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A B S T R A C T

Recent advances in Light Emitting Diode (LED) technology have enabled a more affordable high frame rate
photoacoustic imaging (PA) alternative to traditional laser-based PA systems that are costly and have slow pulse
repetition rate. However, a major disadvantage with LEDs is the low energy outputs that do not produce high
signal-to-noise ratio (SNR) PA images. There have been recent advancements in integrating deep learning
methodologies aimed to address the challenge of improving SNR in LED-PA images, yet comprehensive evalu-
ations across varied datasets and architectures are lacking. In this study, we systematically assess the efficacy of
various Encoder-Decoder-based CNN architectures for enhancing SNR in real-time LED-based PA imaging.
Through experimentation with in vitro phantoms, ex vivo mouse organs, and in vivo tumors, we compare basic
convolutional autoencoder and U-Net architectures, explore hierarchical depth variations within U-Net, and
evaluate advanced variants of U-Net. Our findings reveal that while U-Net architectures generally exhibit
comparable performance, the Dense U-Net model shows promise in denoising different noise distributions in the
PA image. Notably, hierarchical depth variations did not significantly impact performance, emphasizing the
efficacy of the standard U-Net architecture for practical applications. Moreover, the study underscores the
importance of evaluating robustness to diverse noise distributions, with Dense U-Net and R2 U-Net demon-
strating resilience to Gaussian, salt and pepper, Poisson, and Speckle noise types. These insights inform the
selection of appropriate deep learning architectures based on application requirements and resource constraints,
contributing to advancements in PA imaging technology.

1. Introduction

Photoacoustic (PA) imaging, stemming from the pioneering work of
Bell [1], is a non-invasive and label-free technique that capitalizes on the
synergy between laser and ultrasound technologies, offering
high-resolution visualization of biological tissues with excellent optical
contrast. PA imaging holds immense promise for clinical applications,
such as in cancer theranostics [2–5], owing to its capability to probe
functional and physiological functions in the body at considerable tissue
depth [5–8]. Conventionally, PA imaging employs nanosecond pulse
laser systems irradiating tissues at specific wavelengths tailored to tissue
optical properties [9,10]. However, the traditional reliance on these
costly lasers, such as the Nd-YAG pumped optical parametric oscillator
lasers, has posed challenges regarding mobility and cost-effectiveness.
Recent strides have been made towards mitigating these limitations
with pulsed laser diode [11,12] or light emitting diode (LED)-based
illumination systems [13,14]. Specifically, in LED-based systems,

despite their advantages in terms of cost-effectiveness and portability,
LED arrays face constraints (~400 μJ) in delivering high fluence outputs
comparable to lasers (~40–100 mJ), necessitating compensatory stra-
tegies such as high frame averaging [15]. Moreover, the high number of
averages needed leads to prolonged acquisition times, impeding
real-time imaging crucial for understanding dynamic biological pro-
cesses in vivo.

Recent advances in PA imaging have witnessed a convergence with
deep learning methodologies. For example, numerous significant in-
vestigations, including recent reviews [16–19], in the realm of deep
learning applied to laser-based systems have addressed the challenge of
under-sampled data sparsity arising from a restricted number of de-
tectors. While various studies have showcased their findings using
numerically simulated data and in vitro phantoms [20–26], only a few
have ventured into testing their deep-learning models on in vivo pre-
clinical or clinical data. Moreover, in instances where in vivo data were
utilized, both the training and testing datasets were drawn from similar
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in-class samples (e.g., training and testing conducted on similar phan-
toms or in vivo vasculature datasets) [27–32]. This methodology ulti-
mately imposes constraints on the generalizability of the deep networks.
Furthermore, it is important to highlight that while most existing studies
focus on laser-based PA systems, which are known for their high
signal-to-noise ratio (SNR), LED-based PA imaging systems are often
underrated due to their lower SNR, despite offering the advantage of a
higher image acquisition speed. In our previous work, we demonstrated
that SNR in LED-PA imaging can be enhanced with
Encoder-Decoder-based Convolutional Neural Network (CNN), specif-
ically U-Net architecture. The network improved the quality of low
number of frame average (LA) images by transforming them to a dis-
tribution similar to that of high number of frame average (HA) images.
The performance was evaluated using no-reference image quality met-
rics, including SNR, Peak SNR (PSNR), and Contrast-to-Noise Ratio. We
also tested the architecture with out-of-class samples (Training data
captured from in vitro phantoms, and test data consisted of in vivomouse
tumor samples) in our previous study [33]. However, the spatial reso-
lution of this vanilla U-Net’s outcomes was not satisfactory, and it made
the images blurry and also struggled to remove Salt & Pepper (S&P)
noise.

In the U-Net-based models, the encoder part extracts feature from the
input image by progressively reducing its spatial dimensions while
increasing the number of feature maps. This process captures essential
patterns and structures in the image, which are crucial for distinguishing
noise from actual image content. The encoder captures broad contextual
information from the input image, which helps in distinguishing be-
tween noise and meaningful signal (Fig. S1, Contextual feature extrac-
tion) [34–37]. The decoder part reconstructs the denoised image from
the encoded features by progressively increasing the spatial dimensions
to produce a clean image that retains the important features extracted by
the encoder while removing the noise (Fig. S1, Detail reconstruction)
[34–37]. The skip connections, also known as feature map concatena-
tions (Fig. S1), help preserve spatial information lost during down-
sampling and make it easier for the decoder to reconstruct detailed and
accurate images [38,39]. The decoder, especially with the help of skip
connections, focuses on integrating local details back into the image.
This combination of global context and local details enables effective
denoising, as the model can suppress noise while preserving important
structures. The Encoder-Decoder architectures learn hierarchical rep-
resentations of the input data, allowing the model to understand and
process the image at multiple levels of abstraction [40] (Fig. S1,
Multi-scale feature extraction). This capability is particularly useful for
denoising, as noise can manifest at different scales and complexities.
Advanced versions of the encoder-decoder-based architecture are
needed to overcome the limitations of the original architecture, such as
insufficient feature representation, poor gradient flow in deep networks,
and lack of robustness to diverse noise types [41]. These limitations or
gaps in application can be overcome by incorporating enhancements
like deeper architectures, dense connections, and attention mechanisms
etc. that are efficient and scalable for various image processing tasks
[41,42]. These architectures can be tailored and fine-tuned for different
types of imaging conditions and noise distributions and thus were
adapted to work with medical images, natural scenes, and other domains
by training on relevant datasets [42–47].

There is another class of deep learning model, known as Generative
Adversarial Network (GAN) [48–50], which can produce highly realistic
images. However, it can also inadvertently introduce artifacts resem-
bling real structures [51–53], such as the spurious features like addi-
tional vessel-like patterns in PA imaging. These spurious features arise
because the generator overlearns certain features in an attempt to fool
the discriminator, leading to structures that resemble real vessels but are
not present in the original image. Moreover, GANs, including Pix2Pix,
sometimes suffer from mode collapse, where the generator produces
limited variations of patterns, instead of accurately capturing the di-
versity of the dataset [54–56]. This limitation often causes the generator

to replicate structures across different areas of an image, leading to ar-
tifacts that might look like duplicated anatomical features, such as
vessel-like shapes appearing in regions without actual vessels. Since
Pix2Pix relies heavily on the quality and diversity of paired training
data, any noise or bias in the dataset can lead to incorrect generaliza-
tions. For LED-based PA imaging, where signals are often faint and
susceptible to noise, the Pix2Pix GAN could misinterpret noise or faint
signals, resulting in spurious outputs. Also, the discriminator in Pix2Pix
is typically trained to classify between real and fake images at a global
level and may not enforce pixel-perfect accuracy. This lack of
fine-grained supervision can cause spurious artifacts to pass as realistic
data, as long as the overall image appears plausible to the discriminator.
Given these factors, careful validation is required when using Pix2Pix or
GAN networks for tasks where pixel accuracy and the absence of
spurious features are essential, making simpler models like U-Net and its
variants more reliable for denoising tasks where spatial fidelity is
crucial.

To date, no comprehensive study has compared various encoder-
decoder-based deep learning architectures on a unified test platform
to evaluate their effectiveness in enhancing the SNR on LED-based PA
images. Here, we first compared basic convolutional autoencoder and U-
Net architectures, discerning the impact of skip connections on image
quality metrics. Subsequently, we investigated the influence of hierar-
chical depth variations within the U-Net framework on SNR enhance-
ment. Next, we conducted a comparative analysis between the basic U-
Net model and several advanced versions of U-Net. We also investigated
whether introducing deeper layers or incorporating Attention, Dense,
Residual, and Recurrent modules lead to any significant SNR enhance-
ments for LED-based PA imaging. Lastly, the deep learning models
trained with one type of noise distribution (obtained from LED-based PA
system) were tested with datasets corrupted by different noise distri-
bution types, namely Gaussian, Salt and pepper (S&P), Poisson and
Speckle, to demonstrate noise type invariance of our networks. Overall,
our study underscores the significance of impartial comparison of
different encoder decoder-based deep learning architectures and em-
phasizes that simpler models, despite reduced denoising efficiency, are
more practical to use due to their reduced computational complexity.

2. Methodology

2.1. Imaging platform

We captured all the imaging data using AcousticX LED-based PA
system (Cyberdyne Inc, Japan). We used a linear array transducer with
center frequency of 7 MHz and a − 6 dB bandwidth of 80 %, comprising
128 elements. The illumination source consisted of LEDs emitting at a
wavelength of 850 nm, delivering 30 nanoseconds pulse width with a
pulse repetition frequency (PRF) of 4 kHz. The gain settings remained
consistent throughout the experiment, ranging from 60 to 67 dB
depending on whether in vitro or in vivo samples were examined. For
mouse biology models and metal phantoms, the dynamic range was
adjusted to 19 dB and 19–25 dB, respectively. High-frame rate acquisi-
tions occurred at 30 Hz, with data averaging over 128 image frames
(referred to as LA), while low frame rate acquisitions were conducted at
a rate of 0.15 Hz, resulting in images generated from 25,600 frames
(referred to as HA).

2.2. Deep learning coding platform

We performed all the computational tasks in our in-house processing
computer built with GeForce RTX 3060 12 GB GPU, Intel(R) Core(TM)
i7–11700 @ 2.5 GHz 8-Core processor, 64 GB CPU RAM. The deep
learning codes are written in Python 3.9 (Spyder 5.5.1), leveraging the
Keras 2.10.0 and TensorFlow 2.10.0 libraries for model implementation,
training, and testing. For calculating the time complexity of a model, we
used a custom callback function that captures the training time shown
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bymodel.fit() for each epoch. We considered either 10 or 30 as the epoch
values (mentioned in Table 1) based on the corresponding loss values.
Subsequent processing of the acquired beamformed images and imple-
menting the analysis of image quality metrics involved custom-coded
MATLAB (R2024a).

2.3. Datasets

Training data: Metal frames, wires of various shapes, and graphite
rods were utilized in two distinct setups, employing low and high frame
averaging for our training inputs and labels, respectively. Images
captured by the LED Acoustic-X system were cropped accordingly and
resized to 256 × 256 pixels. A total of 3200 snapshots of the objects
were gathered at different spatial positions and depths. The dynamic
range spanned from 19 to 25 dB, with the gain set at 64 dB.

Test data: Our test dataset is out-of-class data and comprised a
diverse array of samples, including metal phantoms assumed to be in-
class data distribution, ex vivo biological organs, and in vivo tumors in
mice classified as out-of-class distributed data. Ex vivo organ imaging
entailed capturing cross-sectional frames of the heart, lung, kidney, and
liver tissue from mice. In the in vivo experiments, nude mice were sub-
cutaneously injected with AsPC-1 human pancreatic cancer cells sus-
pended in a mixture of Matrigel (BD Bioscience) and phosphate-buffered
saline (1:1 v/v) as previously reported in [33]. Over a period of 55–60
days post-inoculation, the tumors were allowed to grow to a size of
approximately 300–400 mm3, exhibiting a heterogeneous microenvi-
ronment comprising both vascular and avascular regions.

Prior to imaging, the mice were anesthetized with 2 % isoflurane and
positioned on a specially designed platform submerged in a water bath,
with their heads elevated above the water level for safety. The isoflurane
concentration was then reduced to 1–1.5 % during the imaging pro-
cedure to maintain anesthesia. A total of 8 mice were included in the
study. The mice had subcutaneous tumors of diameter 9–15 mm.
Approximately 9–10 frames were captured at intervals of 1–2 mm for
each tumor. The experimental protocols adhered to the guidelines set by
The Institutional Animal Care and Use Committee of Tufts University.

Noise distribution details: To ensure noise distribution type invari-
ance of our U-Net architectures, we distorted the ground truth (high
number of frame average PA images) with the following types of noise:

• Gaussian white noise [57,58] constitutes an additive noise charac-
terized by a probability density function (PDF) that adheres to a
normal distribution with a variance which we assumed to be of
0.01–0.08 [59–61]. Mathematically, the PDF can be represented as:

P(g) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
2πσ2 • e

− g2
2σ2

√

, where g is the gray value, mean is 0, and σ is the
variance.

• S&P noise [62,63] is another sporadic impulse noise, and we
considered its distribution with a density of either 5 % or 10 % for
pixel destruction [64].

• Speckle noise [65] is a type of multiplicative noise with uniform
distribution having zero mean and 0.05 or 0.1 as variance [59–61].

• Poisson noise [66] distribution depends on the input data type where
the PDF for this noise type is given by P(N) = exp( − 〈N〉)〈N〉N

N! , where
N denotes the number of photons and 〈N〉 is the expectation of N
[59–61]. For practical implementation, the process depends on the
input pixel values are interpreted as means of Poisson distribution
with a scale-up factor of 1e12 if the datatype is double, 1e6 if the
datatype is single precision, and uint8 or uint16 datatype values are
directly used without scaling.

2.4. Deep learning architectures

Convolutional Auto-Encoder (Conv-AE):
We investigated a Conv-AE [67] architecture comprising four

downsampling (Maxpooling layer) and for corresponding up-sampling
layers (Conv2D-Transpose) each incorporating two stacks of conv2D
filters. The filter stacks initiate with 64 filters and increase by a factor of
2 with each subsequent layer (Fig. 1(a)).

Vanilla U-Net (UN):
We explored a U-Net architecture [68], consisting of an

encoder-decoder structure with skip connections, for our investigation.
The encoder portion comprises successive layers of Maxpooling, each
equipped with two stacks of conv2D filters starting from 64, with the
number doubling in subsequent layers. Conversely, the decoder section
involves upscaling operations to reconstruct the input image resolution
(Fig. 1(b)). In this study, we considered 1, 2 and 4 hierarchical layers of
UN.

U-Net++ (UN++):
We opted for a U-Net++ architecture [69], a variant of the tradi-

tional U-Net model, renowned for its enhanced feature extraction ca-
pabilities through a more intricate skip connection scheme. Similar to
the standard U-Net, the UN++ architecture comprises encoder and
decoder sections, but with additional skip connections at multiple
depths within each side of the network. The encoder portion in-
corporates successive layers of Maxpooling, with each layer containing
two stacks of conv2D filters starting from 64, progressively increasing in
number. Conversely, the decoder section utilizes upscaling operations to
reconstruct the input image resolution while leveraging the skip con-
nections for feature fusion (Fig. 1(c)).

Dense U-Net (Dense-UN):
In our study, we utilized a Dense UN architecture [28], which in-

tegrates Dense-Net blocks [70] into each hierarchical layer of the U-Net
model. This novel architecture enhances feature propagation and reuse
by establishing dense connections between layers within the network.
Each layer in the encoder and decoder sections incorporates Dense-Net
blocks, facilitating the direct flow of information from one layer to the
next. Similar to the standard U-Net, the encoder section employs suc-
cessive layers of Maxpooling, with each layer containing two stacks of
conv2D filters starting from 64 and progressively increasing.
Conversely, the decoder section utilizes upscaling operations to recon-
struct the input image resolution while leveraging the dense connections
for feature fusion (Fig. 1(d)).

Res U-Net (Res-UN) [71]:
We integrated Res-Net blocks [72] into each hierarchical layer of the

U-Net model. This architecture incorporates residual connections within
the network, facilitating the propagation of gradients and alleviating the
vanishing gradient problem during training. Each layer in both the
encoder and decoder sections contains Res-Net blocks, enabling the
direct flow of information across layers. The encoder section employs
successive layers of Maxpooling, with each layer containing two stacks
of conv2D filters starting from 64 and progressively increasing.

Table 1
Computational complexity (Training and Testing) of different CNN-based deep
learning architectures.

Networks # Params Training time(s) /
epoch

Test time
(ms)

Total
epoch

Conv AE 27,891,584 21 ± 1 19 10
UN - 1 layer 403,328 8 ± 1 19 10
UN - 2
layers

1861,504 14 ± 1 20 10

UN 31,025,024 27 ± 2 20 10
UN++ 36,158,083 30 ± 1 21 10
Dense-UN 38,961,027 48 ± 2 21 10
Res-UN 33,158,351 33 ± 2 21 30
Att-UN 37,334,803 37 ± 1 21 30
Att Res-UN 39,090,515 48 ± 3 22 30
R2-UN 176,175,362 130 ± 3 24 10
Double UN 3760,899 25 ± 1 19 10
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Conversely, the decoder section employs upscaling operations to
reconstruct the input image resolution while leveraging the residual
connections for feature fusion (Fig. 1(e)).

Attention U-Net (Att-UN):
We incorporated Attention blocks [73,74] before each concatenation

layer in the Upconvolution pathway of the U-Net model which is known
as Attention U-Net [75]. This architecture enables the network to
dynamically focus on informative regions of the feature maps. The
Attention blocks facilitate the learning of spatial dependencies between
feature maps, allowing the network to selectively emphasize relevant
features while suppressing irrelevant ones. We used four downsampling
and their corresponding upsampling hierarchical layers for our study
(Fig. 1(f)).

Attention Res U-Net (Att Res-UN):
Combining both the architectural constructs of Residual and Atten-

tion mechanism (Fig. 1(g)), we implemented a four-layered encoder-
decoder-based U-Net model, named as Attention Res-U-Net [76]. Re-
sidual connections within each convolutional block of both the encoder
and decoder enhance gradient flow, feature propagation, and training
speed by allowing the gradient to bypass certain layers, facilitating the
training of deeper models, and enabling the network to learn more

complex features. Attention mechanisms, specifically attention gates,
are integrated into the skip connections to dynamically focus on the
most relevant parts of the input image, suppressing irrelevant features
and highlighting salient ones.

R2 U-Net (R2-UN):
We considered Recurrent Residual (R2) blocks at each layer of the U-

Net model, known as R2-UN [77]. This architecture (Fig. 1(h)) combines
the benefits of recurrent and residual connections to enhance the
model’s ability to capture temporal dependencies and preserve spatial
information throughout the network. The R2 blocks introduce recurrent
connections within each layer, allowing the network to iteratively refine
feature representations by incorporating information from previous
time steps. Additionally, residual connections are employed to facilitate
the flow of gradients during training, mitigating the vanishing gradient
problem and enabling more efficient optimization.

Double U-Net (Double UN):
We also considered a Double U-Net architecture [78], which involves

connecting two U-Net models, each comprising two hierarchical U-Net
networks. The Double U-Net architecture consists of two interconnected
pathways, with each pathway comprising an encoder-decoder structure
resembling a standard U-Net (Fig. 1(i)). The first pathway serves as the

Fig. 1. Different CNN-based deep learning architectures - Convolution block: conv - BN - ReLU - conv - BN - ReLU - Dropout (if enabled); Residual block: conv - BN -
ReLU - conv - BN - shortcut - BN – shortcut + BN – ReLU; Dense block: Convolution block1 - concatenate(Input, Convolution block1) - Convolution block2 -
concatenate(Input, Convolution block1, 2) - Convolution block3 - concatenate(Input, Convolution block1, 2, 3) - Convolution block4 - concatenate(Input, Convo-
lution block1, 2, 3, 4); Where, Conv: Convolution; BN: Batch Normalization; ReLU: Activation.
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primary U-Net, responsible for extracting high-level features and
generating initial predictions. Simultaneously, the second pathway,
acting as the secondary U-Net, refines the predictions made by the pri-
mary pathway by incorporating additional contextual information and
fine-grained details from intermediate feature maps. To optimize the
network’s performance, we employed the Adam solver [79] with an
initial learning rate set to 1e− 4, coupled with Mean Squared Error (MSE)
loss function [80] for all the networks.

In our application to denoise PA images and improve SNR, it is
important to facilitate superior feature learning and preservation of fine
image details. As both denoising and segmentation rely on accurate
feature extraction, we leveraged observations from a recent demon-
stration of various U-Net architectures to segment Optical Coherence
Tomography images [42]. Though the U-Net variants mentioned above
have demonstrated comparable (no statistically significant differences)
performance in segmenting, we believe the architectural features pro-
vided by the advanced U-Nets will outperform the UN architecture,
particularly in improving SNR of images corrupted with various distri-
butions and levels of noise. Amongst the various U-Net architectures,
Dense-UN and R2-UN might outperform other U-Net variants in
denoising due to their advanced architectural features that enhance
feature learning and detail preservation [81–84]. Dense-UN utilizes
DenseNet blocks in both the encoder and decoder, allowing each layer to
receive input from all preceding layers within the same block [83,84].
This continuous flow of information promotes efficient feature reuse,
ensuring that fine details are preserved and preventing information
degradation that can lead to blurring. The dense connections also
improve gradient flow, which helps the network learn effectively, even
in deeper layers, leading to more precise reconstructions [85–87]. On
the other hand, R2-UN incorporates recurrent residual connections that
iteratively refine feature representations [88–90]. This recurrent
mechanism allows the network to repeatedly enhance its output,
reducing blurring and smudging. The residual connections help retain
essential input information while focusing on learning the differences
between the input and the target, which helps maintain sharp features.
Together, these features might make Dense-UN and R2-UN more robust
to noise, improving their ability to generalize across different datasets
and resulting in superior denoising performance compared to other
U-Net variants.

2.5. Image quality metrics

To check the quality of the deep learning model-generated outcomes,
we used two full reference image quality metrics which are generally
believed to be critical parameters in the assessment.

PSNR: PSNR is a full reference quality metric [91,92] measured in dB
scale which is a ratio signal and MSE into account and is expressed in
logarithmic terms because signals sometimes might have a dynamic
wide range. PSNR is defined as

PSNR = 20 • log10
(
MAXI̅̅̅̅̅̅̅
MSE

√

)

, where MAXI is the maximum possible

pixel value of image I.
SSIM: Structural similarity index (SSIM) [93,94] is another full

reference image quality metric ranging between 0 and 1 which measures
the amount of distortion in a reconstructed image compared to the
ground truth. SSIM is defined as

SSIM(A,B) =
(2μAμB+c1)(2σAB+c2)

(μ2A+μ2B+c1)(σ2A+σ2B+c2)
, where μA is the sample mean of

A, σ2A is the variance ofA, σAB covariance ofA& B, and c1 ([k1L]2) and c2
([k2L]2) are determined based on k1 and k2 which are set as 0.01 and
0.03, respectively, and L is the dynamic range.

3. Results and Discussions

3.1. Computational complexity

Table 1 provides insights into the complexity and computational
efficiency of various neural network architectures based on their num-
ber of parameters, training time per epoch (300 as the steps per epoch),
test time and total epochs. The computational time was calculated using
TensorFlow Core’s fit() function (model.fit(data_set_details,
steps_per_epoch=300,epochs=10,call-

backs=model_checkpoint)). We used data generator (tf.data.Dat
aset) to load our training data in batches. The parameter ‘step-
s_per_epoch’ informed the model how many batches it should process
before considering one epoch complete. Our models consider one epoch
to be completed after processing 11 (3200/300) batches. Among the
architectures evaluated, the Convolutional AE exhibits a moderate
parameter count (27,891,584) and a shorter running time (21
± 1 seconds) compared to the UN architecture with 4 layers that ex-
hibits a moderate number of parameters (31,025,024) and a relatively
short running time per epoch (27 ± 2 seconds). In comparison, the
UN++ architecture, despite having a slightly higher parameter count
(36,158,083), demonstrates a comparable running time (30
± 1 seconds). Conversely, the Dense-UN architecture, with a higher
parameter count (38,961,027), requires a significantly longer running
time per epoch (48 ± 2 seconds), indicating increased computational
complexity. Similarly, the Res-UN and Att-UN architectures show vari-
ations in parameter count and running time, with the former having
slightly fewer parameters (33,158,351) and a shorter running time (33
± 2 seconds) compared to the latter (37,334,803 parameters, 37
± 1 seconds). The Att Res-UN architecture exhibits a higher parameter
count (39,090,515) and a longer running time (48 ± 3 seconds) than
both the Res-UN and Att-UN models. In contrast, the R2-UN architecture
stands out with a significantly larger parameter count (176,175,362)
and substantially longer running time (130 ± 3 seconds), indicating
significantly higher computational demands. The Double UN architec-
ture, composed of two layers each, demonstrates relatively low param-
eter count (3760,899) and a moderate running time (25 ± 1 seconds).
Regarding training time performance, we found that among UN-4 layer,
R2-UN, and Dense-UN, the UN-4 layer is the quickest to train,
completing in 27 ± 2 seconds. Dense-UN requires 48 ± 2 seconds, while
R2-UN takes the longest training time at 130 ± 3 seconds. We have also
included the test times (per image) for all networks in Table 1. The test
times were calculated using TensorFlow Core’s predict_generator()
function (model.predict_generator(test dataset, number of
data, verbose=1)). The results show that there is negligible differ-
ence in running time (test) among these networks. From these results,
we can infer that the deep learning networks are capable of real-time
denoising.

3.2. Importance of skip connection and layer depth in encode-decoder
architectures

We conducted a comparison between Conv-AE and U-Net, both
comprising 4 hierarchical layers, focusing on the significance of skip
connections, as illustrated in Fig. 2. Our evaluation involved testing both
deep learning architectures using in vitro phantoms, ex vivo mouse or-
gans, and in vivo subcutaneous mouse tumors, as depicted in the
respective columns in the left part of Fig. 2. First three rows and the last
row of the Fig. displayed outcomes for LA (Fig. 2(a-c)), HA (Fig. 2(d-f)),
Conv-AE (Fig. 2(g-i)), and UN with 4 layers (Fig. 2(p-r)), respectively.
Specifically, the first column showcased a sample of a graphite rod
embedded in a gelatin block representing in vitro phantoms, the second
column displayed a cross-section of a mouse liver representing ex vivo
organs, and the third column depicted a sample cross-section of in vivo
subcutaneous mouse tumors. Our next focus was on examining the
importance of hierarchical depth concerning downsampling in the UN
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architecture. We analyzed UN models with a depth of 1 layer, 2 layers,
and 4 layers, displaying their respective results in Fig. 2(j-l), (m-o), and
(p-r). We utilized the same three test datasets to evaluate the network
depths. We presented the respective ultrasound (US) images in Fig. 2(s-
u) and the co-registered US and PA images to demonstrate alignment of
US morphology with the PA functional information. Fig. 2(y) and (z)
depict box plots illustrating the PSNR and SSIM comparisons, respec-
tively, among Conv-AE, and three UNs with varying hierarchical layers
across three test scenarios: in vitro, ex vivo, and in vivo.

The architecture of UN closely resembles that of the Convolutional
Autoencoder, with the key distinction of including the skip residual
connections from encoder to decoder pathways at each layer. Therefore,
when assessing the denoising capabilities of both networks across
various test image distributions, the superior performance of UN in
terms of PSNR and SSIM (Fig. 2) underscores the importance of these
skip connections. Skip connections enable the direct flow of information
from the encoder to the decoder layers. This might have helped in pre-
serving fine-grained spatial details that might otherwise get lost during

the downsampling process. The skip connections also facilitated feature
reuse, enabling the model to leverage both low-level and high-level
features for better performance. These shortcut residual connections
also helped alleviate the probable vanishing gradient problem in the
Conv-AE network by providing additional paths for gradients to flow
backward through the network [95,96]. The residual connections also
helped the network handle variations in the input data more effectively
and allowed the network to access both abstract features and detailed
features simultaneously. Our findings (Fig. 2 last three rows on the left
side) regarding the importance of hierarchical depth in the UN archi-
tecture with 1, 2, and 4 layers indicate that increasing the hierarchical
depth of the UN did not yield significant improvements in performance.
Despite the additional layers, the higher-depth UN variants did not
exhibit a considerable enhancement in image quality metrics, as illus-
trated by the PSNR and SSIM comparisons depicted in Fig. 2(y) and (z).
Noise in images is typically a local phenomenon. Hence, effective
denoising was achieved by capturing and reconstructing local features,
which did not necessarily require very deep networks. Note that the

Fig. 2. (a-r) Comparative analysis of Conv-AE and U-Net architectures with emphasis on skip connections and depth, evaluated across in vitro phantoms (First
column), ex vivo mouse organs (2nd column), and in vivo subcutaneous mouse tumors (last column). (s-u) Ultrasound images of in vitro, ex vivo and in vivo objects. (v-
x) The corresponding co-registered US+PA images include HA PA images in the foreground with US image in the background shown in gray scale. Additionally, box
plots illustrate (y) PSNR and (z) SSIM comparisons across architectures and test scenarios (1st column – In vitro samples, 2nd column – Ex vivo tissue, and last column –
In vivo tumor tissue). (*: p < 0.05).
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standard UN consistently performed well across all the test scenarios.
However, considering that the inference time for all network depths was
not significantly different (in the order of ~ 0.05± 0.01s for all of them),
the standard UN emerges as a practical and effective solution. Addi-
tionally, we also trained the UNs with different depth layers using
smaller number of datasets (200, 500, and 1000) whose quantitative
outcomes are shown in supplementary Fig. S2 and table ST1. We found
no statistically significant difference among the networks’ performance
with respect to the two image quality metrics. One of the plausible
reasons for such high performances of the networks even with smaller
number of datasets might be the advantage of over-parameterized ar-
chitectures where the training and test loss both reduce for the second
time after the initial increment of test error, traditionally known as
bias-variance trade-off [97–102]. These results underscore the impor-
tance of carefully evaluating the hierarchical depth of neural network
architectures to ensure optimal performance and efficiency in real-world
applications. While depth can enhance the performance of U-Nets for
tasks requiring complex feature hierarchies and high-level abstractions,
it does not significantly impact the effectiveness of denoising tasks
because denoising relies on capturing and reconstructing local, low-level
features, which might sometimes be achieved with shallower
architectures.

3.3. Evaluation of different deep learning architectures

In this segment, we examined all the U-Net variations on in vitro
phantoms. Fig. 3 illustrates the performance evaluation of these

architectures in the first and third rows, while the zoomed-in view of the
spatial reconstruction, highlighted by the green box, is presented in the
second and fourth rows. As an example, we showcase the outcomes for a
cross-section of the gelatin-embedded graphite rod phantom. In the
zoomed-in section of Fig. 3(b), the white arrow highlights that the signal
is preserved by the UN, Dense-UN, Res-UN, and R2-UN models while
others were not able to do so. However, it is also evident that there is a
degree of smudging or blurring around the yellow-dashed elliptical area
in the results produced by all these networks, except for the Dense-UN
and R2-UN models which reduce this degradation effect.

In the case of ex vivo mouse organs, Fig. 4(a-k) in the left half illus-
trates the comparative performance of all U-Net variants in the first and
third rows. The second and fourth rows feature a zoomed-in view of the
spatial reconstruction within the green boxed region for clearer obser-
vation. We opted to display a cross-section of a mouse liver for illus-
tration purposes. On the right side, Fig. 4(l-u) presents identical scenario
as Fig. 3 and Fig. 4(a-k), with the distinction that the test data pertains to
a cross-section of an in vivomouse subcutaneous tumor. For each type of
test dataset, box plots were created to evaluate the performance of
various U-Net variants focusing on the two metrics: PSNR and SSIM.
These box plots, presented in Fig. 5(a) and (b) respectively, provide a
visual representation of the distribution of PSNR and SSIM values for
each model across different datasets. For the ex vivo organ, Res-UN was
noted to over-saturate the outcome (Fig. 4g) as it amplified specific
features and intensities. Conversely, for other outputs (Fig. 3g, and
Fig. 4r), the network managed to balance the feature intensities
appropriately, preventing the oversaturation.

Fig. 3. Showcasing SNR improvement for various U-Net variations on in vitro gelatin-embedded graphite rod phantom. First and third rows depict denoised images of
the phantom by corresponding architectures; Second and fourth rows offer a zoomed-in view of spatial reconstruction, enclosed by the green box.
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The results (Fig. 5, Fig. S3 and Table ST2) revealed that Dense-UN
exhibited superior performance (better preservation of spatial struc-
ture and resolution) among all network variants, closely followed by R2-
UN and UN-4 layers. Table ST2 represents the quantitative performance
of different deep learning architectures summarizing the mean and
standard deviation of PSNR and SSIM values for all types of test datasets.
Similar data is also represented as percentage improvement of the image
quality metrics of the U-Net variants’ outcomes relative to LA images in
Fig. S3. The differences in the metric values between various U-Net ar-
chitectures are not statistically significant for both percentage change
and absolute quantitative values of PSNR and SSIM. Notably, the
improvement in SSIM was more pronounced compared to the
improvement in PSNR, with the scale of SSIM enhancement being more
substantial. Interestingly, the increase in network complexity did not
result in significant performance improvements, suggesting diminishing
returns with higher complexity. Moreover, the introduction of an
Attention module in UN-4 layers did not lead to substantial performance
gains but inevitably increased network complexity. Adding more skip
connections or Attention mechanisms to a U-Net does not automatically
guarantee better denoising performance. Issues such as overloading the
decoder with redundant information, diluting high-level contextual
features, and potential reinforcement of noise due to the addition of
extra skip connections can all contribute to the lack of improvement
[103,104]. On the other hand, noise confounding attention and task
specificity of the Attention process might inherently limit its denoising
capability [105]. More skip connections might also cause the model to
prioritize low-level features (such as textures and edges) over high-level
contextual features, which are crucial for effective denoising [106]. This
can result in suboptimal denoising where the model focuses too much on
reconstructing fine details and textures that might include noise, rather
than leveraging broader context to remove noise. While attention
mechanisms are powerful for tasks like segmentation or classification,
they might not be inherently well-suited for denoising tasks.

Notably, R2-UN demonstrated slightly better results than UN, and
Dense-UN performed better denoising than R2-UN, re-highlighting the
significance of skip connections in improving denoising performance.
The incorporation of R2 blocks enabled the network to leverage both
short-term and long-term temporal dependencies in the input data,

enhancing its ability to model complex relationships and patterns. By
integrating R2 blocks into the UN architecture, our objective was to
exploit their synergistic effects to improve feature learning and repre-
sentation, thereby enhancing the model’s performance in tasks such as
image denoising and reconstruction. By capturing contextual de-
pendencies, R2-UN achieved better performance in denoising, where
understanding the context around each pixel was important. Residual
connections also promoted feature reuse, making it easier for the
network to learn and utilize complex patterns without requiring an
excessively deep architecture. Overall, the combination of residual and
recurrent layers enhances the network’s robustness to noise and varia-
tions in the input data, improving its generalization capabilities across
different datasets. For the Dense-UN architecture, each layer in the
encoder and decoder sections incorporates Dense-Net blocks, facilitating
the direct flow of information from one layer to the immediate next. This
enabled efficient feature reuse and enhanced gradient flow throughout
the network by ensuring that each layer receives the feature maps from
all preceding layers within the same dense block. By concatenating
feature maps from all previous layers, Dense-UN ensures that informa-
tion flowed effectively throughout the network and this continuous flow
of information helped the network maintain a comprehensive under-
standing of the input data. Each layer in Dense-UN had direct access to
the gradients and features from all preceding layers, allowing it to learn
a diverse set of features. The dense connections also had a regularizing
effect, which helped prevent overfitting. This enhanced the network’s
ability to generalize well to new, unseen data. Hence, Dense-UN resulted
in somewhat best outcomes (if not statistically significant) with
enhanced feature reuse, improved gradient flow, parameter efficiency,
and strong generalization.

Additionally, we observed for a few scenarios (Fig. 5, in vitro and ex
vivo) that the standard deviation of Dense-UN is higher compared to
many other networks. The higher standard deviation in PSNR values for
Dense UN, despite its higher mean, could be attributed to the network’s
sensitivity to certain image features or noise characteristics that cause
greater variability in reconstruction quality across different samples [36,
107]. PSNR, which measures the ratio between the maximum possible
power of a signal and the power of corrupting noise, is highly sensitive to
even small differences in pixel intensity, especially in areas with high

Fig. 4. (a-k) Depicting SNR improvement for various U-Net variations on ex vivo gelatin-embedded mouse liver. First and third rows depict denoised images of the
phantom by corresponding architectures; Second and fourth rows offer a zoomed-in view of spatial reconstruction, enclosed by the green box. (l-u) Snapshot of SNR
improvement for various U-Net variations on in vivo mouse subcutaneous tumor. First and third rows depict denoised images of the phantom by corresponding
architectures; Second and fourth rows offer a zoomed-in view of spatial reconstruction, enclosed by the green box.
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contrast or sharp edges. Dense-UN’s complex architecture, which in-
volves dense connections and deeper layers, may lead to better overall
denoising performance (hence the higher mean PSNR) but also in-
troduces variability in how it handles noise distribution characteristics
or image structures, leading to a higher standard deviation. In contrast,
SSIM measures structural similarity by focusing on changes in structural
information, luminance, and contrast, making it more robust to small
pixel-level variations that might significantly impact PSNR. Dense-UN’s
ability to effectively preserve and reconstruct the overall structure of
images likely results in both higher mean SSIM values and lower or
similar standard deviations. The network’s architecture is likely more
consistent in maintaining structural integrity across different images,
leading to less variability in SSIM compared to PSNR.

Another aspect to be noted on the Dense-UN and R2-UN architec-
tures is their ability to avoid blurring of the PA images. In the case of
Dense-UN architecture, due to the dense connection’s feature reuse
property, low-level features can be directly passed through the network,
enhancing fine detail preservation, and learning of diverse features
without unnecessary redundancy [85–87]. By continuously passing
fine-grained details throughout the network, Dense-UN reduces the risk
of information degradation that could lead to blurring. The dense

connections help ensure that the decoder has access to detailed,
high-resolution features that are crucial for reconstructing sharp images.
Also, the improvement of gradient flow during training mitigated van-
ishing gradients ensuring the deeper layers in the network to learn
effectively. The better training dynamics contributed to a more precise
reconstruction of image details, thus reducing smudging in the
Dense-UN images. In the case of R2-UN architecture, the incorporation
of recurrent residual connections refined feature representations itera-
tively, improving the network’s ability to correctly capture fine details
[88–90]. The recurrent mechanism allows the network to reconsider and
enhance its output multiple times, reducing the likelihood of blurring
and smudging. The residual connections in R2-UN helped in retaining
the original input’s information while focusing on learning the residuals
(differences) between the input and the target. By focusing on the re-
siduals, R2-UN maintained sharp features and preventing the loss of
details that can lead to smudging or blurring.

3.4. Noise invariancy test for top performing deep learning networks

We assessed the robustness of the top-performing network to various
types of noise distributions, including Gaussian, S&P, among others. Our

Fig. 5. Statistical evaluation of SNR improvement and structural preservation for reconstructed images by various U-Net variations on in vitro, ex vivo, and in vivo test
dataset. Comparing image quality metrics (a-c) PSNR (e-g) SSIM for different network’s performance. All the comparisons are done with respect to the 4-layered UN’s
performance. (*: p < 0.05). Non-significant statistics are not represented in the graphs. Tabulated values are shown in Table ST2.
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comparative analysis included the UN, Dense-UN, and R2-UN deep
learning frameworks. As depicted in the first column of Fig. 6, the top
row presents an image corrupted with Gaussian white noise (variance =
0.01), while the second row displays an image corrupted with S&P noise
(5 %-pixel destruction). The B-scan PA images shown in Fig. 6 are spe-
cifically from a subcutaneous mouse tumor. Subsequent columns illus-
trate respective outcomes generated by the UN, Dense-UN, and R2-UN
architectures. The last row of Fig. 6 presents comprehensive PSNR and
SSIM comparison for images reconstructed by the networks when sub-
jected to Gaussian (Fig. 6i and k) and S&P (Fig. 6j and l) noise corrup-
tion. The results revealed that while the UN efficiently removed
Gaussian white noise, it struggled to address S&P noise types effectively.
In contrast, Dense-UN and R2-UN exhibited robustness in denoising both
types of noise. Dense-UN tends to overfit less, which improves its
generalization to unseen noise patterns. The integration of more residual
and recurrent connections within the convolution blocks of R2-UN
might have enhanced the model’s resilience and versatility in
handling multiple noise distributions. Its ability to integrate contextual
information across iterations helped in understanding the structure of
noise and signal. Overall, dense connections in Dense-UN ensure rich
feature reuse andmulti-scale information capture, while R2 layers in R2-
UN enable iterative refinement and better gradient flow. These char-
acteristics collectively contributed to their strong denoising capabilities
and invariance to different types of noise.

Tables 2 and 3 summarize the performance of our networks on four
different types of noise distributions with varying noise parameters
based on the two image quality metrics. Specifically, removal of

Gaussian, S&P, Speckle and Poisson noise is reported. In agreement with
the images in Fig. 6, the results in the Tables 2, 3, and Fig. S4 clearly
demonstrated that the three DL networks—UN-4 layer, Dense-UN, and
R2-UN—exhibited robustness across most noise distributions. However,
all three networks showed a notable exception in their performance with
S&P noise. Specifically, the UN-4 layer network struggled significantly
when exposed to S&P noise (mean SSIM value is significantly less for

Fig. 6. Evaluation of noise invariancy for top-performing deep learning networks: (a) and (e): showcase images corrupted with Gaussian white noise (variance =

0.01) and S&P noise, derived from a subcutaneous mouse tumor cross-section. The outcomes produced by (b) and (f): UN, (c) and (g): Dense-UN, and (d) and (h): R2-
UN architectures demonstrate their robustness to various noise distributions. Last row: PSNR comparison for the networks’ reconstructed images whose input was
corrupted by (i) Gaussian and (j) S&P noise. SSIM for networks’ outcomes whose input was adulterated by (k) Gaussian and (l) S&P noise. (#: p < 0.001, ns:
Not Significant).

Table 2
PSNR metric values for UN-4 layer, Dense-UN and R2-UN networks concerning
different noise distribution types with certain parameters – Gaussian, S&P,
Speckle and Poisson.

Noise
type

Noise Details UN-4 layer Dense-UN R2-UN

Gaussian σ2 = 0.01 29.59±2.203 32.12±0.991 31.43±1.171
σ2 = 0.02 29.37±0.875 31.94± 1.179 31.08±1.108
σ2 = 0.04 28.54±1.737 30.95±1.695 30.59±1.402
σ2 = 0.08 27.41± 2.199 30.48± 2.333 29.41± 2.095

S&P Pixel
destruction

= 5 %

29.53± 2.091 32.08± 1.59 30.73± 1.753

Pixel
destruction
= 10 %

27.54± 1.71 31.79± 1.116 30.45± 1.335

Speckle σ2 = 0.05 31.45± 1.349 32.38± 0.894 31.26± 1.892
σ2 = 0.1 30.47± 1.91 32.07± 1.829 30.61± 1.489

Poisson P(N) = exp( −

〈N〉)
〈N〉N

N!

30.97± 1.081 32.34± 1.461 31.35± 1.346
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UN-4 layer in Table 3 and Fig. S4), involving 5 %- and 10 %-pixel cor-
ruption, where a considerable portion of the image pixels were
randomly altered. This led to a marked degradation in the network’s
ability to recover the original image, highlighting its vulnerability to this
type of noise. In contrast, the Dense-UN and R2-UN networks displayed
robust performance across all tested noise distributions, including the
challenging S&P noise scenarios.

We further evaluated our best performing networks (UN-4 layer,
Dense-UN, and R2-UN) ability to denoise images obtained with frame
averages less than 128 frames. The lowest frame average data available
on Acoustic-X LED system is 128 frames with 4 kHz PRF setting. To
obtain lower frame averages, we lowered the PRF to 1 kHz to achieve
32- and 64-frame averages. Fig. 7 illustrates the outcomes of the net-
works on PA images obtained using three phantoms - tree branches, lead
pieces, and metal screws. All the three networks had statistically sig-
nificant higher PSNR and SSIM values compared to the 64-frame
average inputs. Specifically in the 32-frame averaging images, residual
noise in the outputs caused lower SSIM values, leading to non-significant
SSIM improvements for UN-4 layer and R2-UN compared to the inputs
(Fig. 7d, e, f, and Table ST3). Overall, Dense-UN still achieved signifi-
cantly higher SSIM values and outperformed the other two models in the
32- and 64-frame average cases (Fig. 7d, e, f, and Table ST3). As frame
averaging increased, image quality improvements plateaued, with all
networks converging to similar performance, consistent with our pre-
vious findings.

Assessing the performance of deep learning networks under various
noise conditions is crucial for evaluating their robustness in real-world
scenarios, where imaging may be constrained to different (and some-
times unknown beforehand) noise sources. Understanding a model’s
ability to generalize across diverse noise distributions provides valuable
insights into its applicability and informs decisions regarding its
deployment and potential enhancements. By evaluating how well a
model performs in unseen, real-world situations, researchers, and
practitioners can make informed choices about the suitability of the
model for real-life applications and identify areas for further refinement.
This understanding of a deep learning model’s robustness to different
noise distributions is essential for ensuring the effectiveness and reli-
ability in real-world settings. Higher PSNR values across all datasets
indicates that the networks, particularly Dense-UN, are capable of
learning to denoise effectively, even in scenarios where the noise level
exceeds that present in the training data. However, the SSIM perfor-
mance was more variable, especially for the 32-frame averaging case,
where the increased noise led to reduced structural similarity in the
outputs. While both UN-4 layer and R2-UN failed to show significant
SSIM improvements in this condition, Dense-UN maintained a statisti-
cally higher SSIM, likely due to its superior ability to preserve fine
structural details. This advantage can be attributed to Dense-UN’s dense

connections, which facilitate better feature propagation and reuse,
allowing the network to retain more contextual information about the
image structure despite higher noise levels. Additionally, Dense-UN’s
richer representation of features makes it more robust to varying noise
levels, as it can model both local and global patterns in the noisy data.
R2-UN, with its recurrent connections, adds some advantage in handling
repetitive structures, but it doesn’t provide the same level of feature
diversity as Dense-UN. The dense connections allow Dense-UN to learn a
more diverse set of features across different scales and levels of
abstraction. This makes it more adaptable to different levels of noise and
variations in noise distribution, giving it a higher capacity to generalize
under conditions that deviate significantly from the training data. The
quality improvement performance converging across models suggests
that once the noise level becomes sufficiently low, the advantages of
more complex architectures like Dense-UN are less pronounced, as all
models can adequately handle the remaining noise.

In addition to U-Net architectures, complex architectures such as
GANs and Diffusion models are powerful and have been used in various
image processing applications [49,50,108–116]. However, they can
inadvertently introduce artifacts, such as spurious vessel-like patterns in
PA imaging. These artifacts mainly arise because the GAN generator
often emphasizes learned features to fool the discriminator, potentially
creating patterns unrelated to the actual content. Issues like mode
collapse and reliance on training data quality can further amplify this
effect, leading to repetitive or incorrect structures in the output,
particularly in noisy or low-signal environments like LED-based PA
imaging [55,56,117]. Moreover, the specific requirements needed for
enhancing SNR in LED-PA imaging, such as training stability, inter-
pretability, task specificity, data requirements and computational
complexity, also make U-Net variants more appropriate choice and we
discuss each of these aspects in detail as below:

Training Stability and Interpretability: U-Net has been widely recog-
nized as one of the most effective and interpretable architectures for
various biomedical imaging tasks, including segmentation, denoising,
and enhancement [118]. Advanced and complex GAN-based architec-
tures face challenges associated with training, particularly in achieving
a stable balance between the generator and discriminator [119]. This
might lead to issues like mode collapse or unstable convergence, which
require careful tuning and more computational resources. Diffusion
models also involve complex stochastic processes that can make it
harder to interpret and predict, especially in a clinical context where
understanding the model’s decisions is crucial. In contrast, U-Net is
more straightforward architecture to implement and train, providing a
more stable and reliable approach [120–126].

Specificity to the Task: U-Net based architectures are well-suited for
capturing fine-grained details at multiple scales [127–130], which is
essential in tasks like LED-PA imaging where preserving spatial resolu-
tion and structural information is crucial and particularly well-suited for
our SNR improvement task. While GANs excel in generating realistic
images, they may introduce artifacts or lose detail in high-precision
tasks where exactness is more important than realism [131–133].

Data Requirements and Computational Efficiency: The advanced
learning networks such as GAN or Diffusion models generally require
large amounts of data to train effectively [134–138], require more re-
sources for both training and inference [139–143] to produce
high-quality results compared to the U-Net variants. In the context of
LED-PA imaging, data availability is limited, making U-Net architectures
a more practical choice. For example, we demonstrated that even with
low number of training samples, all variants of U-Net provided satis-
factory PSNR and SSIM (Fig. S2), which is due to its efficient use of
convolutional layers and skip connections that retained the detailed
information.

Our findings revealed consistent denoising performance even with a
reduced number of datasets (Table ST1). This could potentially be due to
overparameterization, and our future work will involve understanding
the underlying mechanisms, particularly the potential impact of over-

Table 3
SSIM metric values for UN-4 layer, Dense-UN and R2-UN networks concerning
different noise distribution types with certain parameters – Gaussian, S&P,
Speckle and Poisson.

Noise
type

Noise Details UN-4 layer Dense-UN R2-UN

Gaussian σ2 = 0.01 0.76±0.035 0.83±0.019 0.80±0.015
σ2 = 0.02 0.75±0.036 0.82± 0.034 0.78± 0.039
σ2 = 0.04 0.72± 0.026 0.80± 0.028 0.76± 0.035
σ2 = 0.08 0.69± 0.028 0.79± 0.029 0.74± 0.033

S&P Pixel destruction
= 5 %

0.60± 0.020 0.81± 0.018 0.80± 0.021

Pixel destruction
= 10 %

0.51± 0.039 0.80± 0.03 0.77± 0.037

Speckle σ2 = 0.05 0.77± 0.033 0.84± 0.03 0.80± 0.031
σ2 = 0.1 0.74± 0.033 0.83± 0.027 0.78± 0.036

Poisson P(N) = exp( −

〈N〉)
〈N〉N

N!

0.76± 0.015 0.83± 0.023 0.78± 0.035
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parameterization and the role of data augmentation techniques. Addi-
tionally, our future studies will also involve a comprehensive evaluation
of U-Net, Dense-UN, and R2-UN networks’ robustness to noise, incor-
porating theoretical frameworks and rigorous statistical methods. We
will create advanced synthetic noise models tailored specifically to LED-
based PA imaging, using these models to simulate noise-augmented
training data which will lead to more robust networks capable of
handling various real-world noise conditions. To enhance the perfor-
mance of the networks, we also aim to refine their architectures by
integrating attention mechanisms or recurrent blocks with Dense net-
works, potentially combining the strengths of these approaches for su-
perior denoising capabilities. With recent advances in Vision
Transformers and hybrid CNN-Transformer models [144–148],
exploring these architectures in PA imaging could provide new insights

into handling complex spatial dependencies and improving noise
reduction in challenging low-SNR settings. Furthermore, a detailed
exploration of the interpretability and explainability of these networks is
essential. This would involve a mathematical analysis of how individual
architectural components impact denoising performance, providing in-
sights into the specific contributions of different network features. To
make denoising models more transparent, future research will also focus
on explainability techniques such as Grad-CAM or saliency mapping to
identify which features and structures are prioritized by the model
[149–152]. This would provide insights into how models differentiate
between noise and meaningful signal. Finally, our future work will
involve evaluating the platform independence nature of the networks on
data obtained from photoacoustic imaging systems with various con-
figurations (laser based, laser diode based, microscopy and tomography

Fig. 7. Noise invariance testing of deep learning networks across varying noise levels and frame averaging - Noise-level invariance was evaluated using three
phantom datasets: (a)tree branches, (b) lead pieces, and (c) metal screws. (d, e, f) Across all frame averaging cases, deep learning networks (UN-4 layer, R2-UN, and
Dense-UN) demonstrated significantly higher PSNR values than their corresponding inputs. For 32-frame averaging, the residual noise in outputs led to non-
significant SSIM improvements for UN-4 layer and R2-UN, but Dense-UN achieved significantly higher SSIM values. As frame averaging increased, image quality
improvements plateaued, and the networks converged to similar performance observed in (f).
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systems etc.).
In summary, our findings underscore the importance of selecting the

appropriate deep learning architecture based on specific application
requirements, training time, performance and resource constraints. Our
analysis indicates a trade-off between these parameters simpler models
are more computationally efficient, but advanced models like Dense-UN
and R2-UN offer potentially better performance at the cost of higher
complexity. While Dense-UN may be preferable for high-end resource-
rich system environments, UN still remains a viable option for resource-
constrained environments, delivering satisfactory denoising perfor-
mance comparable to the state-of-the-art models. This study provides
insights for optimizing model selection in practical settings, assessing
both performance and resource considerations.

4. Conclusion

A comprehensive comparative study presented here provides a
foundation for choosing robust architectures that deliver consistent
performance, aiding in the clinical translation of PA imaging to point-of-
care or bedside applications where reliability and speed are essential.
We evaluated various Encoder-Decoder-based CNN architectures sys-
tematically to enhance the SNR in real-time LED-based PA imaging.
First, we analyzed the computational complexity of all the models. Then
we compared the basic convolutional autoencoder and U-Net architec-
tures, discerning the impact of skip connections on image quality met-
rics. Next, we investigated the influence of hierarchical depth variations
within the U-Net framework on SNR enhancement. Subsequently, we
conducted a comparative analysis between the UN model and several
advanced iterations of U-Net. We also conducted an evaluation of top-
performing networks’ resilience to various noise type distributions
(Gaussian, S&P, Poisson, and Speckle). Our experimental evaluations
encompassed in vitro phantoms, ex vivo mouse organs, and in vivo sub-
cutaneous mouse tumors. Our findings indicate that skip connections
play a crucial role in preserving fine-grained spatial details and facili-
tating feature reuse, as demonstrated by the superior performance of UN
compared to Convolutional Autoencoder in terms of PSNR and SSIM.
Increasing the depth of the UN did not lead to significant improvements
in performance. The performance is also invariant to the number of
training samples as the noise is typically a local phenomenon, suggesting
that the standard UN may be the optimal choice for practical applica-
tions due to its consistent performance across all test scenarios.
Furthermore, our exploration of various U-Net architectures demon-
strated that Dense-UN showcased superior performance based on the
two image quality metrics – PSNR and SSIM (even though statistically
not significant) compared to all other network variants, with R2-UN and
UN following closely. Nevertheless, the upscaling of network complexity
did not yield substantial enhancements in performance, suggesting
diminishing returns as complexity increased. Finally, our research
delved into assessing the resilience of the top-performing networks
against various noise distributions. We found that Dense-UN and R2-UN
demonstrated resilience in effectively reducing Gaussian, S&P, Poisson,
and Speckle noise types, while UN encountered difficulties with S&P
noise. These outcomes emphasize the significance of carefully choosing
the appropriate deep learning architecture, tailored to specific applica-
tion needs and resource constraints. Dense-UN might be preferred for
well-resourced systems, whereas UN remains a feasible choice for en-
vironments with limited resources, offering satisfactory denoising per-
formance akin to the state-of-the-art models. In essence, our
investigation offers valuable insights for optimizing model selection in
practical scenarios, considering both performance and resource
constraints.
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