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Abstract 

Background Accurate classification of host phenotypes from microbiome data is crucial for advancing microbiome-
based therapies, with machine learning offering effective solutions. However, the complexity of the gut microbiome, 
data sparsity, compositionality, and population-specificity present significant challenges. Microbiome data transfor-
mations can alleviate some of the aforementioned challenges, but their usage in machine learning tasks has largely 
been unexplored.

Results Our analysis of over 8500 samples from 24 shotgun metagenomic datasets showed that it is possible to clas-
sify healthy and diseased individuals using microbiome data with minimal dependence on the choice of algorithm 
or transformation. Presence-absence transformations performed comparably to abundance-based transformations, 
and only a small subset of predictors is necessary for accurate classification. However, while different transformations 
resulted in comparable classification performance, the most important features varied significantly, which highlights 
the need to reevaluate machine learning–based biomarker detection.

Conclusions Microbiome data transformations can significantly influence feature selection but have a limited effect 
on classification accuracy. Our findings suggest that while classification is robust across different transformations, 
the variation in feature selection necessitates caution when using machine learning for biomarker identification. This 
research provides valuable insights for applying machine learning to microbiome data and identifies important direc-
tions for future work.

Introduction
Human microbiome carries a vast amount of information 
that can be used to improve the understanding of our 
functioning and be potentially used to improve clinical 
practice and public health. Harnessing this information 
on the other hand is not trivial due to the complexity of 
the microbial ecosystem, which comprises hundreds of 
species and involves intricate interactions between the 
ecosystem members. Similarly to other fields of biology, 
machine learning (ML) approaches have become pivotal 
in microbiome research as they can inherently account 
for the high dimensionality and versatile data types. Pre-
dicting an outcome based on the taxonomic or functional 
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profile is perhaps the most widespread use of ML in the 
microbiome field; however, thanks to its versatility, ML 
is used for taxonomic assignment, functional profiling, 
and others [1]. ML has been successfully used not only to 
build classification models for diseases such as colorectal 
cancer [2] and pancreatic cancer [3], but also for predict-
ing the disease outcome in the future such as for liver dis-
eases [4], type 2 diabetes [5], or all-cause mortality [6]. 

Currently, analysis of the microbiome data lacks stand-
ards, and the best approaches are yet to be identified 
[7], Hernández [8]. For example, differential abundance 
analysis, a common analysis step to identify members of 
the microbiome whose abundance is different between 
the study groups, has been shown to produce remarkably 
varying results depending on the analysis methodology 
used [9]. Such conflicting results can be explained by the 
unique properties of microbiome data, such as compo-
sitionality, high dimensionality, and high sparsity, which 
pose challenges for standard statistical methods and by 
the observation that many DA methods evaluate tests 
on very different estimates [10]. To address these limita-
tions, various data transformations like total-sum-scaling 
(TSS), arcsine-square-root (aSIN), and log-ratio trans-
formations such as centered-log-ratio (CLR), isometric-
log-ratio (ILR), or additive log-ratio (ALR) are commonly 
employed in microbiome research [11]. However, the 
impact of data transformations on prediction and clas-
sification tasks employing machine learning algorithms 
remains poorly understood.

Recently, Giliberti et  al. carried out an extensive 
analysis to compare the performance of models based 
on the presence-absence of microbes and TSS scaling 
[12]. Intriguingly, they found that presence-absence of 
the microbes as features in a predictive model leads to 
equivalent predictive performance. However, there are 
indications that other data transformations, especially 
log-ratio-based transformations can outperform the TSS 
in predictive tasks. For example, CLR has been shown 
to improve the prediction accuracy over TSS [7, 13]. 
Nevertheless, in light of the results by Giliberti et  al., it 
remains unclear whether the aforementioned data trans-
formations can improve the prediction accuracy over 
presence-absence.

Here, we systematically evaluate the impact of vari-
ous data transformations on the binary classification 
performance (e.g., distinguishing healthy and diseased 
individuals) to determine the optimal modeling strate-
gies for shotgun metagenomics data. We employ eight 
data transformations in combination with three ML 
algorithms (random forest, extreme gradient boost-
ing, and elastic net) and assess their performance on 
24 metagenomic datasets across various disease out-
comes to ensure an unbiased and robust assessment. In 

addition, we investigate how the selection of the data 
transformation impacts the external generalizability 
and feature selection, which is essential for biomarker 
discovery.

Results
Study design
To investigate the impact of the data transformations 
on the binary classification performance, we used pub-
licly available shotgun metagenomic sequencing data-
sets present in the curatedMetagenomicData R package 
(version 3.6.2), which encompass more than 6000 sam-
ples across different populations and phenotypes [14]. In 
our analysis, we focused on stool metagenomic datasets 
with a primary phenotype available and that had at least 
50 cases and 50 controls (Supplementary Table 1, Meth-
ods). Additionally, we used the metagenomic data from 
the Estonian Microbiome Cohort (EstMB), which is cou-
pled with rich phenotype data (N = 2509) [15]. Figure 1a 
shows the study design and study objectives. Firstly, each 
metagenomic dataset was transformed using eight data 
transformations, which are commonly applied in the 
microbiome field. The transformations included pres-
ence-absence transformation (PA), relative abundance 
transformation (total sum scaling, TSS), logarithm of 
TSS, arcsine square root transformation (aSIN), and four 
compositional transformations (centered log-ratio (CLR), 
robust centered log-ratio (rCLR), isometric log-ratio 
(ILR), and additive log-ratio (ALR)). For sensitivity analy-
sis, we additionally rarefied the datasets before applying 
data transformations. The transformed datasets were 
then used in a binary classification setting using three 
learning algorithms, random forest (RF), extreme gradi-
ent boosting (XGB), and elastic net (ENET).

Our primary objective was to assess the classifier per-
formance across the data transformations within the 
analyzed datasets (within-study (WS) setting). Secondly, 
we aimed to assess the impact of data transformations in 
different analytical scenarios. In addition to the within-
study setting, we evaluated the external generalizability of 
the models by carrying out a leave-one-study-out cross-
validation for colorectal cancer (CRC; 11 datasets, Sup-
plementary Table 1) and obesity (subjects with BMI > 30; 
BMI30; 5 datasets, Supplementary Table 1). Furthermore, 
we analyzed whether the data transformations benefit 
from a larger sample size and whether the corresponding 
model performance is dependent on the number of pre-
dictors by altering the data dimensionality and evaluating 
the effects on the classification performance. Lastly, we 
analyzed the features selected by the models to gain addi-
tional insights about how data transformations impact 
the conclusions of the ML analysis.
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Overview of classifier performance dependence on data 
transformations
Our primary aim was to analyze whether the machine 
learning performance in a binary classification task 
depends on the selected data transformation and whether 

the data transformations are leveraged differently by dis-
tinct ML algorithms. The comparison of the area under 
the receiver operating characteristic (AUROC) for ran-
dom forest (RF), extreme gradient boosting (XGB), 
and elastic net logistic regression (ENET) by data 

Fig. 1 Study design and classification results. a Overview of the study design. b Classification performance (AUROC and precision) 
in the within-study setting for every data transformation and algorithm. c Statistical analysis results between the used data transformations 
(Wilcoxon signed-rank test) for elastic net (ENET), random forest (RF), and extreme gradient boosting (XGB). Values and colors correspond 
to the differences in AUROC between Transformation 2 and Transformation 1; the * symbol indicates a nominally statistically significant difference 
in AUROC (Wilcoxon signed-rank test, p-value ≤ 0.05), the ** symbol indicates a statistically significant difference in AUROC after correction 
(FDR ≤ 0.05). Abbreviations: ENET, elastic net logistic regression; RF, random forest; XGB, extreme gradient boosting, XGBoost; PA, presence-absence; 
TSS, total-sum scaling; logTSS, logarithm of TSS; aSIN, arcsine square root; CLR, centered log-ratio; rCLR, robust CLR; ALR, additive log-ratio; ILR, 
isometric log-ratio
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transformations are shown in Fig. 1b, c. On average, the 
performance of ENET was significantly lower than RF 
and XGB when TSS was used as a data transformation 
(Wilcoxon signed-rank test, FDR ≤ 0.05). Similarly, RF 
outperformed ENET with ILR and rCLR and RF out-
performed XGB with PA. With other data transforma-
tions, differences between the algorithm performances 
were not statistically significant (Fig.  1b). For ENET, 
XGB, and RF, rCLR performed significantly worse than 
several other data transformations indicating that rCLR 
is not fit for ML purposes. Similarly, ILR transforma-
tion led to significantly lower performances compared 
to other data transformations, which, however, was 
not statistically significant for RF and XGB. Other than 
that, we did not identify significant differences in clas-
sification performances between the data transforma-
tions that were universal for the learning algorithms 
and across different datasets (Fig.  1b, c; Supplementary 
Fig. 1). For ENET, ILR, rCLR, aSIN, and TSS resulted in 
inferior performance compared to the other data trans-
formations (Wilcoxon signed-rank test, FDR ≤ 0.05). 
Importantly, PA for ENET was better or equivalent to 
other data transformations in terms of predictive perfor-
mance. In contrast, RF and XGB did not exhibit as pro-
nounced differences in AUROC between different data 
transformations, although the usage of PA with RF led 
to better classification performance for RF when com-
pared to ILR, CLR, rCLR, and ALR (Fig. 1b, c). Similarly, 
RF in combination with TSS, logTSS, and aSIN outper-
formed CLR (nominal significance, p-value ≤ 0.05). For 
XGB, ALR, aSIN, TSS, and logTSS led to better perfor-
mance than rCLR; other differences were not statisti-
cally significant (nominal significance, p-value ≤ 0.05). As 
a sensitivity analysis, we carried out rarefaction before 
applying the data transformations. In this scenario, we 
observed highly similar results to the non-rarefied case 
with PA leading to optimal predictive performance (Sup-
plementary Figs.  2, 3). On average, the performance 
of the rarefied data was lower compared to the unrare-
fied data for aSIN (FDR = 0.0062), TSS (FDR = 0.0083), 
logTSS(FDR = 0.0012), and ALR (FDR = 0.0155) indicat-
ing that for binary classification on the shotgun metagen-
omics data, rarefaction is not necessary. Thus, our results 
are consistent with the results by Giliberti et  al. ((2022) 
showing that presence-absence (PA) leads to equivalent 
or even better classification performance as compared to 
using relative abundances. Moreover, our results show 
that the same can be concluded for other commonly used 
data transformations.

Data transformation effects in different analytical scenarios
We were surprised that no significant improvement 
in classification performance was observed when 

abundance-based transformations were used instead 
of PA. To understand whether the data transformations 
could give advantage in other analytical scenarios, we 
conducted several follow-up analyses. Firstly, we assessed 
how the sample size and number of features in the ini-
tial dataset influenced the classification performance. 
We hypothesized that some data transformations may 
lead to better performance in certain sample size/data 
dimensionality settings. For that, we applied different 
prevalence thresholds to the microbial taxa on the pub-
licly available metagenomics datasets and on the Esto-
nian Microbiome Cohort (EstMB) dataset (N = 2509) 
before carrying out the classification task. For the EstMB 
dataset, we additionally subsampled the cases and con-
trols of obesity (BMI > 30) and antibiotic usage (90  days 
from sample collection) (20%, 40%, 60%, and 80% of the 
initial number of cases and controls) to study the impact 
of varying sample size and number of predictors at once. 
As expected, we observed that larger sample sizes and 
the inclusion of less prevalent taxa lead to improved clas-
sification performance (Fig.  2a, Supplementary Fig.  2). 
Nevertheless, we found no substantial interactions on the 
classification performance between the data transforma-
tions, sample size, and the number of features.

Next, we assessed whether data transformations 
impacted the model’s ability to generalize to unseen 
data by measuring its classification performance on an 
external dataset. To do this, we employed a leave-one-
study-out (LOSO) validation method for both colorectal 
cancer (CRC) and obesity defined by BMI > 30 (BMI30) 
datasets. This involved training a model on a combined 
set of samples from all studies except one and evaluat-
ing its performance on the omitted study. Similarly to 
the within-sample setting, we observed no significant 
improvement in the model generalizability when employ-
ing abundance-based data transformations (Fig.  2b). 
Thus, our analysis indicates that in terms of classification 
performance, presence-absence is usually a good option 
and should be considered an alternative to the abun-
dance-based transformations.

Feature importance
As no data transformation could consistently be consid-
ered superior in terms of classification performance and 
several data transformations led to equivalent perfor-
mance, we were interested in how different data transfor-
mations impact feature selection and feature importance. 
To assess feature importance, we calculated mean abso-
lute SHapley Additive exPlanations (SHAP) values for 
each dataset and for each microbe. SHAP values are a 
method used in machine learning to explain the contri-
bution of each feature to the prediction of a model [16]. 
Focusing on predictors with a non-zero mean absolute 
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SHAP value, we found that the number of selected pre-
dictors was highly transformation-specific. Composi-
tional transformations ALR, CLR, and rCLR selected 
more predictors, particularly when used with RF (Fig. 3a). 
However, regardless of the transformation, only a small 
subset of features (~ below 25 features) held significant 
importance (Supplementary Figs.  4, 5). To validate this, 
we built classifiers for obesity, depression, and antibiot-
ics use on the PA-transformed EstMB cohort data that 

cumulatively use only the most significant features. Sur-
prisingly, just 10 most significant microbial predictors for 
antibiotics, 25 for depression, and 75 for BMI resulted in 
comparable classification performance when compared 
to models using the full microbiome profile, with perfor-
mance decreasing as more features were added (Fig. 3b, 
Methods). We believe the decline in model performance 
with additional features is due to the unique charac-
teristics of gut microbiome data. Its compositional, 

Fig. 2 Impact of data transformations on classification performance under different scenarios. a Classification performance across varied data 
dimensions and sample sizes for random forest (RF), extreme gradient boosting, XGBoost (XGB), and elastic net logistic regression (ENET) and every 
transformation. b Transformation and model outcomes in a leave-one-study-out cross-validation (LOSO-CV) setting. Abbreviations: ENET, elastic 
net logistic regression; RF, random forest; XGB, extreme gradient boosting, XGBoost; PA, presence-absence; TSS, total-sum scaling; logTSS, logarithm 
of TSS; aSIN, arcsine square root; CLR, centered log-ratio; rCLR, robust CLR; ALR, additive log-ratio; ILR, isometric log-ratio; AB90, antibiotics use 
within 90 days from sample collection; BMI30, obesity as defined by BMI > 30
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high-dimensional nature can cause overfitting, especially 
with small sample sizes. Using fewer key features helps 
reduce noise and improves model accuracy. Dimension-
ality reduction methods such as principal component 
analysis (PCA), non-metric multidimensional scaling 
(NMDS), or non-negative matrix factorization (NMF) 
can address these challenges by transforming highly cor-
related features into orthogonal vectors. However, these 
techniques come with limitations, including the need for 
careful data transformation, appropriate pseudocount 
use, and accounting for phylogenetic interactions. Addi-
tionally, understanding which features drive classification 
becomes harder to interpret with these methods [17].

Next, we examined the features with the highest pre-
dictive value across the transformation-algorithm 

combinations. Building on our earlier results highlight-
ing a small subset of features with high SHAP values, 
we first focused on the overlap among the top 25 pre-
dictors exhibiting the highest mean absolute SHAP val-
ues (Fig. 4a). For ENET, TSS, rCLR and to lesser extent 
aSIN exhibited lower overlap with other transformations, 
while the highest agreement was found between PA, 
CLR, ALR, and logTSS. The overlap between the top pre-
dictors for RF was remarkably higher with TSS, aSIN, and 
logTSS showing almost perfect correspondence. The top 
predictors for XGB closely aligned with those from RF, 
showing strong similarity across TSS, aSIN, and logTSS 
transformations. Interestingly, although the classification 
performance of PA with RF was comparable or superior 
to CLR, rCLR, ALR, and logTSS, the overlap among the 

Fig. 3 Feature selection among data transformations. a Number of selected features: proportion for ENET, XGB, and RF. b XGB, ENET, and RF 
classification performance on presence-absence (PA) data using top-N features. The dashed line indicates classifier performance on all features
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most significant predictors is lowest for PA with around 
50% correspondence to the predictors informed by the 
abundance-based data transformations. Thus, differ-
ent abundance-based transformations can inform highly 
similar biomarker candidates, but the selection might 
not be optimal for classification performance indicat-
ing that PA transformation is able to indicate potentially 
novel biomarkers of equal predictive value. Following the 
observation of poor prediction performance of ENET in 
combination with TSS and rCLR, the informed features 
are also highly distinct from predictors informed by the 
other data transformations. Thus, our results raise cau-
tion against biomarker detection using ENET in com-
bination with TSS. When comparing the predictors 
informed by RF and ENET, around 50% of the predictors 
overlap across the transformations. Here, PA is a notable 
exception with significantly higher overlap between the 
features informed by RF and ENET. Interestingly, RF and 
XGB showed a high percentage of overlapping features 
regardless of the data transformation used, with PA (pres-
ence-absence) having the lowest overlap. This lower over-
lap might stem from the fact that other transformations 

tend to identify a larger number of important features 
compared to the presence-absence data transformation 
(Supplementary Fig. 6).

Next, we assessed how similar in general are the fea-
ture importance profiles informed by different data 
transformations and algorithms. For that, we calcu-
lated Euclidean distances on the SHAP value profiles 
and carried out principal component analysis (Fig. 4b). 
The results show that the target-specific signatures are 
clearly evident independent of the learning algorithm 
and data transformation. For example, predictive sig-
natures for colorectal cancer (orange) and soil-trans-
mitted helminths (green) clearly stand out along the 
PC2 axis. However, there is still a remarkable difference 
between the algorithms with RF displaying less varia-
tion in the feature importance profiles compared to 
ENET and XGB. Although feature importance profiles 
resulting from different data transformations are more 
similar within the same study than they are between 
studies indicating a detected target-specific signal, the 
effect is stronger for RF (Supplementary Fig.  7). Thus, 
RF identifies a more target-specific signal and is less 

Fig. 4 Stability of feature importance results. a Overlap of top-25 features between transformations for each algorithm and dataset. b Principal 
component analysis of the SHAP profiles visualized separately for ENET, XGB, and RF
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affected by the choice of the data transformation. Inter-
estingly, the feature importance profiles for ENET and 
XGB are more similar across studies when the same 
data transformation is used than they are across stud-
ies and across different data transformations (p = 1.4e-
05 for ENET and p = 0.0092 for XGB). Thus, ENET and 
XGB can identify signatures which are not only specific 
to the target variable but are common across the data-
sets. The same is not true for RF (p = 0.17).

Given the differences in the most informative predic-
tors, particularly between PA and abundance-based 
transformations, we were interested in whether the fea-
ture selection is associated with the prevalence and 
relative abundance of the microbial taxa. For that, we 
calculated Pearson correlations between SHAP values 
and taxa prevalence and relative abundance (Supplemen-
tary Fig. 8). Expectedly, we found that the SHAP values 
are positively correlated with the taxa prevalence. How-
ever, the correlation with prevalence was lower for the 
features informed by PA and CLR independent of the 
learning algorithm. Similarly, we observed that the SHAP 
values obtained by abundance-based transformations 
exhibit remarkably higher correlations with the rela-
tive abundance as compared to SHAP values obtained 
by PA. This can partially be the reason why ENET and 
XGB choose similar predictors across different target 
variables. To further understand how this correlation is 
reflected in the feature selection, we analyzed the micro-
bial predictors, which had the largest difference in SHAP 
values between TSS and PA (Supplementary Figs. 9, 10, 
11). For all algorithms, more abundant taxa have higher 
significance with TSS when compared to PA. Moreo-
ver, the bacteria which were more important with the 
TSS include well-known and abundant gut commensals 
such as Prevotella copri [18], Bacteroides vulgatus [19], 
Bacteroides uniformis  [20], and Faecalibacterium praus-
nitzii [21]. Bacteria having the highest SHAP values when 
using any model with PA were probiotic candidates such 
as Akkermansia municiphila [22] and potentially benefi-
cial microbes such as Firmicutes bacterium CAG:95 and 
Firmicutes bacterium CAG:110 [23]. Models using PA 
as data transformation assigned also higher SHAP val-
ues to opportunistic pathobionts such as Desulfovibrio 
piger [24], Fusobacterium nucleatum [25], and Erysipela-
toclostridium ramosum (previously known as Clostrid-
ium ramosum) [26]. This observation further highlights 
the difference in the biomarker profiles informed by 
different data transformations. With abundance-based 
transformations, we are more likely to identify more 
prevalent and abundant taxa which might potentially 
complicate the identification of disease-specific markers. 
In contrast, the biomarkers informed by PA are largely 
independent of these properties.

In conclusion, our findings underscore that models 
assign high importance to a limited set of microbes, a 
property common for all data transformations. How-
ever, despite obtaining similar classification performance, 
there can be large differences in the most informative 
features chosen by the transformations. This variability 
could impact the development of gut microbiome health 
indices, assessment of microbiome dysbiosis, and bio-
marker discovery. Together with the equivalency in the 
resulting classification performance, this highlights the 
need to improve the feature identification, validation, and 
stability.

Discussion
Our goal was to evaluate the impact of data transforma-
tions on machine learning performance in microbiome 
binary classification [1]. We compared the classification 
performance of two learning algorithms in combination 
with seven data transformations across various analytical 
scenarios and analyzed the impact of using different data 
transformations on the feature importance. Our results 
showed that there was no significant improvement in 
classification performance when abundance-based trans-
formations were used instead of presence-absence (PA). 
This result is consistent with the comparison of PA and 
TSS as reported by Giliberti et  al. [12], but we further 
extend their findings to several other commonly used data 
transformations. Similarly to Giliberti et al., we observed 
that an elastic net algorithm (ENET) performs better 
with PA when compared to total-sum scaling (TSS), but 
there is no major difference when random forest (RF) or 
XGBoost (XGB) are used. Interestingly, all three models 
showed a decline in performance when applied with the 
isometric log-ratio (ILR) transformation, with the most 
significant drop observed in ENET. Although we saw 
the previously reported improved performance of ENET 
in combination with CLR as compared to TSS [27], our 
results did not confirm the benefit of using abundance-
based data transformations as reported in several other 
studies. For example, in combination with RF, centered 
log-ratio (CLR) has been shown to outperform TSS and 
logTSS [7]. Moreover, based on our results, there was no 
significant effect of the transformation selection on the 
model generalizability nor interaction with the model 
performance and data dimensionality. The performance 
of machine learning models seems to be more reliant 
on the characteristics of the dataset than on the specific 
algorithm or transformation employed. This principle 
echoes the “no free lunch theorem” in machine learning, 
emphasizing that no single algorithm universally outper-
forms others across diverse datasets [28].

Our feature analysis showed that the number of signifi-
cant predictors informed by the model was more tied to 



Page 9 of 14Karwowska et al. Microbiome            (2025) 13:2  

the dataset than the transformations used. Importantly, 
there was only partial overlap among the top features 
informed by different data transformations, indicating 
that different sets of microbial features can yield similar 
classification performance. This observation was most 
pronounced for PA in combination with RF which had 
the lowest overlap with the other data transformations, 
although PA led to better predictive performance. Thus, 
microbiome studies could take advantage of the method-
ologies such as statistically equivalent signatures, which 
aim to identify variable sets with equal predictive power 
[29]. Analyzing the properties of the selected features 
shows that abundance-based transformations may focus 
on the most abundant gut microbes such as P. copri, F. 
prausnitzii, B. vulgatus, and B. uniformis. As using rela-
tive abundances as a data representation is one of the 
most popular choices for applying ML on the microbi-
ome data [1], we suggest taking caution when focusing on 
the feature importance as the selection might not yield 
a signal specific to the condition of interest and it could 
potentially obscure the interpretation of classification 
outcomes. These findings underscore the need for further 
research.

Based on our findings, we recommend adopting the 
presence-absence (PA) transformation for microbiome 
data classification tasks as a supportive alternative to the 
abundance-based transformations. PA-based classifi-
ers demonstrate strong performance and offer a simpler 
interpretation, avoiding the need for pseudocount impu-
tation or data scale transformation. However, selecting 
a threshold for microbe absence (e.g., setting it at zero) 
introduces challenges related to structural zeros and 
sequencing depth, which warrants further investigation 
[30].

Our study’s strengths lie in its systematic approach, 
employing two learning algorithms on diverse data-
sets, which enhances generalizability. However, we 
acknowledge limitations. Our goal was to focus on 
commonly used data transformations in microbiome 
research to provide a solid foundation for research-
ers applying machine learning to binary classification 
tasks. While more advanced transformations like Phy-
ILR [31] and Phylofactorization [32] can offer enhanced 
performance, they often rely on specific biological 
priors, such as balances or phylogenetic data. For this 
study, we prioritized general transformations that do 
not require specialized biological inputs, making them 
more broadly applicable across a variety of datasets and 
research contexts. Our focus is on classification tasks, 
potentially limiting relevance to other analyses. Data-
set constraints and unexplored confounding variables 
are also noted. To further understand the effect of data 
transformation on classification accuracy and feature 

selection [33], taking advantage of synthetic microbial 
communities where alterations in bacteria are docu-
mented and ground truth is available would be ben-
eficial. Such an approach is being used for example in 
silico gut microbiome community design [34–36].

In the future, we plan to explore additional ques-
tions. Firstly, we would like to assess whether using 
only presence-absence (PA) data is sufficient for accu-
rate classification or if combining PA with variations in 
the abundance of key bacteria enhances performance. 
We would also investigate if the observed similarity 
between PA-based classifiers and abundance-based 
transformations is influenced by technical factors, such 
as shallow sequencing, which might mask certain fea-
tures. Additionally, we aim to gather more datasets to 
assess whether SHAP values for bacterial features in 
each disease remain consistent across geographic loca-
tions. Moreover, we would like to extend our study 
and evaluate how data transformations impact vari-
ous types of data modeling tasks, including regression 
models and unsupervised techniques like clustering. 
These inquiries highlight the complexity of our findings 
and provide directions for further research.

Methods
Data acquisition
Open data
Datasets available in the curatedMetagenomicData R 
package were used for the analysis (version 3.6.2) [14]. 
The curatedMetagenomicData package contains uni-
formly processed shotgun metagenomic sequencing 
human microbiome data of healthy and diseased sub-
jects. The microbiome data preprocessing, including 
taxonomic profiling, is carried out using the bioBak-
ery 3 toolki [37]. For the within-study (WS) evalua-
tion setting, we focused on 17 distinct human stool 
metagenomics datasets, which had a primary endpoint 
available and included at least 50 cases and 50 controls 
to allow proper model evaluation. Also, we included 
four datasets where we defined obesity as a binary out-
come defined as BMI > 30. In some instances, filtering 
was applied to the original dataset to achieve a binary 
classification task. For example, we excluded adenomas 
from the Zeller et  al. study and focused only on colo-
rectal cancer cases and controls [38]. The selected data-
sets, sample size, defined binary classification task, and 
the filtering procedures are shown in Supplementary 
Table 1.

For the leave-one-study-out (LOSO) evaluation setting, 
we included additional 6 colorectal cancer datasets with 
less than 50 cases or controls and 4 datasets, where pri-
mary endpoint was not available.
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Estonian microbiome cohort
The Estonian Microbiome cohort (EstMB) is a volunteer-
based cohort currently including 2509 subjects, who have 
provided blood, oral, and stool samples. Being part of a 
larger nation-wide Estonian Biobank (EstBB), linkings to 
various electronic health records (EHR) and question-
naires covering the lifestyle and dietary preferences are 
available for all of the subjects. The cohort is described 
in detail in Aasmets et al. [15]. For the binary classifica-
tion, four target variables were considered: antibiotics 
usage within the previous 90 days before the microbiome 
sample collection (AB90), obesity defined as BMI > 30 
(BMI30), type 2 diabetes (T2D), and depression (Supple-
mentary Table 1).

Taxonomic profiling on EstMB was carried out using 
Metaphlan3 [37] to comply with the profiling done for 
the curatedMetagenomicData R package datasets.

Data transformations
Numerous data transformations have been proposed to 
be used in the analysis of microbiome data. In the cur-
rent manuscript, the following data transformations were 
considered:

1. Relative abundance/total-sum-scaling (TSS): The 
standard and most widely used technique, which 
scales data to relative abundances.

2. Log(TSS): A logarithmic transformation applied to 
TSS-normalized data.

3. Presence-absence (PA): changes abundance data into 
binary data. We used zero as the threshold for pres-
ence-absence.

4. Arcsin square root (aSIN [13]): Which involves 
applying the arcsin (inverse sine) function to each 
value, which can be useful for normalizing and sta-
bilizing data that represents proportions or percent-
ages, particularly in statistical analyses of composi-
tional data.

5. Centered log-ratio transformation (CLR [39]): proce-
dure that enhances compositional data for standard 
statistical analysis by dividing each value by the geo-
metric mean of all features and applying a logarith-
mic transformation.

6. Robust CLR transformation (rCLR [40]): a robust 
version of CLR that handles zeros by using only 
observed taxa for the geometric mean calculations.

7. Additive log-ratio transformation (ALR [39]): in 
which each feature in a dataset is divided by a 
selected reference feature and then logarithmically 
transformed. We randomly selected 5 features as ref-
erence elements and averaged all the results over the 
different ALR transformations to account for the var-

iability arising from the reference element selection. 
We observed that averaging over 5 different reference 
elements resulted in a reasonable trade-off between 
computational burden and variability of the perfor-
mance estimates (Supplementary Fig. 12).

8. Isometric log-ratio transformation (ILR (Egozcueet 
al. 2003)): in which the compositional dataset is 
transformed by representing each feature as a set of 
orthogonal log-ratios using a basis that maintains the 
geometric structure of the data. The ILR transforma-
tion was applied using the implementation in the R 
package compositions.

Machine learning pipeline
Each of the considered transformations was applied to 
a dataset, and a binary classification task was carried 
out. Random forest (RF), XGBoost (XGB), and elastic 
net (ENET) penalized logistic regression were used as 
the learning algorithms. ENET logistic regression is a 
machine learning algorithm that combines L1 (Lasso) 
and L2 (Ridge) regularization techniques to perform 
logistic regression with variable selection, making it suit-
able for high-dimensional data by minimizing overfitting 
and selecting the most relevant features. Regulariza-
tion helps prevent overfitting by adding a penalty to the 
model’s complexity. L1 regularization (Lasso) encourages 
sparsity by shrinking some weights to zero, which helps 
feature selection. L2 regularization (Ridge) distributes 
penalties evenly across all weights, reducing their mag-
nitude but keeping all features. A balance between L1 
and L2 (Elastic Net) combines these benefits, offering 
both feature selection and weight regularization, help-
ing the model generalize better [41]. Random Forest, 
on the other hand, is an ensemble learning method that 
builds multiple decision trees and combines their pre-
dictions to improve classification accuracy and handle 
complex relationships in data while reducing the risk of 
overfitting [42]. XGBoost is an advanced ensemble learn-
ing algorithm that builds multiple decision trees sequen-
tially, where each tree corrects the errors of the previous 
ones, thereby improving the overall prediction accuracy. 
It is designed to be highly efficient and scalable, handling 
large datasets with complex relationships while prevent-
ing overfitting through regularization [43]. For every 
algorithm, we performed hyperparameter tuning using 
cross validation in combination with grid search, and 
the model with optimal hyperparameters was then used 
for classification. For ENET, both penalty and mixture 
parameters were tuned; for RF, the number of predictors 
to sample at each split (mtry) and the number of observa-
tions needed to keep splitting nodes (min_n) were tuned; 
the number of trees was 500; for XGB, the number of 
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predictors to sample at each split (mtry) and the number 
of observations needed to keep splitting nodes (min_n), 
the maximum depth of each tree (tree_depth), learning 
rate, and the fraction of training data used for growing 
each tree (sample_size) were tuned; the number of trees 
was 500. 

These algorithms were chosen due to their popularity 
and competitive performance in the microbiome field 
[44], and as RF being a nonlinear, XGB being non-linear 
and using boosting, where trees are built sequentially, 
with each tree focusing on correcting the mistakes of 
the previous ones and ENET a linear method, they can 
provide insights on the impact of algorithm selection in 
microbiome studies. Followingly, the model fitting and 
evaluation are described.

Within the study (WS) setting
For each 21 datasets used for the within-study evaluation, 
the following repeated holdout validation procedure for 
parameter tuning and model evaluation was carried out:

1. Data is split to training/test set (75–25%) stratified by 
the target variable

2. Hyperparameter tuning on the training set (75%) 
using fivefold cross-validation with grid search (10 
parameter combinations)

3. Model with optimal hyperparameters is fit on the 
whole training data (75%)

4. Model is evaluated on the test set (25%)

The initial data test/train split and model evaluation 
were carried out on 10 random data splits to assess the 
variation arising from sampling resulting in 10 perfor-
mance estimates per evaluation.

Leave‑one‑study‑out (LOSO) setting
The LOSO setting was carried out for the 11 available 
colorectal cancer and 5 obesity (BMI > = 30) datasets. The 
aim was to understand whether the dataset-to-dataset 
generalization performance might be dependent on the 
chosen data transformation. For the model fitting and 
evaluation, the following procedure was carried out:

1. Data is split to training/test set so that one dataset 
works as the test set and other datasets as a combined 
training set

2. Hyperparameter tuning on the training set using five-
fold cross-validation with grid search (10 parameter 
combinations)

3. Model with optimal hyperparameters is fit on the 
whole training data (75%)

4. Model is evaluated on the test set—left out dataset

The model evaluation was carried out using each data-
set per target variable as a test set. This resulted in 11 
performance estimates for colorectal cancer and 5 for 
obesity.

Cumulative classifier
This analysis aimed to evaluate whether a subset of the 
most significant predictors can be used to build a model 
that has optimal prediction performance. This experi-
ment was based on the PA-transformed EstMB datasets 
and carried out for antibiotics usage, obesity (BMI30), 
and depression. For the model fitting, feature selection, 
and evaluation, the following procedure was carried out:

Stage 1

1. Data is split to training/test set (50–50%) stratified by 
the target variable

2. Hyperparameter are tuned (fivefold cross-validation 
with grid search) and feature importance calculated 
on the training set (50%)

3. Subsets of most important features are created (set 
sizes 5, 10, 25, 50, 75, 100, 200)

Stage 2

4. Test data from stage 1 (50%) is used for model evalu-
ation

5. For each subset of features:

a. Stage 1 test data is split to stage 2 training/test set 
(75–25%) stratified by the target variable

b. Hyperparameter tuning on the stage 2 training 
set (75%) using fivefold cross-validation with grid 
search (10 parameter combinations)

c. Model with optimal hyperparameters is fit on the 
whole stage 2 training data (75%)

d. Model is evaluated on the stage 2 test set (25%)

The stage 1 and stage 2 data test/train splits and model 
evaluation were carried out on 10 random data splits to 
assess the variation arising from sampling.

Model comparison
To test the differences in the binary classification results, 
we used the Wilcoxon signed-rank test for each pair of 
data transformations. For that, we first averaged the 
results over different folds and target variables to account 
for the overrepresentation of certain phenotypes like 
colorectal cancer and obesity. After that, a paired test 
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within each target variable was carried out. Thus, we 
tested the hypothesis that the difference in the perfor-
mance of transformation1 and transformation2 is not 
equal to 0 (Fig. 1c). To account for the multiple testing, 
the Benjamini-Hochbergi procedure was applied to the 
nominal p-values.

Filtering subjects and features
Due to the large sample size, EstMB dataset was fur-
ther used to study the effects of sample size and num-
ber of bacteria used by the model on the performance of 
the classifiers, focusing on differences between the data 
transformations. For that reason, the cases and controls 
of antibiotics usage (AB90) and obesity (BMI30) were 
subsampled to 20/40/60/80% of the initial number of 
cases and controls. Additionally, in combination with the 
sample subsetting, prevalence filtering (1/10/50%) for 
the microbial taxa was applied to study the impact of the 
number of predictors. Thus, in total of 5 × 3 = 15 scenar-
ios per algorithm and data transformation were analyzed, 
and the same machine learning procedure as described in 
the within-sample setting evaluation was carried out.

Prevalence filtering (10/25/50/75/90%) was also car-
ried out on the curatedMetagenomicData package data-
sets before applying the machine learning procedure as 
described in the within-sample setting evaluation was 
carried out.

Feature importance analysis
Feature importance evaluation was based on the SHapley 
Additive exPlanations (SHAP) values. SHAP values are a 
method used in machine learning to explain the contri-
bution of each feature to the prediction of a model [16]. 
We first determined the percentage of features within 
each dataset that exhibited mean absolute SHAP val-
ues exceeding zero. For feature overlap assessment, we 
quantified the average percentage of overlapping fea-
tures among the top 25 features between data transfor-
mations and algorithms. The average feature overlap was 
calculated by taking the average across different folds 
and datasets. Pearson correlation was used to study the 
associations between SHAP values, bacterial relative 
abundances, and prevalence. The overall similarity of the 
feature importance profiles was evaluated by comparing 
the Euclidean distances between the feature importance 
profiles across the algorithm-transformation pairs. A 
standard t-test was used to formally test the differences 
between groups of interest (Supplementary Fig. 7). Prin-
cipal component analysis on the feature importance pro-
files was carried out to visualize the differences between 
different data transformations and datasets in a two-
dimensional space.

To identify microbial predictors with the largest dif-
ference in SHAP values between TSS and PA, we first 
calculated the mean absolute SHAP value for each fea-
ture, study, data transformation, and algorithm. Then, 
for each feature, study, and algorithm, we calculated the 
delta between the mean SHAP values for TSS and PA and 
averaged the delta overall studies. The top 100 features 
according to the absolute delta for algorithms separately 
were then visualized (Supplementary Figs. 9, 10, 11).
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