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Abstract
Introduction Ultrasound is important in heart diagnostics, yet implementing effective cardiac ultrasound requires 
training. While current strategies incorporate digital learning and ultrasound simulators, the effectiveness of these 
simulators for learning remains uncertain. This study evaluates the effectiveness of simulator-based versus human-
based training in Focused Assessed with Transthoracic Echocardiography (FATE).

Materials and methods This single-centre, prospective, randomised controlled study was conducted during an 
extracurricular FATE workshop (approximately 420 min) for third-year medical students. Participants were randomly 
assigned to the study group (training solely on simulators) or the control group (training on human subjects). Both 
groups completed a theory test and a self-assessment questionnaire before the course (T1) and at the end of the 
training (T2). At T2, all participants also completed two Direct Observation of Procedural Skills (DOPS) tests—one on 
the simulator (DOPSSim) and one on humans (DOPSHuman).

Results Data from 128 participants were analysed (n = 63 study group; n = 65 control group). Both groups exhibited 
increased competency between the T1 and T2 self-assessments and theory tests (p < 0.01). In the DOPSHuman 
assessment at T2, the control group performed significantly better (p < 0.001) than the study group. While motivation 
remained consistently high among both groups, the study group rated their “personal overall learning experience” 
and the “realistic nature of the training” significantly worse than the control group (p < 0.0001). Both groups supported 
the use of ultrasound simulators as a “supplement to human training” (study: 1.6 ± 1.1 vs. control: 1.7 ± 1.2; p = 0.38), 
but not as a “replacement for human training” (study: 5.0 ± 2.3 vs. control: 5.4 ± 2.1; p = 0.37).

Conclusion Both simulator- and human-based training effectively developed theoretical and practical skills in FATE. 
However, the simulator group demonstrated significantly poorer performance when applying their skills to human 
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Introduction
Examination of the heart using ultrasound is an impor-
tant diagnostic method in cardiology [1]. Cardiac ultra-
sound is recommended in nearly all cardiac guidelines 
due to its ready availability, speed of implementation, 
and cost-effectiveness [1]. Nevertheless, achieving stan-
dardised and diagnostically reliable echocardiographic 
imaging can be challenging [2], requiring thorough train-
ing to ensure safety, accurate technique, and proper 
documentation [3, 4]. Basic skills are initially developed 
in training courses and reinforced through numerous 
supervised echocardiographic examinations, as outlined 
in the certification requirements of various professional 
societies [5].

Recently, specialised training concepts for students 
have been introduced at universities as part of medical 
degree programs [6–12], allowing students to acquire 
basic skills in performing echocardiography or focused 
sonography of the heart (FocUs) at an early stage [8]. This 
reflects the advice of international professional societies, 
which advocate for early training of students in ultra-
sound diagnostics and provide guidelines for its integra-
tion into education [13].

The COVID-19 pandemic, with its social distancing 
measures, further increased the demand for innovative, 
digitally supported teaching methods such as blended 
learning and simulator-based training [5, 14–25]. A wide 
range of ultrasound simulators are now commercially 
available, varying in their technical implementation, 
areas of diagnostic application, and the types of simula-
tion images displayed on the viewing screen, which range 
from real CT and ultrasound images of patients to com-
puter-generated images [21, 26].

Ultrasound simulators are frequently evaluated for 
their usefulness and applicability in training [7, 23, 
27–34], particularly as an alternative or supplement to 
practising on live subjects [7, 14, 15, 17, 22, 23, 35–43]. 
Simulator-based training has shown benefits, particularly 
in improving diagnostic accuracy during patient exami-
nations [28, 30].

Although evidence supporting the transfer of theoreti-
cal and practical skills from simulators to real patient care 
exists [44–47], larger randomized trials directly compar-
ing simulator-based training with live-subject training for 
echocardiography skill transfer among medical students 
remain lacking, and current results vary significantly [23, 

30, 42, 48]. This heterogeneity also extends to studies on 
simulation-based echocardiography training [7, 14, 36–
38, 42, 49–51]. This study addresses these gaps by inves-
tigating how theoretical and practical skills in Focused 
Assessed Transthoracic Echo (FATE) are developed 
through simulator-based training compared to training 
on live subjects, and how effectively these skills translate 
to real patient examinations.

The goal of this study is to better understand the dif-
ferences in training effectiveness in echocardiography, 
ultimately improving ultrasound education. Based on 
this randomised, prospective study, we propose that stu-
dents’ ability to apply their training to real patients differs 
depending on whether they were trained using simula-
tors or live subjects.

Materials and methods
Study design
This single-centre, prospective randomised controlled 
study (Fig. 1) was designed and conducted at a Capitalize 
University Hospital in 2022 [52, 53].

This study utilized a validated ultrasound simula-
tor (Vimedix, CAE Healthcare, Sarasota, Florida, US), 
approved by experts [54], in voluntary extracurricular 
workshops aimed at teaching the FATE protocol [55]. 
This was compared to traditional training using live 
human subjects. The 3rd year of the undergraduate medi-
cal degree programme corresponds to the first year of 
clinical training. Only third-year students were included 
to ensure that participants had no prior experience in 
echocardiography. The students were invited to partici-
pate in the study via an official announcement distributed 
to a mailing list from the Capitalize Dean’s Office. Vol-
unteers registered for the workshops via an online portal.

After the enrolment deadline, participants were ran-
domly assigned to either the study group (training on 
the simulator) or the control group (training on human 
subjects). Assessments, including self-evaluations (Evalu-
ationpre, Evaluationpost), theory tests (Theorypre, Theo-
rypost), and practical exams (DOPSSim, DOPSSimPatho, 
DOPSHuman), were conducted at two time points (T1 = pre 
and T2a and T2b = post) [56, 57]. Inclusion criteria 
required participants to have completed the first state 
examination, provided informed consent to participate 
in the study, and fully attended the introductory event, 
workshop, and examinations.

subjects, indicating limitations in the transferability of this simulator-based training to real-life patient care. These 
limitations of simulator-based ultrasound training should be considered in future training concepts.

Clinical trial number Not Applicable.

Keywords Simulation-based training,  High-Fidelity Simulation, Ultrasound education, FATE, FOCUS, Randomized 
controlled trials
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The primary endpoints of the study are threefold: an 
improvement in competency, as measured by theory 
tests; an improved practical skill level, as assessed by 
a practical FATE examination on either a simulator or 
live subject; and an ability to detect pathology. Second-
ary endpoints include a subjective increase in compe-
tency and motivation; the subjective achievement of 
the defined learning objectives; and an evaluation of the 
training concept.

Course concept and learning objectives
A FATE-specific workshop [55] was developed based 
on a training concept for focused sonography of the 
heart (FOCUS) [8] utilizing cross sections in transtho-
racic echocardiography [58], as proposed by the World 
Interactive Network Focused on Critical Ultrasound 
(WINFOCUS). The 360-minute workshop included an 

introductory session in plenary (90 min), practical exer-
cises in small groups with practical tests (225 min), and 
a final plenary session (45 min). The learning objectives 
and the developed module sequence are presented in 
Fig. 1 and Supplement 1.

During the introductory session, held one day before 
the practical part of the workshop, participants com-
pleted a theory test (Theorypre) and an initial Evaluation-
pre. These were followed by a brief guided tour of the 
FATE protocol through a live pre-workshop session, and 
a study poster was distributed. During the practical exer-
cises, participants rotated through 3 stations (135 min), 
each focussing on orientation in cross-sections and 
pathology training. Within the stations the control group 
was shown pre-recorded real ultrasound clips of patholo-
gies, while the study group practiced case scenarios of 
pathologies on the simulator. To ensure uniformity in 

Fig. 1 Chronological presentation of the study design and course concept, including data collection times (T1, T2a, and T2b). (a) The development process 
of the course design and content; (b) recruitment; (c) course concept; (d) course modules including learning objectives
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meeting the learning objectives, detailed instructions and 
station tasks for small group teaching were developed 
beforehand for each station (see Supplements 2 and 3).

At the end of the workshop, all participants completed 
the same Direct Observation of Procedural Skills test 
(90 min) on both the simulator (DOPSSim, DOPSSimPatho) 
and real people (DOPSHuman). They then took a theory 
post-test (Theorypost) and self-evaluation (Evaluationpost) 
in plenary (45  min). The control group first completed 
the tests on humans then on the simulator, the study 
group vice-versa.

A total of six workshops were held, each with six sta-
tions (three for the control group and three for the study 
group) running in parallel. Four grouped students per 
station were supervised by one tutor.

Tutors and equipment
A total of ten didactically and professionally trained peer 
tutors [8] (i.e., students from clinical semesters) taught 
the participants during the workshop under the super-
vision of two consultants. All tutors underwent system-
atic training on the simulator to master its operating 
functions.

A total of three ultrasound devices from GE HealthCare 
(GE F8; General Electric Company, Boston) and three 
simulators (Vimedix, CAE Healthcare, Sarasota, Florida, 

US) were used (see Fig.  2). The ultrasound simulators 
have a life-sized sector transducer that can be applied 
realistically to a human torso model. The system provides 
a wide range of cardiology training sets and simulates 
an array of pathologies (see Supplement 4). In addition 
to displaying an anatomical cross-sectional image via 
animation, the monitor also projects an animated ultra-
sound image. Various measurement tools, Doppler func-
tions, and other device functions can be used realistically. 
Additionally, transoesophageal echocardiography can be 
practised by changing the ultrasound probe.

Assessments
The test design and evaluation instruments used are 
based on the consensus of ultrasound experts, instruc-
tors, and current professional recommendations [56–59].

Questionnaires
Evaluationpre and Evaluationpost (both approximately 
5  min) addressed various topics across multiple items. 
These included “personal data”, “previous experience”, 
“simulator usage”, “motivation/expectations”, “learn-
ing goals”, “subjective competency assessment”, “course 
evaluation”, “teaching material”, and “tutor evaluation”. 
The answers were recorded using a seven-level Likert 

Fig. 2 Presentation of the training equipment used in the course. The control group trained on the ultrasound system GE F8 by General Electric Com-
pany, Boston (Fig. 2a and c), and the study group trained on the ultrasound simulator Vimedix by CAE Healthcare, Sarasota, Florida, US (Fig. 2b and d)

 



Page 5 of 14Weimer et al. BMC Medical Education           (2025) 25:21 

answering format (1 = strongly agree; 7 = strongly dis-
agree), or by dichotomous questions (“yes”/“no”) and free 
text.

Pre- and post-test
The theory test (max. 74 points in Theorypre and max. 83 
points in Theorypost), comprised the competency areas 
“anatomy” (max. 11 points); “basic principles” (max. 14 
points); “normal findings = section assignments” (max. 
10 points); “section labelling = normal findings or struc-
ture recognition in orientation sections” (50 points); and 
“pathology (recognition)” (max. 9 points, exclusively at 
T2), each derived from the learning objectives. The test 
comprised labelling, fill-in-the-blank, and multiple-
choice question types [56, 60] (see Supplement 5 for 
example questions). The processing time per test was 
25 min.

Practical tests (DOPS)
Practical skills were assessed by DOPS adapted from 
previous studies [61]. The DOPS tests, with a process-
ing time of 10 min each, were carried out on the simula-
tor (DOPSSim, max. 78 points) and human test subjects 
(DOPSHuman, max. 78 points). A total of six standard 
cross-sections of the FATE protocol [55] were tested as 
part of a case study (see Supplement 6). The test subjects 
were voluntary students, all of whom had a similar BMI.

The competency areas “communication” (max. 8 
points); “transducer handling/device operation/patient 
guidance” (max. 14 points); “examination procedure 
FATE 1–6” (max. 36 points); “image explanation FATE 
1–6” (max. 12 points); and “overall performance” (max. 8 
points) were assessed in the tests.

Subsequently, a total of 4 case scenarios were com-
pleted on the simulator in the DOPSSimPatho (total of max. 
48 points; total processing time 10 min) to assess pathol-
ogy recognition (see Supplement 7). The competency 
areas “examination procedure or skill” (2 points); “pathol-
ogy recognition” (2 points); and “overall impression” (8 
points) were assessed in each case.

Statistics
Data for the evaluations as well as theoretical and prac-
tical learning success checks were manually evaluated 
using Microsoft Excel before analysis in R studio (RStu-
dio Team [2020]. RStudio: Integrated Development for 
R. RStudio, PBC, http://www.rstudio.com, last accessed 
09 02 2024) with R 4.0.3 (A Language and Environment 
for Statistical Computing, R Foundation for Statisti-
cal Computing, http://www.R-project.org; last accessed 
09 02 2024). Binary and categorical baseline parameters 
are expressed as absolute numbers and percentages. 
Continuous data are expressed as median and inter-
quartile range (IQR) or mean and standard deviation 

(SD). Categorical parameters were compared using the 
chi-squared test and continuous parameters using the 
Mann-Whitney test. In addition, pairwise correlations 
of metric variables were obtained, and the correlation 
effect sizes and significances were calculated for both 
groups. Then, the Fisher z-transformation was used to 
compare correlations between the two groups. Finally, 
a multivariate linear regression model was employed to 
compare the influence of individual factors (“participa-
tion in an abdominal ultrasound course”, “lready had con-
tact with simulator-based training”, “already had contact 
with ultrasound simulators”, “Number of independent 
sonographic examinations”, “Number of independent 
echocardiographies”, membership of the control group). 
P-values < 0.05 were considered statistically significant. 
A power analysis was conducted for this study to deter-
mine the sample size required to detect a statistically sig-
nificant effect. Based on an expected effect size of 0.6, a 
significance level of 0.05, and a desired power of 0.90, the 
calculated sample size was set at 120 participants.

Results
Baseline
A total of 128 students were included in the study, with 
63 in the study group and 65 in the control group (see 
Supplement 8). The baseline characteristics of both 
groups were similar (see Table  1), with both having 
almost equivalent demographic characteristics and prior 
training profiles. Both groups had a similar average age 
(study: 24 ± 4 years vs. control: 25 ± 4 years), were mainly 
female (study: 67% vs. control: 62%), and most had not 
previously used ultrasound simulators (study: 97% vs. 
control: 91%). Most had already taken an abdominal 
sonography course (study: 57% vs. control: 57%) but had 
not performed any independent echocardiograms (study: 
95% vs. control: 85%; p = 0.02).

Motivation, learning objectives, simulators and course 
concept
The evaluation of personal motivation, achievement of 
learning objectives, and the course concept are shown 
in Fig.  3 + 4 and Supplement 9 + 10. Both groups were 
similarly positively motivated at T1 and T2 (scale point 
range 1.4–1.6). Most participants in both groups state 
they achieved the learning objectives of the course over-
all and per subitem (scale point difference T1-T2: 0.2-04). 
No significant differences were found in “personal sat-
isfaction and benefit of the course” (study: 2.7 ± 0.7 vs. 
control: 2.4 ± 1.0; p = 0.97) or “overall course evaluation” 
(study: 2.2 ± 0.9 vs. control: 2.4 ± 0.9; p = 0.09). The over-
all tutor evaluation was significantly more positive in the 
study group, with both groups (study: 1.4 ± 0.7 vs. control: 
1.7 ± 0.7; p = 0.03) evaluating the tutors in very good scale 
ranges. The study group rated their subjective “personal 

http://www.rstudio.com
http://www.R-project.org
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overall learning experience” significantly worse than 
the control group (study: 2.3 ± 0.9 vs. control: 1.8 ± 0.7; 
p < 0.0001), which mainly results from the significantly 
worse assessment of the “realism of the training” (study: 
3.5 ± 1.6 vs. control: 1.7 ± 0.9; p < 0.0001). Both groups 
support the use of an ultrasound simulator for train-
ing purposes as a “supplement to training on humans” 

(study: 1.6 ± 1.1 vs. control: 1.7 ± 1.2; p = 0.38), but not as a 
“replacement for training on humans” (study: 5.0 ± 2.3 vs. 
control: 5.4 ± 2.1; p = 0.37).

Subjective gain in competencies
The results of the evaluation at T1 and T2 are shown in 
Fig. 5 and Supplement 11. No significant differences were 

Table 1 Group statistics at baseline
Item Parameter Control group Study group p-value
Age Years (mean ± SD) 25 ± 4 24 ± 4 0.19
Sex Male (n) 25 21 0.67

Female (n) 40 42
Prior education yes (n) 36 24 0.07

no (n) 29 39
University radiology course n 1 3 0.59
Course in abdomen sonography n 37 36 1.0
Number of observed none 6 5 0.37
sonographic examinations <=5 1 0

< 20 41 49
20–40 9 5
>= 40 8 4

Number of independent sonographic examinations none 12 9 0.62
< 20 51 52
20–40 1 2
>= 40 1 0

Number of independent echocardiographies none 55 60 0.02
< 20 9 1
20–40 1 0

Prior simulator training n 28 33 0.38
Prior use of ultrasound simulator n 6 2 0.29

Fig. 3 Self-evaluation of (a) motivation and (b) achievement of learning objectives at time points T1 and T2. The control group are represented in orange 
and the study group in blue
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found in the overall score at T1 (study: 5.3 ± 1.1 vs. con-
trol: 5.3 ± 1.2; p = 0.87). Both groups reported a significant 
increase in competency up to T2 (Delta p < 0.001) and 
reached a similarly high self-reported competency (study: 
2.6 ± 0.7 vs. control: 2.7 ± 0.7; p = 0.23). This trend applied 
to almost all subcategories except for “pathology recog-
nition”. Here, the study group reported a significantly 
higher increase in competency than the control group 
(study: Δ 3.7 ± 1.2 vs. control: Δ 2.8 ± 1.8; p < 0.01).

Objective gain in competencies
Theory test
The results of the theory tests at T1 (TheoryPre) and T2b 
(TheoryPost) are shown in Supplement 12 Fig.  6. In the 
overall score, the control performed better at T1 than the 
study group (study: 19 ± 10 vs. control: 24 ± 16; p = 0.01). 
Throughout the test, both groups achieved a significant 
(p < 0.001) objective increase in competency and demon-
strated a similar level of competency at T2 (study: 56 ± 7 
vs. control: 57 ± 8; p = 0.41), with the study group achiev-
ing a significantly higher increase (study: Δ 38 ± 9 vs. con-
trol: Δ 33 ± 14; p = 0.02). In the pathologies examined at 
T2, no significant differences between the groups were 
found (study: 5 ± 2 vs. control: 4 ± 2; p = 0.16).

Practical test
The results of the practical tests DOPSSim and 
DOPSHuman at time T2 are shown in Supplement 13 and 

Fig. 7. Overall, both groups scored well in the DOPSSim 
(study: 64 ± 7 vs. control: 64 ± 8; p = 0.89) and in the 
DOPSSimPatho (study: 37 ± 5 vs. control: 36 ± 5; p = 0.23). 
The control group achieved significantly better results in 
the DOPSHuman (study: 59 ± 10 vs. control: 64 ± 9; p < 0.01). 
These trends hold for the subcategories of the respective 
DOPS, especially regarding “device operation”. When 
comparing results in DOPSSim with DOPSHuman, the 
control group achieved equivalent results in both DOPS 
(p = 0.97), whereas the study group showed significantly 
worse results in the DOPSHuman(p < 0.01).

Influencing factors and correlations
The multivariable linear regression analysis of the theory 
tests and practical examinations yielded several influenc-
ing factors. In the T1 theory test (TheoryPre), these factors 
were “participation in an abdominal ultrasound course” 
(β = 6.51; p = 0.004); “already had contact with simulator-
based training” (β = 5.13; p = 0.019); “already had contact 
with ultrasound simulators” (β = 13.51; p = 0.003); and 
“membership of the control group” (β = 4.24; p = 0.048). 
In the T2 theory test (TheoryPost), the factor “already had 
contact with ultrasound simulators” (β = 3.52; p = 0.004) 
had a significant influence. In the linear regression anal-
ysis of DOPSSim, DOPSSimPatho

, and DOPSHuman, only 
DOPSHuman was significantly influenced by “membership 
of the control group” (β = 4.76; p = 0.005), with no other 
influencing factors detected.

Fig. 4 Evaluation results at T2 with the control group represented in orange and the study group represented in blue. (a) Results of the evaluation of the 
course concept; (b) the learning experience; (c) the realism of training; (d) the satisfaction and benefit; (e) the desire to use the ultrasound simulator; (f) 
the instructor rating
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The correlations between the objective test results of 
DOPSHuman and DOPSSim, DOPSHuman and TheoryPost, 
DOPSHuman and DOPSSimPatho were significantly higher in 
the control group than in the study group (p < 0.03).

Discussion
Summary of Key findings + relevance of research
This study compares the effectiveness of simulator-based 
ultrasound training to traditional ultrasound training 
with human subjects for teaching theoretical and prac-
tical skills in Focused Assessed Transthoracic Echo. It 
is the first simulator-focussed randomized echocardio-
graphic study to examine an entire semester of students 

Fig. 5 Results of subjective competence development at time points T1 and T2, with the control group represented in orange and the study group in 
blue. (a) The total score; (b–j) the subitems
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during the clinical phase of a medical degree program. 
Our results demonstrate that both training approaches 
can lead to a significant increase in skills, but those 
trained on a simulator alone did not perform compara-
bly well when performing examinations on real humans. 
Additionally, participants reported that ultrasound simu-
lators in training could “supplement” training on humans, 
but they did not accept it as a “replacement”. The results 
provide important insights into the potential advantages, 
disadvantages, and challenges of using ultrasound simu-
lators in medical education and offer a basis for future 
training strategies.

Gain in competencies
The effectiveness of simulation-based training is still 
under research, especially regarding the transfer of skills 
from simulator training to real patient care in cardiac 
ultrasound diagnostics [17, 18, 20–22, 38, 42, 48, 62]. 

Preliminary studies have demonstrated that ultrasound 
simulators promote theoretical [7, 14–16, 21, 30, 31, 33, 
34, 36–38, 41–43] and practical [7, 14, 16, 21, 30, 31, 34, 
36–38, 41, 43] skill acquisition. These studies also sug-
gested that simulation training was at least equivalent in 
effectiveness to lecture-based education [16, 33], text-
book learning [32], video-based training [15], or e-learn-
ing [21, 30, 36]. Simulators offer a forgiving environment 
that allows early learners to make and learn from errors 
without the risk of causing harm, thereby fostering a safe 
and effective training experience. The participants in 
our study were also able to build theoretical and practi-
cal skills in FATE through simulator training, and they 
reported a subjective increase in their skills. The subjec-
tive and objective theoretical skill levels of both study 
groups at the end of the training were comparable and 
high [14, 29, 31, 33, 37, 38, 49]. Interestingly, the study 
group (those training with a simulator) achieved a 

Fig. 6 Results of the theory test at T1 and T2b with the control group represented in orange and the study group in blue. (a) The total score; (b) the sub-
categories ultrasound pathologies; (c) basics; (d) image assignment; (e) ultrasound normal findings
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significantly higher objective theoretical skills increase 
(T1 to T2) compared to the control group (training on 
humans). This indicates that simulator-based training can 
effectively support the transfer of theoretical knowledge.

While the groups performed nearly identically well in 
the practical tests on the simulator, the study group per-
formed significantly worse than the control in the test on 
human subjects. This suggests that training on humans 
is irreplaceable at the moment and offers a realistic envi-
ronment that cannot be fully reproduced by current sim-
ulators [63]. This finding is consistent with some previous 
studies [7, 41], but contrasts with other preliminary stud-
ies [14, 36–38, 42]. Whereas previous studies assessed 
the practical competency achieved either on a simula-
tor [36] or human subjects [7, 14, 32, 37, 38, 41, 42], the 
multiple tests implemented in our study enabled us to 
make specific statements regarding the groups’ overall 
and relative development of skills, and, most importantly, 
regarding the skill transfer between simulator-based 
training and real human-subject examinations. The com-
parative results of the practical assessments on humans 
differed from those of previous findings [14, 36–38]. 
These differences could be explained by the longer dura-
tion of our training concept in comparison with former 
studies, which would enable finer differences between 
trained groups to emerge. The inclusion of a much larger 
number of participants and the use of multiple dedicated 
testing tools [57] might also explain the differences in our 

findings and serve to underline the robustness of the data 
collected.

Attitude towards simulation, motivation and evaluation of 
course
Various user groups have demonstrated a positive atti-
tude toward simulators [19, 32, 36, 38, 39, 64]. Our study 
supports the use of an ultrasound simulator for train-
ing purposes as a supplement to training on humans. 
The participants showed a high level of motivation for 
training before and after the course, with no decrease in 
motivation despite the training modality [65]. However, 
participants across all groups did not view ultrasound 
simulator training as a replacement for human-based 
training, which aligns with recommendations from pro-
fessional associations and preliminary studies [18, 19, 
39]. The study group gave a significantly poorer subjec-
tive assessment of the overall learning experience and 
the realism of the training, further emphasizing the 
need for training on real humans [19, 23, 63]. The gen-
eral acceptance of this broader training concept [6, 8, 9, 
66] supports the future use of a combination of teach-
ing methods. This could eliminate the observed gap in 
transferring skills from simulator training to real-patient 
practice, or make the training experience more realistic, 
thus providing the best possible learning environment 
[19, 40]. A practical strategy to achieve this would be the 
implementation of a longitudinal blended learning con-
cept [67], which should include simulator self-learning 

Fig. 7 Results of the practical test at time T2a of the control group (orange) and study group (blue). The violin plots present the results of: (a, d) DOPSHuman; 
(b, c) DOPSSim; (e, f) DOPSSimPatho
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programmes in paired teams [68] and practical train-
ing on humans. Furthermore, other innovative teaching 
strategies, such as artificial intelligence, virtual reality 
and telemedicine, could be integrated into ultrasound 
training in order to facilitate multimodal training [69].

Strengths and limitations of the study
The strengths of this study include its randomized design, 
clearly defined teaching methods, and consistent multi-
ple assessment criteria, all of which provide an objective 
basis for interpreting the results.

However, there are also limitations. These include the 
voluntary nature of participation, the absence of a control 
group that received no training, and the reliance on ultra-
sound simulator models from only one manufacturer. In 
addition, the study did not explicitly assess the impact 
of the training modalities on patient safety or quality of 
care, although previous research suggests that simula-
tor training improves the efficiency of care and reduces 
patient discomfort and the need for repeated examina-
tions and trainee supervision [19].

A specific economic cost-benefit analysis was also not 
conducted [70]. While this can be seen as a limitation, 
certain benefits of simulator-based ultrasound training—
such as preparing students for clinical practice, improv-
ing patient care and safety, and increasing satisfaction 
with the educational experience—cannot easily be quan-
tified in monetary terms. Moreover, the study focuses 
mainly on quantitative assessments of knowledge and 
practical skills and may overlook qualitative aspects such 
as learning style preferences.

Despite accounting for several influencing factors 
through multivariate regression analysis, other personal 
factors of the participants that were not captured by the 
evaluations may have influenced the results. Addition-
ally, the different sequencing of the tests (the study group 
completed the practical test on the simulator first and 
then on the human model; the control group did it the 
other way round) could also have influenced the results 
in ways we could not measure.

Finally, the study’s emphasis on the immediate effects 
of simulator-based training compared to human-model 
training does not consider long-term retention of skills. 
Future studies should explore how well these competen-
cies are maintained over time to better evaluate the effec-
tiveness of training methods [15, 36–38].

Conclusion
This study enhances our understanding of the effective-
ness of approaches to ultrasound teaching. Ultrasound 
simulators offer promising opportunities, especially in 
transferring theoretical knowledge to focussed prac-
tice of basic skills. Nevertheless, hands-on training with 
human subjects remains indispensable for effective 

competency development, supporting the need for future 
multimodal training strategies. The early implementa-
tion of such innovative ultrasound training programs into 
medical degree curricula and specialist training would 
improve the quality of medical education and, ultimately, 
patient care.
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