. 1 and
Supplementary Fig. 8). As a byproduct of the model’s skillful predic-
tions for the spatiotemporal evolution of rainfall anomalies, PSM also
shows a significant improvement in predicting the conventional

Fig. 4 | Seasonal predictions against the observed spatiotemporal evolution of
rainfall anomalies as function of latitude and month over East Asia. The spa-
tiotemporal evolution is denoted by (a) the observed total rainfall anomalies, (b)
the predicted field reconstructed from the three spatiotemporal patterns and their
predicted amplitude variations in the physical-statistical prediction model (PSM),
and (c) forecasted field from themulti-model ensemble (MME)meanof the current

nine dynamicalmodels. The ordinate is latitude and the abscissa ismonth of boreal
summer in each year. d The forecast skills assessed by the spatiotemporal corre-
lation coefficient between forecasted and observed rainfall evolution for each year
in the MME mean and PSM. The overall spatiotemporal correlation skill for the
period of 1993–2016 is shown in the top right corner of (b) and (c).
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summer mean (Fig. 5). Specifically, PSM exhibits a regional mean skill
of 0.31 and a multi-yearmean skill of spatial correlation at 0.43 during
1993–2016, greatly surpassing that of the MME mean, which are 0.18
and 0.07, respectively, for the same period (Fig. 5b–d and Supple-
mentary Fig. 9). Overall, PSM demonstrates prediction skills at least
twice as high as those of the current dynamical models. These results
indicate that our model achieves significant improvements in pre-
dicting both the spatiotemporal evolution (Figs. 4 and 5) and con-
ventional summer mean (Fig. 5) of continental East-Asian summer
rainfall anomalies. It is important to note that the PSM forecasts still
clearly outperform the MME forecasts in capturing both the spatio-
temporal evolution and spatial patterns (Supplementary Figs. 10-13) of
rainfall anomalies, regardless of which observational datasets are used
for verification. This advancement has the potential to generate more
detailed and skillful seasonal predictions of continental East-Asian
climate, thereby facilitating the issuance of reliable early warnings.

Discussions
Progresses in seasonal predictions of continental East-Asian summer
rainfall hold tremendous socioeconomic values but remains a chal-
lenging issue given the limited prediction skills of the existing dyna-
mical models9–12. Different from the conventional focus on seasonal
mean of rainfall anomalies over specific regions of East Asia, we here
proposed to identify three leading spatiotemporal patterns of con-
tinental East-Asian summer rainfall anomalies, from an alternative

perspective that considers the seasonal evolution of rainfall anomalies
across a space-time domain. These seasonal evolution patterns man-
ifest the persistent, reversal, and propagating features, capturing the
most crucial signals of spatiotemporal variability in the East-Asian
summer rainfall anomalies. The year-to-year variations in these pat-
terns collectively account for half of the total variance, suggesting the
presence of more predictability in the spatiotemporal evolution of
East-Asian rainfall anomalies. This is an innovative way to describe the
spatiotemporal evolution of rainfall anomalies, as it better captures
distinct footprints left by precursory climate signals in the summer
rainfall through synthesizing information from both the time and
space dimensions.

To maximize the preceding correlation signals for seasonal fore-
casts of thesepattern variations,we successfully identified six effective
precursors that collectively explain about 50% of the total variance in
interannual variations of spatiotemporal patterns, serving as repre-
sentative early signals depicting slowly varying lower boundary con-
ditions in the climate system. These precursors play a crucial role in
modulating the spatiotemporal evolution of East-Asian summer rain-
fall anomalies through land-ocean-atmosphere coupling6,24. In light of
this, we develop a physical-statistical prediction model utilizing the
three spatiotemporal patterns and six precursors. Our model
demonstrates skillful seasonal predictions in both the spatiotemporal
evolution and conventional seasonal mean of continental East-Asian
summer rainfall anomalies. It achieves a prediction skill more than

Fig. 5 | Prediction skills against the observed spatiotemporal evolution and
summer mean of continental East-Asian rainfall anomalies. a The multi-year
mean forecast skills assessed by the spatial pattern correlation against the total
rainfall anomalies for eachmonth in themulti-model ensemble (MME)mean of the
dynamical models and the physical-statistical prediction model (PSM). The blue

line segments represent the ranges of prediction skills derived from individual
dynamical models. The temporal correlation skills for predicting summer mean
rainfall anomalies in June-July-August (JJA) are shown for (b) MME mean and (c, d)
PSM. The regional mean of the prediction skill is displayed in the bottom right
corner of (b) to (d).
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double that of the MME mean of the current dynamical models. Our
findings emphasize the importance of recognizing and introducing
non-conventional predictands, (i.e., three spatiotemporal patterns and
their yearly time series) when conventional approaches fail, even
though the dynamics underlying the lead-lag relationship between the
predictands and precursors requires further investigation in the
future. This model may have certain limitations when the amplitudes
of the precursors are too weak or when applied to more stochastic
event occurrences. In these cases, it may struggle to capture slowly
predictable signals due to the inherent complexity or rapid variability.

The identified spatiotemporal patterns advance our under-
standing of the year-to-year variability of the East Asia summer rainfall
anomalies. It facilitates the future development of more skillful and
detailed prediction models and may serve as a benchmark for evalu-
ating the seasonal forecast capabilities of existing dynamical models.
Seamless predictions across seasonal to decadal time scales, as pro-
posed by the Word Climate Research Program43, have attracted
widespread attention and found applications in diverse fields includ-
ing agriculture, energy, finance, health, and water resource
management44. Our forecast model represents a valuable addition to
this class of seamless predictions45,46. It can be easily extended to
seasonal predictions over global domains (e.g., Africa and South
America) through identifying non-conventional spatiotemporal pre-
dictands and integrating with other methods that are dynamical or
empirical in nature47–51. This advancementmarks a crucial step forward
delivering skillful seasonal predictions to populations in need of new
tools for managing risks of near-term climate disasters and long-term
climate change.

Methods
Hindcasts of nine dynamical models
The seasonal forecast precipitation datasets of nine dynamical models
from the China Meteorological Administration (CMA)52 and the Coper-
nicusClimateChange Service (C3S)45,53–60 are utilized in this study. These
datasets combine seasonal forecast products from multiple global pro-
ducing centersof theWorldMeteorologicalOrganization andoffer open
access to state-of-the-art climate prediction data and tools for all uses27.
Supplementary Table 1 provides details on the nine dynamical models,
including their full names, references, abbreviations, horizontal resolu-
tions, and hindcast ensemble sizes. The seasonal forecast datasets used
in this study are summer season forecasts made on May by nine dyna-
micalmodels for the period of 1993–2016. Their ensemblemean is done
by first interpolating the forecast datasets on common grids at a reso-
lution of 1° longitude and 1° latitude.

Observed datasets
The daily rainfall dataset spanning from 1980 to 2022 is derived from
2420 stations’ surface rain gauge data of the National Meteorological
Information Center of CMA. The majority of these stations are located
in the East-Asian land region. To obtain a gridded dataset, we inter-
polate the rainfall station data onto a spatial resolution grid of 1°
longitude and 1° latitude grid, using the Cressman-style interpolation
algorithm. Then, a 3-month running mean is applied to the gridded
dataset to filter out weather noises. We also utilize three additional
satellite-gauge-based precipitation datasets (see Supplementary
Table 3) to assess the impacts of observational uncertainty on the
spatiotemporal patterns and prediction results.

Meanwhile, the monthly sea level pressure (SLP) with a spatial
resolution of 2.5° longitude and 2.5° latitude is derived from the
National Centers for Environmental Prediction (NCEP) Reanalysis 261.
The monthly averages of near-surface air temperature (SAT) is
obtained from the Met Office Hadley Centre/Climatic Research Unit
global surface temperature dataset (version HadCRUT.5.0.2.0) at a
resolution of 5° degree grid62. The year-to-year time series of six pre-
cursors are derived from the areal means of SAT or SLP anomalies in

preceding seasons starting at preceding autumn in the previous year
and ending at preceding spring of the current year, covering the per-
iod from 1979/1980 to 2021/2022. For easy reference, we denote the
“previous year” as the year index for precursors, for example, 1979 for
the year 1979/1980.

Supplementary Table 2 provides information of six climate indi-
ces that represent the circulation patterns and internal modes of cli-
mate variability contributing to East-Asian summer rainfall
variability6,13,17,23. This table also includes their correlation coefficients
with the six precursors, in which the preceding seasons used in six
climate indices are consistent with that of the corresponding pre-
cursors. The data sources of these climate indices are listed in Sup-
plementary Table 4.

Spatiotemporal evolution pattern analysis
To identify the spatiotemporal patterns in East-Asian rainfall anomalies
during boreal summer (May to September), we employ EOF analysis on
thedailyprecipitation anomalies zonally averaged in 105° to 123°E over
East-Asian region. Note that the datasets spanning 1980–2009 and
2010–2022 serve as the training and independent prediction periods,
respectively. EOF analysis is applied to the training period, enabling
the generation of independent retrospective forecasts during
2010–2022. Specifically, we consider the daily precipitation anomalies
after removing its climatologymean, denoted as P(s,day,year), where s
represents latitude grid, day signifies the Julian day of a boreal sum-
mer, and year denotes the specific year. It reflects both spatial and
seasonal variations collectively from year to year. After conducting
EOF analysis on P(s,day,year), where (s,day) as the space-day domain
and (year) acts as the year-to-year temporal domain, the resulting EOF
patterns in a space-day domain and corresponding PC variations can
be obtained by

P s,day, yearð Þ=
X
j

EOFj s,dayð ÞPCj yearð Þ,where ðPCjðyearÞÞ2 � 1,

ð1Þ

where the overbar denotes the 30-year mean of training period and
EOFjhas theunits ofmm/d. The leading three EOFpatterns are referred
to as the dominant spatiotemporal patterns of East-Asian summer
rainfall anomalies. The year-to-year time series of their PCs for the
whole study period (1980–2022) can be obtained from

PCj yearð Þ=<P s,day, yearð ÞEOFj s,dayð Þ>, ð2Þ

where j = 1, 2, 3. The rainfall anomalies field reconstructed from three
spatiotemporal patterns and corresponding PC variations is denoted
as PEP, which is given by

PEP s,day, yearð Þ=
X3
j = 1

EOFj s,dayð Þ PCj yearð Þ, ð3Þ

it represents the year-to-year variability in the dominant spatiotem-
poral evolution of East-Asian rainfall anomalies. The explained
variance percentage (EVj) of the variability associated with each
spatiotemporal pattern relative to the total precipitation variability is
obtained from

EV j =< ½EOFj s,dayð Þ�2 > =< ½P s,day, yearð Þ�2 >, ð4Þ

where j = 1, 2, 3, and “<>” represents the average over the domain of s
and day.

Furthermore, the spatial rainfall patterns of each spatiotemporal
pattern are obtained by regressing the total daily precipitation
anomalies in spatial resolution grids of latitude and longitude against
the corresponding PC variations during the training period. Thus, the
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daily rainfall patterns associated with PEP in a specific year can be
reconstructed from Eq. (3) by replacing EOFj(s,day) with the corre-
sponding spatial patterns. The daily rainfall patterns of each EOF and
PEP can generate the monthly rainfall patterns.

The physical-statistical prediction model
Using data in the training period, we built a physical-statistical pre-
diction model to predict the year-to-year variability of each spatio-
temporal pattern. This model is based on a multiple regression
equation with two predictors, namely

cPCj yearð Þ=
X
i

αi, jX i, j year � 1ð Þ, ð5Þ

where

αi, j =
PCj yearð ÞXi, j year � 1ð Þ

ðXi, j year � 1ð ÞÞ2
, ð6Þ

Where Xi,j represents the two predictors (i = 1, 2) for each spatio-
temporal pattern (j = 1, 2, 3). As shown in Fig. 4b, the spatiotemporal
evolution of PEP, regressed by all six precursors, are reconstructed
from Eq. (3) by replacing PCj yearð Þ with cPCj yearð Þ.

To perform an independent retrospective prediction for the PC
variability of three spatiotemporal patterns at the target year Yk during
2010–2022, where Yk denotes the target year of (2009 + k), with k ran-
ging from 1 to 13, we apply the above new model in a forward rolling
manner (see Supplementary Fig. 14) to predict cPCj Yk

� �
at the target year.

The overbar in Eq. (6) is applied to the period from 1980 to the year
Yk � 1
� �

before the target year to update the regression coefficients in
the model. This approach enables us to forecast the year-to-year varia-
bility of three spatiotemporal patterns from 1980 to the target year,
providing an opportunity to validate the robustness of this model. The
forecasted PEP at the target year in the independent prediction period
(seeSupplementaryFig. 6) isobtained fromEq. (3) by replacingPCj yearð Þ
with cPCj Yk

� �
. Additionally, the forecasted fields of monthly rainfall pat-

terns on spatial resolution grids can be obtained by the same manner.

Assessment of forecast skills
The spatiotemporal pattern correlation coefficient (STC) between
predicted (ŷ) and observed (y) evolution fields in both space (s) and
time (t) is also utilized to evaluate the prediction skills of spatio-
temporal evolution of rainfall anomalies (Fig. 4 and Supplementary
Fig. 6), given by

STC =

PM,N
s = 1, t = 1ŷðs, tÞyðs, tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM,N

s = 1, t = 1ðŷ s, tð ÞÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM,N

s = 1, t = 1ðyðs, tÞÞ2
q , ð7Þ

whereM and N is the number of space and time samples, respectively.
Note that the traditional prediction skills25 of spatial pattern or tem-
poral correlations represent a specific form of STC at fixed s or t.

Confidence interval
The statistical significance level is determined through the Student’s t-
test. The 90% confidence interval is defined by the 5th and 95th per-
centile values, while the 99% confidence interval is defined by the 0.5th
and 99.5th percentile values. A correlation coefficient value is con-
sidered significant at the 90% (99%)when it falls outside the 5th (0.5th)
and 95th (99.5th) percentiles.

Data availability
C3S seasonal forecasts in the Copernicus Climate Data Store are
available at https://cds.climate.copernicus.eu/, and the station

datasets and seasonal forecasts of precipitation from the CMA are
available at https://data.cma.cn/. SAT is publicly available at https://
www.metoffice.gov.uk/hadobs/hadcrut5/data/HadCRUT.5.0.2.0/
download.html, and SLP from NCEP Reanalysis 2 is available at https://
downloads.psl.noaa.gov/Datasets/ncep.reanalysis2/Monthlies/
surface/. Dataset of climate indices in Supplementary Table 2 can be
downloaded from Uniform Resource Locator listed in Supplementary
Table 4. All rawdatasets used in this studywereobtained frompublicly
available sources mentioned above. The processed modeling data is
accessible on the Zenodo repository under https://doi.org/10.5281/
zenodo.14410744.

Code availability
All figures in this article were generated using the open-source pro-
gramming languages and software of the NCAR Command Language
(NCL; http://www.ncl.ucar.edu). The codeused in this study is available
at the Zenodo repository (https://doi.org/10.5281/zenodo.14410744).
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