Skip to main content
. 2024 Nov 30;41:100674. doi: 10.1016/j.pacs.2024.100674

Fig. 1.

Fig. 1

Different CNN-based deep learning architectures - Convolution block: conv - BN - ReLU - conv - BN - ReLU - Dropout (if enabled); Residual block: conv - BN - ReLU - conv - BN - shortcut - BN – shortcut + BN – ReLU; Dense block: Convolution block1 - concatenate(Input, Convolution block1) - Convolution block2 - concatenate(Input, Convolution block1, 2) - Convolution block3 - concatenate(Input, Convolution block1, 2, 3) - Convolution block4 - concatenate(Input, Convolution block1, 2, 3, 4); Where, Conv: Convolution; BN: Batch Normalization; ReLU: Activation.