Minimal requirements for calcium oscillations driven by the IP₃ receptor

György Hajnóczky and Andrew P.Thomas¹

Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA

¹Corresponding author e-mail: thomasa@jeflin.tju.edu

Hormones and neurotransmitters that act through inositol 1,4,5-trisphosphate (IP₃) can induce oscillations of cytosolic Ca^{2+} ([Ca^{2+}]_c), which render dynamic regulation of intracellular targets. Imaging of fluorescent Ca²⁺ indicators located within intracellular Ca²⁺ stores was used to monitor IP₃ receptor channel (IP₃R) function and to demonstrate that IP₃-dependent oscillations of Ca²⁺ release and re-uptake can be reproduced in single permeabilized hepatocytes. This system was used to define the minimum essential components of the oscillation mechanism. With IP₃ clamped at a submaximal concentration, coordinated cycles of IP₃R activation and subsequent inactivation were observed in each cell. Cycling between these states was dependent on feedback effects of released Ca^{2+} and the ensuing $[Ca^{2+}]_{c}$ increase, but did not require Ca^{2+} re-accumulation. $[Ca^{2+}]_c$ can act at distinct stimulatory and inhibitory sites on the IP₃R, but whereas the Ca^{2+} release phase was driven by a Ca^{2+} -induced increase in IP₃ sensitivity, Ca^{2+} release could be terminated by intrinsic inactivation after IP₃ bound to the Ca^{2+} sensitized IP₃R without occupation of the inhibitory Ca²⁺-binding site. These findings were confirmed using Sr^{2+} , which only interacts with the stimulatory site. Moreover, vasopressin induced Sr²⁺ oscillations in intact cells in which intracellular Ca²⁺ was completely replaced with Sr^{2+} . Thus, $[Ca^{2+}]_c$ oscillations can be driven by a coupled process of Ca^{2+} -induced activation and obligatory intrinsic inactivation of the Ca²⁺-sensitized state of the IP₃R, without a requirement for occupation of the inhibitory Ca²⁺-binding site. *Keywords*: Ca²⁺ oscillations/endoplasmic reticulum/ inositol 1,4,5-trisphosphate/Sr²⁺ oscillations

Introduction

One of the most common and fundamental mechanisms of cell signaling is through changes in the cytosolic free Ca^{2+} concentration ($[Ca^{2+}]_c$) (Berridge, 1993; Clapham, 1995). The predominant pathway of $[Ca^{2+}]_c$ elevation in non-excitable cells is through the second messenger inositol 1,4,5-trisphosphate (IP₃), which mobilizes Ca^{2+} from intracellular stores, most often associated with the endoplasmic or sarcoplasmic reticulum. The $[Ca^{2+}]_c$ signals generated in response to activation of receptors coupled to this signal transduction pathway are often complex at the single cell level, even when receptor activation occurs

in a sustained and continuous manner. Thus, IP3-linked agonists can give rise to large repetitive $[Ca^{2+}]_c$ transients, or oscillations, and each of these $[Ca^{2+}]_c$ transients may be organized at the subcellular level as a propagating Ca²⁺ wave (Toescu, 1995; Thomas et al., 1996). Studies using Ca²⁺ indicator dyes within the intracellular stores of intact cells have shown that agonist-induced $[Ca^{2+}]_{c}$ oscillations are accompanied by inverse oscillations of stored Ca^{2+} (Tse *et al.*, 1994; Chatton *et al.*, 1995). In many cases, the strength of the activating stimulus is conveyed to the cell by the frequency rather than the amplitude of the $[Ca^{2+}]_c$ oscillations, which has given rise to the concept of frequency-modulated Ca²⁺ signaling (Berridge et al., 1988; Goldbeter et al., 1990). Although it is difficult to measure the output responses to these signals at the level of individual cells, it is clear that $[Ca^{2+}]_c$ oscillations represent an important mechanism in regulating cell function (Tse et al., 1993; Hajnóczky et al., 1995). The manifestation of $[Ca^{2+}]_c$ oscillations as Ca^{2+} waves appears to reflect the subcellular organization of the Ca²⁺ release system and the feedback interactions that give rise to the transient spikes of $[Ca^{2+}]_c$ increase (Toescu, 1995; Thomas et al., 1996). Through these mechanisms, oscillatory [Ca2+]c signals can be directed to discrete subcellular domains (Kasai et al., 1993; Thorn et al., 1993), propagate through entire cells (Rooney et al., 1990; Lechleiter and Clapham, 1992) or even coordinate the activities of large numbers of coupled cells in intact tissues and organs (Stauffer et al., 1993; Sanderson et al., 1994; Robb-Gaspers and Thomas, 1995).

The mechanisms underlying $[Ca^{2+}]_c$ oscillations have been the subject of much study and of a number of reviews (Berridge, 1990, 1993; Petersen and Wakui, 1990; Meyer and Stryer, 1991; Thomas et al., 1996). Most of the models describing [Ca²⁺]_c oscillations rely on positive and negative feedback effects on the Ca²⁺ release system, resulting in either fluctuations in the level of IP₃ or changes in the activity of the Ca²⁺ channels of the intracellular stores. It has been suggested that oscillations of IP₃ could arise from feedback activation of PLC by [Ca²⁺]_c (Harootunian *et al.*, 1991; Meyer and Stryer, 1991), and protein kinase C (PKC) has been proposed to function as a negative feedback regulator of IP₃ generation (Cobbold *et al.*, 1991). However, $[Ca^{2+}]_c$ oscillations can be induced by direct introduction of non-metabolizable IP₃ analogs in both mammalian cells (Wakui et al., 1989) and in Xenopus oocytes (DeLisle and Welsh, 1992; Lechleiter and Clapham, 1992), suggesting that $[Ca^{2+}]_c$ oscillations are not secondary to oscillating levels of IP₃. An alternative mechanism of generating IP₃-dependent $[Ca^{2+}]_{c}$ oscillations has evolved from the observation that the IP₃ receptor Ca^{2+} channel (IP₃R) is itself sensitive to both positive and negative feedback effects of Ca^{2+} (Iino, 1990; Bezprozvanny et al., 1991; Finch et al., 1991). Thus, it has been proposed that each $[Ca^{2+}]_c$ transient is initiated by a local elevation of trigger Ca²⁺ that activates IP₃Rs in the immediate vicinity to yield the rapid rising phase of Ca^{2+} release and propagation of $[Ca^{2+}]_c$ waves. This process is believed to be terminated by a negative feedback effect of the elevated [Ca²⁺]_c that inactivates the IP_3R and allows the Ca^{2+} pumps to re-sequester the released Ca²⁺. Experiments in intact cells have provided evidence for both the positive and negative effects of $[Ca^{2+}]_c$ on the IP₃R (Parker and Ivorra, 1990; DeLisle and Welsh, 1992; Lechleiter and Clapham, 1992; Oancea and Meyer, 1996), and regulation by luminal Ca^{2+} has also been proposed (Missiaen et al., 1991, 1992; Nunn and Taylor, 1992; Tanimura and Turner, 1996a). However, it is apparent that recovery from the inhibited state of the $IP_{3}R$ depends on factors other than the decline of $[Ca^{2+}]_{c}$ (Ilyin and Parker, 1994; Oancea and Meyer, 1996).

Previous studies of the mechanisms underlying $[Ca^{2+}]_c$ oscillations have relied on manipulations in intact cells, or have examined the individual components in isolation using subcellular systems. In the present study, we have established a permeabilized cell system in which Ca²⁺ oscillations can be evoked by global application of IP₃. Repetitive cycles of Ca²⁺ release and re-uptake were monitored using low affinity fluorescent Ca2+ indicators localized within the intracellular Ca2+ stores (Hofer and Machen, 1993, 1994), and changes in IP₃R permeability were also monitored using the retrograde flux of Mn² to quench luminal dye (Hajnóczky and Thomas, 1994; Hajnóczky et al., 1994). This approach has allowed us to define the minimum requirements for intracellular $[Ca^{2+}]_c$ oscillations and dissect the mechanism in a single experimental system. IP₃-induced Ca²⁺ oscillations were found to depend on fluctuations of $[Ca^{2+}]_c$, but Ca²⁺ re-uptake and control by the luminal Ca²⁺ content of the stores were not essential components of the mechanism. While this manuscript was in preparation, Tanimura and Turner (1996b) reported similar findings in salivary epithelial cells. In addition, we found that the IP₃R undergoes an obligatory inactivation from the Ca2+-sensitized state without the need for occupation of the inhibitory Ca²⁺binding site. Although this intrinsic inactivation is likely to occur together with Ca^{2+} -induced inhibition, experiments utilizing Sr^{2+} in place of Ca^{2+} suggest that the coupled processes of Ca^{2+} -dependent activation and subsequent obligatory inactivation of the IP₃R is sufficient to generate [Ca²⁺]_c oscillations in intact cells without utilizing the inhibitory Ca²⁺-binding site of the IP₃R.

Results and discussion

Ca²⁺ oscillations in intact and permeabilized hepatocytes

Treatment of hepatocytes with vasopressin causes a dosedependent generation of IP₃ (Thomas *et al.*, 1984), which is accompanied by $[Ca^{2+}]_c$ oscillations at submaximal agonist doses and sustained $[Ca^{2+}]_c$ increases with high levels of vasopressin (Figure 1A). The $[Ca^{2+}]_c$ oscillations in hepatocytes represent a very clear example of frequency modulation. The interspike period and initial latency decrease as the agonist dose is increased, but the amplitude and kinetics of the individual $[Ca^{2+}]_c$ spikes remain constant over a broad range of agonist doses (Woods et al., 1986; Rooney et al., 1989). The permeability of the intracellular Ca²⁺ release channels during stimulation with vasopressin was monitored in intact hepatocytes by measuring the Mn²⁺ quench of fura2 compartmentalized within the Ca^{2+} stores (Glennon *et al.*, 1992; Hajnóczky et al., 1993, 1994; Renard-Rooney et al., 1993). Addition of submaximal vasopressin after pre-loading the cytosol with Mn²⁺ resulted in a series of brief steps of rapid quench reflecting the opening of the intracellular channels, and these steps were separated by extended periods of slow quench where channel permeability was low (Figure 1B). The Mn^{2+} quench steps and $[Ca^{2+}]_c$ oscillations showed similar sensitivities to vasopressin dose for latency and frequency, and high levels of vasopressin caused a sustained Mn^{2+} quench that also paralleled the $[Ca^{2+}]_c$ response. Importantly, the rapid phase of Mn^{2+} quench occurred with the same rate throughout the effective vasopressin dose range (2.09 \pm 0.18%/s and 2.11 \pm 0.09%/s at 50 and 0.5 nM vasopressin, respectively). These data show that submaximal vasopressin doses cause synchronized periodic activation and subsequent deactivation of the entire population of intracellular Ca²⁺ channels that can be activated by saturating levels of vasopressin. Thus, it appears that $[Ca^{2+}]_c$ oscillations in the intact cell are driven by cycling between a fully open and a largely closed state of the IP₃R channels.

In order to dissect the mechanisms involved in this process, we established a permeabilized cell system that responds to a fixed level of exogenously added IP₃ with autonomous oscillations of Ca2+ release and re-uptake at the single cell level. Hepatocytes were permeabilized with digitonin using a protocol that preserves the functional integrity of the endoplasmic reticulum (ER) Ca²⁺ stores (Renard-Rooney et al., 1993; Hajnóczky et al., 1994). Luminal $[Ca^{2+}]$ ($[Ca^{2+}]_{ER}$) was measured with compart-mentalized low affinity Ca^{2+} indicators (fura2FF or furaptra) (Hofer and Machen, 1993, 1994). Submaximal doses of IP₃ evoked oscillations of $[Ca^{2+}]_{ER}$ that were inverted relative to vasopressin-induced $[Ca^{2+}]_c$ spikes in intact hepatocytes (Figure 1C). Thus, each $[Ca^{2+}]_{ER}$ spike consisted of a rapid Ca^{2+} release phase followed by a slower re-accumulation of Ca^{2+} . The $[Ca^{2+}]_{ER}$ oscillations occurred in a coordinated manner throughout each cell, but adjacent cells in the imaging field responded asynchronously (Figure 2A). Stepped increases in IP₃ concentration increased the oscillation frequency, with little change in the kinetics or amplitude of the individual $[Ca^{2+}]_{ER}$ spikes (Figure 2B). The interspike period varied from 20 to 240 s, which is similar to the range observed for agonist-induced $[Ca^{2+}]_c$ oscillations in intact hepatocytes (Rooney *et al.*, 1989). Maximal doses of IP₃ caused a rapid and persistent loss of $[Ca^{2+}]_{ER}$ (Figures 1C and 2B). Mn²⁺ quench of compartmentalized fura2 was also used to monitor changes in IP₃R permeability during IP₃induced [Ca²⁺]_{ER} oscillations in the permeabilized hepatocyte preparation. Consistent with the intact cell data (Figure 1B), submaximal doses of IP₃ evoked brief bursts of rapid Mn²⁺ entry into the stores, separated by extended periods where Mn2+ permeability returned close to the basal rate, whereas maximal IP₃ caused a sustained and complete quench of the luminal dye (Figure 1D). Taken together, these data demonstrate that the entire process responsible for $[Ca^{2+}]_c$ oscillations can be reproduced in

Fig. 1. Oscillations of IP₃R permeability during $[Ca^{2+}]_c$ spikes in intact and permeabilized hepatocytes. (**A**) $[Ca^{2+}]_c$ responses to submaximal (0.5 nM) and maximal (50 nM) vasopressin (VP) monitored using cytosolic fura2 in single intact hepatocytes. Agonists were present continuously from the addition arrow. (**B**) Activation of intracellular Ca²⁺ channels evoked by submaximal and maximal vasopressin monitored by Mn²⁺ quench of compartmentalized fura2 in intact hepatocytes. Addition of 100 μ M MnCl₂ to fura2-loaded hepatocytes resulted in rapid quench of the cytosolic fura2 (prior to start of traces). The rate of quench reflects the penetration of Mn²⁺ into the fura2-containing intracellular compartmentalized hepatocytes. (**D**) IP₃R activation by submaximal and maximal IP₃ was monitored using compartmentalized furaptra in single permeabilized fura2 in single permeabilized fura2 in single permeabilized fura2 in single permeabilized fura2 in the patocytes.

Fig. 2. Coordination and frequency modulation of IP₃-induced $[Ca^{2+}]_{ER}$ oscillations in single permeabilized hepatocytes. (**A**) Images of fura2FFloaded permeabilized hepatocytes showing sites of $[Ca^{2+}]_{ER}$ decrease (red overlay) during IP₃-induced $[Ca^{2+}]_{ER}$ oscillations. The red overlay was calculated by differentiation of the images through time, using a step value of 6 s. (**B**) Time courses of $[Ca^{2+}]_{ER}$ change for numbered cells of (A) during incubation with 100 nM, 150 nM and 2.5 μ M IP₃, as indicated.

Fig. 3. Effects of heparin and thapsigargin on IP₃-induced oscillations of $[Ca^{2+}]_{ER}$. Fluorescence imaging was used to monitor $[Ca^{2+}]_{ER}$ in permeabilized hepatocytes loaded with furaptra (**A** and **B**) or fura2FF (**C** and **D**). Additions were made as indicated: Tg, thapsigargin; Iono, ionomycin. In (B), heparin (100 µg/ml) was added prior to the start.

a cell-free system in which the plasma membrane is disrupted and only the Ca^{2+} fluxes mediated by intracellular organelles remain intact.

Mechanisms of permeabilized cell Ca²⁺ oscillations

Oscillations of $[Ca^{2+}]_{ER}$ occurred at a constant level of IP₃ applied in a bath volume >10000-fold in excess of the original intracellular volume, suggesting that oscillatory changes of [IP₃] were not required in this system. This is supported by experiments in which $[Ca^{2+}]_{ER}$ oscillations were induced by maximal IP₃ in the presence of the competitive IP₃R blocker heparin (Ghosh et al., 1988). In contrast to the stimulation of IP₃ binding by $[Ca^{2+}]_c$ (Pietri et al., 1990), heparin affinity is not affected by Ca²⁺ (Rouxel et al., 1992), making it a good tool to shift the range of IP₃ sensitivity. Heparin addition terminated $[Ca^{2+}]_{ER}$ oscillations induced by submaximal IP₃ (Figure 3A). However, in the presence of heparin, $[Ca^{2+}]_{ER}$ oscillations could be observed with micromolar IP₃ concentrations that would otherwise cause sustained $[Ca^{2+}]_{ER}$ release (Figure 3B). Cellular formation or breakdown of IP₃ is unlikely to contribute significantly under these conditions, because [IP₃] is effectively clamped at a high level. These findings are consistent with previous reports in which non-metabolizable IP₃ analogs induced $[Ca^{2+}]_c$ oscillations in intact cells (Wakui et al., 1989; DeLisle and Welsh, 1992; Lechleiter and Clapham, 1992). A potential problem with the interpretation of the intact cell experiments is that there may be a contribution from oscillations of IP₃ formation secondary to the Ca²⁺ release triggered by the non-metabolizable IP₃ analog. However, in our permeabilized cell studies, the presence of heparin would greatly reduce the efficacy of any endogenous IP₃ formation, which would also be diluted rapidly into the essentially infinite sink of extracellular medium containing high levels of exogenous IP_3 .

One potential mechanism by which $[Ca^{2+}]_c$ oscillations could occur at a constant IP₃ level is through feedback regulation of the IP₃R channel by $[Ca^{2+}]_{ER}$ (Missiaen *et al.*, 1991, 1992; Nunn and Taylor, 1992; Tanimura and Turner, 1996a). In this model, the cycling between open and closed states is dependent on both Ca²⁺ release and re-uptake, such that inhibition of the ER Ca²⁺ pump with thapsigargin would be expected to terminate the oscillations of $[Ca^{2+}]_{ER}$. When thapsigargin was added either during IP₃-induced $[Ca^{2+}]_{ER}$ oscillations (Figure 3C) or together with IP₃ (Figure 3D), the re-uptake phase of the $[Ca^{2+}]_{ER}$ spikes was completely prevented. However, Ca^{2+} release still occurred in a periodic manner and, as a result, $[Ca^{2+}]_{ER}$ declined in a series of discrete steps. The Mn²⁺ quench approach (see Figure 1D) also showed the same cycling between the high and low permeability states of the IP₃R when thapsigargin was added shortly before IP₃ under these conditions (data not shown). Thus, feedback regulation by $[Ca^{2+}]_{ER}$ is not an essential component of the Ca²⁺ oscillation mechanism.

The role of $[Ca^{2+}]_c$ in the permeabilized hepatocyte system was investigated using 10 mM BAPTA to buffer the medium Ca^{2+} ([Ca^{2+}]_o). Under these conditions, the bell-shaped dependence on $[Ca^{2+}]_c$ (Iino, 1990; Bezprozvanny et al., 1991; Finch et al., 1991) was clearly apparent at submaximal IP₃, with properties similar to those described previously for hepatocytes permeabilized in suspension (Marshall and Taylor, 1993). For example, at 250 nM IP₃, the rate of $[Ca^{2+}]_{ER}$ release was stimulated 15 \pm 6-fold when $[Ca^{2+}]_0$ was increased from <5 to 500 nM, whereas Ca^{2+} release rates decreased with higher $[Ca^{2+}]_{o}$ and were barely detectable at >5 $\mu M [Ca^{2+}]_{o}$ (not shown). IP_3 released Ca^{2+} throughout the range of $1-2000 \text{ nM} [\text{Ca}^{2+}]_{0}$, but $[\text{Ca}^{2+}]_{\text{ER}}$ oscillations were never observed in the presence of the Ca²⁺ buffer (e.g. Figure 4A), indicating that fluctuations in $[Ca^{2+}]_0$ are necessary for $[Ca^{2+}]_{ER}$ oscillations. Although the Ca^{2+} buffer prevented oscillations, Ca^{2+} release induced by submaximal IP₃ was still transient at $[Ca^{2+}]_0$ levels >200 nM (Figure 4A). Since $[Ca^{2+}]_o$ was highly buffered, Ca^{2+} re-uptake reflects refilling of the same Ca²⁺ store at steady-state, which implies an inactivation of the IP₃R channel sufficient to allow the ER Ca²⁺ pump to overcome the IP₃-activated release pathway. This was demonstrated directly by addition of thapsigargin at steady-state, which revealed a Ca²⁺ release rate >10-fold slower than the rate when IP₃ was added initially or when IP₃ and thapsigargin were added simultaneously to naive cells (Figure 4A). By contrast, Ca²⁺ release rates recovered when IP₃ was washed out and then added again (Figure 4B). The high level of BAPTA makes it unlikely that steady-state inactivation of the IP₃R was mediated by released Ca²⁺ during sustained incubation with IP₃. An alternative to Ca²⁺ feedback inhibition that might contribute to the decline in Ca²⁺ release under these conditions is the ligand-induced inactivation of the IP₃R by IP₃, which occurs in a timedependent manner at fixed [Ca²⁺]_o (Hajnóczky and Thomas, 1994).

Role of IP₃-induced inactivation of the IP₃R

The time-dependent inactivation of the IP_3R by IP_3 was demonstrated originally by measuring IP_3R permeability

Fig. 4. Transient $[Ca^{2+}]_{ER}$ release by IP₃ in the presence of Ca^{2+} -BAPTA buffer. Permeabilized fura2FF-loaded hepatocytes were incubated in intracellular medium supplemented with 10 mM Na-BAPTA (Calbiochem) and 7.5 mM CaCl₂, giving a measured $[Ca^{2+}]_o$ of ~800 nM calibrated with fura2 (using $K_d = 220$ nM). Ruthenium red was also included to block mitochondrial Ca^{2+} uptake. (A) Cells were first incubated with 250 nM IP₃ and then 4 μ M thapsigargin (Tg) was added once $[Ca^{2+}]_{ER}$ had returned to a steady-state in the continuous presence of IP₃ (trace a), or IP₃ and thapsigargin were added simultaneously (trace b). Traces are averaged from the entire cell population in the imaging field (30–50 cells). (B) Cells were incubated with 250 nM IP₃, followed by washout (three changes of medium) and then readdition of the same level of IP₃ where indicated.

using retrograde Mn²⁺ flux through the channel to quench luminal fura2 at various times after addition of IP3 (Hajnóczky and Thomas, 1994). In those experiments, suspensions of permeabilized hepatocytes were pre-incubated with thapsigargin to deplete the Ca^{2+} stores. However, Combettes et al. (1996) suggested recently that there may have been sufficient residual Ca²⁺ within the stores under these conditions to sensitize the IP₃R to IP₃, and that loss of this $[Ca^{2+}]_{ER}$ during the incubation with IP₃ could account for the inactivation of the IP₃R. Although we observed no Ca²⁺ release and no change in $[Ca^{2+}]_{ER}$ measured with luminal fura2 in response to IP₃ in thapsigargin-treated cells in our previous studies (Hajnóczky and Thomas, 1994), we have re-examined this question using both low and high affinity Ca²⁺ indicator dyes. In the present experiments, suspensions of hepatocytes were permeabilized in the presence or absence of 2 µM thapsigargin with $[Ca^{2+}]_o$ buffered to 400 nM with 15 mM BAPTA. When $[Ca^{2+}]_{ER}$ was monitored with luminal fura2FF (Figure 5A), inclusion of thapsigargin from the start of the experiment (lower two traces of Figure 5A) completely blocked Ca^{2+} uptake and depleted the Ca^{2+} stores to the point where IP_3 was unable to cause any further loss of $[Ca^{2+}]_{ER}$. Thapsigargin was less effective in depleting the Ca^{2+} stores when added after completion of ATP-dependent Ca^{2+} uptake (upper traces of Figure 5A), but treatment with ionomycin caused a rapid decrease of $[Ca^{2+}]_{ER}$ to the level measured in cells pre-treated with thapsigargin. Pre-incubation with thapsigargin was also

Fig. 5. Effect of thapsigargin pre-treatment on IP₃-induced changes in $[Ca^{2+}]_{ER}$. Suspensions of hepatocytes loaded with fura2FF (**A**) or fura2 (**B**) were permeabilized in ICM supplemented with 15 mM Na-BAPTA and 9 mM CaCl₂, giving a measured $[Ca^{2+}]_0$ of ~400 nM calibrated with fura2. Ruthenium red was also included to block mitochondrial Ca^{2+} uptake. Other additions were 2 μ M thapsigargin (Tg), 12.5 μ M IP₃, 10 μ M ionomycin (Iono) or solvent (solv), as indicated. The inset to (B) shows Mn²⁺ quench measurements for fura2-loaded hepatocytes permeabilized in ICM (~400 nM $[Ca^{2+}]_0$) supplemented with 2 μ M thapsigargin. Fluorescence quenching was initiated 420 s after permeabilization by addition of 40 μ M MnCl₂ in the absence of IP₃ (solv), after 30 s pre-incubation with 12.5 μ M IP₃ (IP₃ at 390 s) or with IP₃ added together with the MnCl₂ (IP₃ at 420 s).

found to eliminate the Ca^{2+} release response to IP_3 in experiments using luminal fura2, which has the advantage of being sensitive to $[Ca^{2+}]_{ER}$ in the submicromolar range (Figure 5B).

The same fura2-loaded cell preparation examined in Figure 5B was also used for Mn^{2+} quench measurements of IP₃R permeability (Figure 5B inset). These experiments demonstrate that the initial fast phase of Mn^{2+} quenching observed when IP₃ was added together with the Mn^{2+} was greatly reduced when the cells were pre-incubated with IP₃ for 30 s. This reflects the time-dependent inactivation induced by IP₃, as reported previously (Hajnóczky and Thomas, 1994). These findings also provide direct evidence that the IP₃R remains permeable to Mn^{2+} even when the stores are completely depleted of Ca²⁺, in contrast to the findings of Tanimura and Turner (1996a). Another potential problem with the use of Mn^{2+} to study IP₃R permeability is that Mn^{2+} may displace Ca²⁺ from other binding sites, which could then contribute to the inhibition

of the IP₃R (Combettes *et al.*, 1996). However, the presence of 2 mM Mg-ATP in our experiments provides additional Ca²⁺ and Mn²⁺ buffering capacity, which prevents the substantial Ca²⁺ changes that might otherwise occur on Mn²⁺ addition (calculated [Ca²⁺]_o increased from 435 to 515 nM after MnCl₂ addition in Figure 5B). Moreover, this [Ca²⁺]_o change occurs only at the time of Mn²⁺ addition, and so cannot explain the time-dependent decrease in Mn²⁺ uptake rate during pre-incubation of the cells with IP₃. It should also be noted that Striggow and Ehrlich (1996) have concluded that the free [Mn²⁺] used in these experiments (2 μ M) is close to the optimum for measuring IP₃R permeability. Since the Ca²⁺ dependence for sensitization of the IP₃R

to IP₃ and for IP₃-dependent inactivation appeared to be similar in hepatocytes (Marshall and Taylor, 1993; Hajnóczky and Thomas, 1994), we hypothesized that these may be coupled events. Therefore, the Mn^{2+} quench approach was used to compare the effects of [Ca²⁺]_o on IP₃R sensitization and IP₃-induced inactivation in suspensions of fura2-loaded hepatocytes permeabilized in the presence of thapsigargin. The Mn2+ quench evoked by 125 nM IP₃ was taken as a measure of IP₃R sensitization, and the inhibition of Mn²⁺ quench evoked by maximal IP₃ after a 20 s pre-pulse with either 125 nM or 7.5 µM IP₃ was used to measure IP₃-dependent inactivation (Hajnóczky and Thomas, 1994). In addition, the [Ca²⁺]₀induced increase in the proportion of high affinity IP₃Rs was measured using a low level of [³H]IP₃ (Pietri *et al.*, 1990; Marshall and Taylor, 1994). There was a very marked increase in IP₃R channel activation by 125 nM IP_3 as $[Ca^{2+}]_0$ was increased in the range 300 nM to 1 μ M (Figure 6A), and this was paralleled by a dramatic increase in IP₃-induced inactivation (Figure 6B). The $[Ca^{2+}]_0$ dependence of activation and inactivation at submaximal IP_3^{r} was shifted to higher $[Ca^{2+}]_0$ than the sensitization for IP_3 binding (Figure 6C), which may result from the cooperative nature of channel activation at submaximal IP_3 (Meyer *et al.*, 1990). Although maximal IP_3 caused IP_3R activation at all levels of $[Ca^{2+}]_o$, the extent of inactivation was entirely dependent on $[Ca^{2+}]_o$ and was closely correlated with the [Ca²⁺]_o-induced increase in high affinity IP₃ binding (Figure 6A–C).

The correlation between IP₃R sensitization and inactivation was investigated further by substituting Sr²⁺ and Ba^{2+} for Ca^{2+} . Marshall and Taylor (1994) have shown that the sensitizing effects of Ca^{2+} on IP_3 binding and Ca^{2+} release are mimicked by Sr^{2+} but not by Ba^{2+} , and that neither Sr^{2+} nor Ba^{2+} is effective in mimicking the direct inhibitory effect of Ca^{2+} . To eliminate the potential for feedback by released Ca^{2+} , the effects of Sr^{2+} and Ba^{2+} on IP_3R channel activation were monitored by the IP3-induced retrograde flux of these ions into fura2-loaded stores in the presence of thapsigargin and EGTA. Sr^{2+} caused a marked sensitization to IP₃ (50 nM) compared with Ba^{2+} (Figure 7A), and this can be explained by the differential effects of these ions on IP3 binding under these conditions (Figure 7C, and see Marshall and Taylor, 1994). These effects on IP₃ sensitivity were paralleled by IP₃-induced inactivation, such that Sr^{2+} but not Ba^{2-} supported the time-dependent inactivation during IP₃ preincubation (Figure 7B). The fact that Ba²⁺ was without effect shows that Sr²⁺ was not acting simply by displacing

Fig. 6. Effects of $[Ca^{2+}]_o$ on IP_3R activation, inactivation and IP_3 binding. (A) The effect of $[Ca^{2+}]_o$ on IP_3R activation by submaximal (125 nM) and maximal (7.5 μ M) IP₃ was measured as the Mn²⁺ quench of compartmentalized fura2 in suspensions of permeabilized hepatocytes. Initial rates of Mn²⁺ quench (arbitrary units) were measured over the first 3 s after IP₃ addition (closed symbols). The IP₃-sensitive pool size (open symbols) was normalized to the total ionomycin-sensitive compartment. (B) IP₃-induced inactivation was measured by pre-incubation with 125 nM or 7.5 μ M IP₃ for 20 s prior to addition of Mn²⁺ and maximal IP₃, essentially as shown in the inset to Figure 5B. The component of inactivation due to pre-incubation with IP₃ was calculated as the decrease in Mn²⁺ quench rate compared with the rate of quench when IP₃ and Mn²⁺ were added to cells pre-incubated in the absence of IP₃ at the same level of $[Ca^{2+}]_o$. (C) Effect of $[Ca^{2+}]_o$ on $[^3H]IP_3$ binding.

 Ca^{2+} from other binding sites. Thus, the differential effects of Sr^{2+} and Ba^{2+} on IP₃-induced inactivation indicate that the Ca^{2+} dependence of this process reflects binding to the stimulatory Ca^{2+} site of the IP₃R.

Taken together, the data of Figures 6 and 7 provide evidence that only the Ca^{2+} - (or Sr^{2+} -) sensitized form of the IP₃R undergoes ligand-induced inactivation. Moreover, the fact that Sr^{2+} is effective in supporting IP₃-induced inactivation indicates that this process does not depend on divalent metal ion binding at the inhibitory site of the IP₃R. Finally, the observation that inactivation at submaximal [IP₃] follows a similar cooperative Ca^{2+} dependence to activation (Figure 6A and B) but does not parallel the non-cooperative Ca^{2+} dependence of IP₃ binding suggests that channel opening is a prerequisite for the inactivation process and hence inactivation may be an obligatory consequence of channel activation in the Ca^{2+} -sensitized state.

Fig. 7. Effects of Sr^{2+} and Ba^{2+} on IP₃R activation and inactivation. (A) Effect of Sr^{2+} and Ba^{2+} on IP_3R activation by submaximal and maximal IP3 measured as the retrograde flux of each divalent cation from the medium and detected with compartmentalized fura2. Traces show (a) no IP₃, (b) 50 nM IP₃ and (c) $\hat{7}.5 \ \mu M$ IP₃. (B) Effect of Sr²⁺ and Ba^{2+} on IP_3R inactivation induced by pre-treatment with IP_3 , measured as the Mn^{2+} quench of compartmentalized fura2. Traces show (a) no IP₃, (b) 7.5 μ M IP₃ added 90s before Mn²⁺ and (c) 7.5 μ M IP₃ added simultaneously with Mn²⁺. (C) Effects of Sr²⁺ and Ba2+ on steady-state IP3 binding; the inset shows the time course of the Sr^{2+} effect (50 nM [³H]IP₃). For these experiments, hepatocytes were permeabilized in ICM without MgATP and supplemented with 40 μ M EGTA and 2 μ M thapsigargin to prevent Ca² ⁺ uptake. In (A) and (C), 200 μ M SrCl₂ and 140 μ M BaCl₂ were added, giving ~160 μ M free Sr²⁺ and ~100 μ M free Ba²⁺. For (B), SrCl₂ and BaCl₂ were both added at 100 μ M and quenching was initiated with 100 μ M MnCl₂. The initial rapid phase in the control traces (a) of (A) and (B) reflects fluorescence responses of cytosolic dye that was released to the medium during permeabilization.

Agonist-induced oscillations of $[Sr^{2+}]_c$ in intact hepatocytes

The data presented above and previous studies comparing the effects of divalent metal ions on IP₃R function suggested that Sr^{2+} could be used to distinguish the roles of IP₃-dependent inactivation of the IP₃R and direct feedback inhibition by Ca²⁺ in the generation of $[Ca^{2+}]_c$ oscillations in intact cells. It has been shown that Sr^{2+} can be accumulated by ATP-dependent intracellular Ca²⁺ stores and subsequently released in response to agonist (Montero

Fig. 8. Sr²⁺ oscillations in single hepatocytes. Fura2-loaded hepatocytes were incubated in Ca2+-free ECM supplemented with 0.5 mM Na-EGTA. The cells were first treated with maximal vasopressin (100 nM, VP) and cyclopiazonic acid (200 µM) to deplete intracellular Ca²⁺ stores. These agents were then washed out (4-5 changes of medium) and the cells stimulated a second time with 100 nM vasopressin. After a second washout period, the medium was supplemented with 3 mM SrCl₂, 3 mM BaCl₂ or 2 mM CaCl₂, as indicated, and the cells subsequently challenged again with vasopressin. Fura2 was loaded as fura2/AM for (A), (D) and (E) and was microinjected as the free acid form for (B). The downward spikes in the presence of Sr^{2+} in (A) and (D) represent the decrease of $[Sr^{2+}]_{ER}$ in cells in which compartmentalized dye predominated. (C) Vasopressin dose–response data for the initial lag time (\bigcirc) and interspike period (\bullet) for Sr²⁺ oscillations in fura2/AM-loaded hepatocytes. Cells giving sustained Sr2+ increases in response to vasopressin were omitted from the frequency analysis, but the proportion of these increased with vasopressin dose: specifically 0, 30, 44 and 57% of cells gave sustained Sr^{2+} responses at 1, 5, 50 and 100 nM vasopressin, respectively.

et al., 1995). In order to eliminate possible contributions to IP₃R regulation from residual Ca²⁺ in the stores (Morgan and Jacob, 1996), hepatocytes were incubated in the presence of EGTA and treated with high vasopressin and the reversible SERCA Ca²⁺ pump inhibitor cyclopiazonic acid (Figure 8). After washout of these agents, there was no further [Ca²⁺]_c response to vasopressin. Following a further washout period, the cells were exposed to SrCl₂, BaCl₂ or CaCl₂, each of which rapidly appeared in the cytosol, presumably as a result of the activated capacitative Ca²⁺ entry pathway. The cells were allowed to re-load with the added divalent cation and, after a steady-state was

achieved, they were challenged again with vasopressin. Vasopressin-induced oscillations of fura2 fluorescence were observed in the cells re-loaded with Sr^{2+} and Ca^{2+} , but not in those loaded with Ba^{2+} . Although Ba^{2+} did not support oscillations, it did not prevent the induction of oscillations by vasopressin when the medium was supplemented with $SrCl_2$ in the continuing presence of $BaCl_2$.

Loading of hepatocytes with fura2 acetoxymethyl ester (fura2/AM) results in partial compartmentalization of the dye in the ER. This luminal fura2 does not usually contribute to the measured $[Ca^{2+}]_c$ changes in intact cells, because $[Ca^{2+}]_{ER}$ remains sufficiently high to saturate the dye unless the cells are treated with agonist in the presence of SERCA pump inhibitors (Glennon et al., 1992). However, the affinity of fura2 for Sr^{2+} is 30-fold lower than for Ca^{2+} and, as a result, the oscillations of fura2 fluorescence recorded in the presence of Sr²⁺ reflect a mixed signal for the cytosolic and ER compartments. This gave rise to a variety of oscillation patterns, ranging from largely cytosolic signals (Figure 8A, cell #2, and D, cell #1) to those cells in which the luminal changes predominate (Figure 8A, cell #3, and D, cell #2). Microinjected fura2 was used to obtain a pure cytosolic signal (Figure 8B). In these experiments, vasopressin gave rise to baseline spikes in the Sr^{2+} -loaded cells that propagated throughout the cell and were similar to those observed with Ca2+, except the $[Sr^{2+}]_c$ oscillations were 10- to 20-fold smaller in amplitude than the $[Ca^{2+}]_c$ oscillations in the same cells. This can be explained by the lower affinity of fura2 for Sr^{2+} , and suggests that the absolute magnitude of $[Ca^{2+}]_c$ and $[Sr^{2+}]_c$ oscillations are similar in hepatocytes. The Sr²⁺ oscillations also demonstrated frequency modulation, such that the initial lag time and the interspike period decreased with increasing vasopressin dose (Figure 8C).

The fact that the cells were incubated in the presence of EGTA and depleted of Ca^{2+} to the point where there was no detectable Ca^{2+} release to vasopressin should ensure that the oscillations in Sr^{2+} -loaded cells are due predominantly to Sr^{2+} fluxes. A number of other lines of evidence support the conclusion that these are Sr²⁺ oscillations and that they are driven directly by Sr²⁺ feedback effects rather than as a secondary consequence of residual Ca²⁺ fluxes. The observation of oscillatory decreases in $[Sr^{2+}]_{ER}$ in fura2/AM-loaded cells indicates that [Ca²⁺]_{ER} must have been reduced to the submicromolar range where it was no longer able to saturate the luminal fura2. Furthermore, Sr²⁺-dependent oscillations continued for >30 min, often with little change in amplitude through many cycles. This repetitive cycling would be expected to chase out any residual Ca²⁺ that could play a role in feedback regulation at the IP₃R. Finally, the small amplitudes of the oscillations measured with microinjected cytosolic fura2 are consistent with $[Sr^{2+}]_c$ spikes, whereas if these reflected [Ca2+]c spikes they would be inadequate to elicit the feedback activation of the IP₃R necessary to propagate the release throughout the cell. The small amplitude of these spikes also shows that $[Sr^{2+}]_c$ does not achieve the near millimolar concentrations where it might act at the inhibitory Ca^{2+} site of the IP₃R (Marshall and Taylor, 1994). We were unable to determine whether Sr²⁺ alone could support IP₃-induced oscillations in our permeabilized cell system, because we cannot use chelators in this preparation, and the contaminating Ca^{2+} and effectively infinite volume of the incubation medium are sufficient to allow substantial Ca^{2+} loading of the intracellular stores. Nevertheless, the observation of $[Sr^{2+}]_c$ oscillations in intact cell experiments and the demonstration that Sr^{2+} mimics the effects of Ca^{2+} in sensitizing the IP₃R and supporting IP₃-dependent inactivation in permeabilized cells provides strong evidence that Sr^{2+} is able to substitute effectively for Ca^{2+} in driving the basic oscillation mechanism. Moreover, the inability of Sr^{2+} to substitute for Ca^{2+} at the inhibitory binding site of the IP₃R suggests that this form of negative feedback control by Ca^{2+} is not essential to obtain $[Ca^{2+}]_c$ oscillations.

Conclusions

Our findings with permeabilized hepatocytes demonstrate that feedback regulation of the IP_3R by $[Ca^{2+}]_c$ at a constant level of IP₃ represents the minimum requirement for oscillatory Ca^{2+} release. In addition, it appears that the stimulatory Ca^{2+} -binding site of the IP₃R can effect both activation and termination of Ca^{2+} release, with the latter process occurring through the intrinsic slow inactivation that follows IP3-induced activation of the Ca^{2+} -sensitized state of the IP₃R. This does not exclude an additional contribution from direct negative feedback by released Ca²⁺ at the inhibitory Ca²⁺-binding site. It is also difficult to formally exclude the possibility that IP₃ binding to the Ca^{2+} -sensitized IP₃R leads to a change in the properties of the inhibitory Ca^{2+} -binding site that increases its affinity for Ca^{2+} , and perhaps Sr^{2+} . It is possible that other regulatory mechanisms may also contribute to $[Ca^{2+}]_c$ oscillations in intact cells, including regulation of the IP₃R by $[Ca^{2+}]_{ER}$, $[Ca^{2+}]_c$ stimulation of IP₃ formation and enhanced plasma membrane Ca²⁺ entry. However, our findings in the permeabilized cell preparation demonstrate that these are not essential components of the $[Ca^{2+}]_c$ oscillator.

Our studies suggest a basic mechanism of $[Ca^{2+}]_c$ oscillations that depends on $[Ca^{2+}]_c$ -dependent intercon-version between two modes of IP₃R channel activation, a Ca^{2+} -free basal state that requires high levels of IP₃ for activation and a Ca²⁺-sensitized state that can be activated at much lower levels of IP₃ but undergoes an intrinsic inactivation when IP₃ is bound. The Ca²⁺- (and Sr²⁺-) dependent interconversions of the IP₃R are shown in Figure 9, with the postulated predominant pathway underlying a $[Ca^{2+}]_c$ spike shown by the thick blue arrows. At the resting $[Ca^{2+}]_c$ between $[Ca^{2+}]_c$ spikes, IP₃ affinity is low and the IP₃R channel does not inactivate, so that submaximal levels of IP₃ cause continuous low level Ca²⁺ release. As $[Ca^{2+}]_c$ rises, IP₃Rs convert to a conformation with high affinity for IP₃, which accelerates Ca^{2+} release by these channels resulting in positive feedback by $[Ca^{2+}]_c$ that effectively recruits all available IP₃Rs to the high affinity activated conformation. A key observation of the present study is that there is an obligatory coupling between channel opening and inactivation in the Ca²⁺sensitized state of the IP₃R. Thus, in the high affinity conformation, IP₃R activation occurs in a phasic manner, whereby channel opening is followed by a time-dependent inactivation that does not require further Ca^{2+} binding. An obligatory linkage between the activation and inactiv-

Calcium oscillations driven by the IP₃ receptor

Fig. 9. Scheme showing coupled Ca^{2+} -dependent activation and inactivation of the IP₃R. Each subunit of the tetrameric IP₃R is depicted with an IP₃-binding site (yellow), a site for stimulation by Ca^{2+} (green) that increases IP₃ affinity and an inhibitory Ca^{2+} site (red) that inactivates the channel independently of IP₃. The channel pore is shown in gray for closed and inactivated conformations, and as a clear white diamond where channel opening can occur. The scheme is arranged in three columns, the Ca^{2+} -unbound state at low $[Ca^{2+}]_c$ (left), the IP₃-sensitized state induced by submicromolar $[Ca^{2+}]_c$ levels (middle) and the inactivated state elicited by higher $[Ca^{2+}]_c$ (right). The predominant pathway of coupled IP₃R activation and inactivation proposed here for the generation of a $[Ca^{2+}]_c$ spike is shown by the blue arrows.

ation of the ryanodine receptor by depolarization in skeletal muscle has also been reported (Pizarro et al., 1996), suggesting that this may be a common property of intracellular Ca²⁺ release channels. This process is ideally suited to generate a stable transient increment of Ca²⁺ release during each $[Ca^{2+}]_c$ spike. In the final phase of the $[Ca^{2+}]_c$ oscillation cycle, the intrinsic inactivation, perhaps in combination with direct feedback inhibition by $[Ca^{2+}]_c$, allows a return to basal $[Ca^{2+}]_c$ through the action of Ca^{2+} pumps. Recovery of the IP₃R from IP₃-dependent inactivation can occur either by dissociation of Ca^{2+} from the stimulatory site or by removal of IP3 (Hajnóczky and Thomas, 1994) but, since Ca^{2+} regulates IP₃ affinity, both Ca^{2+} and IP₃ are expected to dissociate from the IP₃R during the recovery phase. Although IP₃R inactivation reverses more slowly than the direct inhibitory effect of Ca²⁺ (Finch et al., 1991; Ilyin and Parker, 1994; but cf. Oancea and Meyer, 1996), it is not slow enough to account for the long interspike periods. Therefore, other factors

may be involved in resetting the system prior to the next $[Ca^{2+}]_c$ spike or, alternatively, the primary determinant of oscillation frequency may be the time required to generate a sufficient Ca^{2+} trigger signal to initiate the next Ca^{2+} release spike. Overall, the coupled feedback regulation of the IP₃R by Ca^{2+} and IP₃ is likely to play a key role in ensuring that the amplitude and duration of each $[Ca^{2+}]_c$ spike is constant over a range of IP₃ and agonist doses, to yield an essentially pure frequency-modulated $[Ca^{2+}]_c$ signal.

Materials and methods

Imaging measurements in intact and permeabilized hepatocytes

Hepatocytes were isolated from the livers of Sprague–Dawley rats by collagenase perfusion and maintained in primary culture for 3–24 h in Williams E medium, as described previously (Rooney *et al.*, 1989; Hajnóczky *et al.*, 1993), except that dexamethasone was omitted.

For measurements of $[Ca^{2+}]$, $[Sr^{2+}]$ and $[Ba^{2+}]$ in intact hepatocytes,

the cells were loaded with 5 μ M fura2/AM for 15 min in the presence of 100 μ M sulfinpyrazone or were microinjected with fura2 free acid as described previously (Rooney *et al.*, 1989; Lin *et al.*, 1994). Measurements of Mn²⁺ quench of compartmentalized fura2 utilized cells loaded with 5 μ M fura2/AM for 45–60 min (Renard-Rooney *et al.*, 1993; Hajnóczky *et al.*, 1994). Fura2 and other Ca²⁺ indicators were loaded into intact hepatocytes incubated at 37°C in extracellular medium (ECM) composed of 121 mM NaCl, 5 mM NaHCO₃, 10 mM Na-HEPES, 4.7 mM KCl, 1.2 mM KH₂PO₄, 1.2 mM MgSO₄, 2 mM CaCl₂, 10 mM glucose and 2% bovine serum albumin (BSA), pH 7.4. Intact cell experiments were carried out in the same buffer with BSA reduced to 0.25%, and CaCl₂ was omitted for measurements of Mn²⁺ quench and intracellular [Sr²⁺] and [Ba²⁺]. The free [Ca²⁺] of this Ca²⁺-free ECM was 400 nM measured using fura2 free acid (1.5 μ M).

Measurements of $[Ca^{2+}]_{ER}$ in permeabilized hepatocytes were carried out by first loading the intact cells for 60–120 min with 6 μM furaptra/ AM or 6 μ M fura2FF/AM. These Ca²⁺ indicators have K_d values of 53 µM for furaptra (Hofer and Machen, 1994) and 35 µM for fura2FF (A.Minta, TEFLABS), making them suitable for measuring changes in $[Ca^{2+}]_{ER}$. Dye-loaded hepatocytes were washed with Ca^{2+} -free buffer and permeabilized by incubation for 6 min with 15 µg/ml digitonin in intracellular medium (ICM) composed of 120 mM KCl, 10 mM NaCl, 1 mM KH₂PO₄, 20 mM Tris-HEPES at pH 7.2 with 2 mM MgATP and 1 µg/ml each of antipain, leupeptin and pepstatin. In order to decrease [Ca² ⁺]_o, the ICM was passed through a Chelex column prior to addition of MgATP and protease inhibitors. Medium free [Ca2+] was <100 nM after Chelex treatment and did not exceed 300-400 nM after addition of ATP and protease inhibitors. Direct measurement of $[Ca^{2+}]_{o}$ using 250 nM fura2 in the imaging chamber in the presence of permeabilized hepatocytes yielded a free $[Ca^{2+}]$ of ~400 nM. In some experiments 2 µM CPT-cAMP was added to facilitate IP₃R activation and Ca²⁺ reuptake (Hajnóczky et al., 1993), since this appeared to increase the percentage of responsive cells, but all findings were reproduced in the absence of this agent. After permeabilization, the cells were washed into fresh buffer without digitonin. There was no detectable metabolism of IP₃ in the permeabilized cell preparation.

Individual cells were examined by digital imaging fluorescence microscopy at 35°C (Rooney *et al.*, 1989, 1990; Renard-Rooney *et al.*, 1993; Hajnóczky *et al.*, 1993, 1995). $[Ca^{2+}]_c$ in intact cells was calculated from the fluorescence ratio derived from image pairs obtained using 340 and 380 nm excitation. Mn²⁺ quench of compartmentalized fura2 fluorescence was measured using the Ca²⁺-insensitive excitation wavelength of 360 nm (Glennon *et al.*, 1992; Hajnóczky *et al.*, 1993, 1994). Calibration of fura2FF signals in permeabilized hepatocytes gave values of ~500 μ M for $[Ca^{2+}]_{ER}$ after completion of ATP-dependent Ca²⁺ uptake. Experiments were carried out with at least three different cell preparations, and 30–50 cells were monitored in each experiment. Submaximal IP₃ evoked $[Ca^{2+}]_{ER}$ oscillations in 50–60% of cells and stepwise Mn²⁺ quench of compartmentalized fura2 in 25–30% of cells.

Fluorometric measurements of ion fluxes in suspensions of permeabilized hepatocytes

Suspensions of fura2-loaded hepatocytes were permeabilized with 25 µg/ml digitonin in the presence of 2 µM thapsigargin and 1 µM ruthenium red for 10 min at 37°C in a fluorometer cuvette (Deltascan, PTI), as described previously (Hajnóczky et al., 1993, 1994; Renard-Rooney et al., 1993; Hajnóczky and Thomas, 1994). For experiments where $[Ca^{2+}]_0$ was varied, EGTA (5-23 μ M) and CaCl₂ (8 μ M) were included during the pre-incubation. Actual [Ca²⁺]_o values were measured with the small amount of fura2 (~0.2 μ M final) released from the cells. $MnCl_2$ (usually 60 μ M) was added together with EGTA to give a constant level of Ca^{2+} and Mn^{2+} during the Mn^{2+} uptake phase for all [Ca²⁺]_o pre-incubation conditions. The quench of luminal fura2 by Mn^{2+} was monitored with 360 nm excitation. Dual wavelength excitation (340/380 nm) of compartmentalized fura2 fluorescence was used to monitor the entry of $\hat{S}r^{2+}$ and Ba^{2+} into the stores, whereas single wavelength excitation at the appropriate isofluorescence wavelengths (365 nm for Sr^{2+} and 370 nm for Ba^{2+}) was used to monitor Mn^{2-} quench in the presence of these divalent cations. Although it might be expected that Sr^{2+} or Ba^{2+} in the stores would interfere with the Mn^{2+} quenching of fura2, this effect was found to be negligible both by calculation of the expected binding of Mn²⁺ in the presence and absence of these ions, and by direct measurements with fura2 in vitro. For example, addition of 0.8 $\mu M~MnCl_2$ to fura2 (nominally 1.5 $\mu M)$ quenched the fluorescence by 31.1 and 29.3% in the presence and absence of 60 µM SrCl₂, respectively. It should also be noted that the

basal leak of Sr^{2+} and Ba^{2+} into the stores was sufficient to approach equilibration during the 90 s pre-incubation period, even in the absence of IP₃ (see Figure 7).

[³H]IP₃ binding measurements

Hepatocytes were permeabilized at 2 mg of protein/ml in ICM. All studies with Sr^{2+} and Ba^{2+} and the Ca^{2+} dependence of IP_3 binding were carried out in the presence of 40 μ M EGTA and at 22°C. Incubations with [³H]IP₃ (1.4 nM for 90 s) were carried out with $[Ca^{2+}]_o$ values set by addition of $CaCl_2$ (0–45 μ M) or in the presence of 160 μ M Sr^{2+} or Ba^{2+} . The bound and free fractions were separated by filtration (GF/B filters, transit time 2–3 s). Non-specific binding determined in the presence of $10 \,\mu$ M unlabeled IP₃ was <5% of total binding. Specific binding was normalized to maximum binding attained in the presence of Ca^{2+} (14.8 \pm 1.5 fmol/mg cell protein). The time course of increased IP₃ binding induced by Sr^{2+} was measured after 4 min pre-incubation with 50 nM [³H]IP₃.

Acknowledgements

This work was supported by grants DK38422 and DK51526 from the NIH. G.H. is a recipient of a Burroughs Wellcome Fund Career Award in the Biomedical Sciences.

References

- Berridge, M.J. (1990) Calcium oscillations. J. Biol. Chem., 265, 9583-9586.
- Berridge, M.J. (1993) Inositol trisphosphate and calcium signalling. *Nature*, 361, 315–325.
- Berridge, M.J., Cobbold, P.H. and Cuthbertson, K.S. (1988) Spatial and temporal aspects of cell signalling. *Philos. Trans. R. Soc. Lond. B*, *Biol. Sci.*, **320**, 325–343.
- Bezprozvanny,I., Watras,J. and Ehrlich,B.E. (1991) Bell-shaped calciumresponse curves of Ins(1,4,5)P₃ and calcium-gated channels from endoplasmic reticulum of cerebellum. *Nature*, **351**, 751–754.
- Chatton, J.-Y., Liu, H. and Stucki, J.W. (1995) Simultaneous measurements of Ca²⁺ in the intracellular stores and the cytosol of hepatocytes during hormone-induced Ca²⁺ oscillations. *FEBS Lett.*, **368**, 165–168. Clapham, D.E. (1995) Calcium signaling. *Cell*, **80**, 259–268.
- Cobbold,P.H., Sanchez-Bueno,A. and Dixon,C.J. (1991) The hepatocyte calcium oscillator. *Cell Calcium*, **12**, 87–95.
- Combettes,L., Cheek,T.R. and Taylor,C.W. (1996) Regulation of inositol trisphosphate receptors by luminal Ca²⁺ contributes to quantal Ca²⁺ mobilization. *EMBO J.*, **15**, 2086–2093.
- DeLisle,S. and Welsh,M.J. (1992) Inositol trisphosphate is required for the propagation of calcium waves in *Xenopus* oocytes. J. Biol. Chem., 267, 7963–7965.
- Finch,E.A., Turner,T.J. and Goldin,S.M. (1991) Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. *Science*, **252**, 443–446.
- Ghosh,T.K., Eis,P.S., Mullaney,J.M., Ebert,C.L. and Gill,D.L. (1988) Competitive, reversible, and potent antagonism of inositol 1,4,5trisphosphate-activated calcium release by heparin. *J. Biol. Chem.*, 263, 11075–11079.
- Glennon,C.M., Bird,G.St.J., Kwan,C.Y. and Putney,J.W.,Jr (1992) Actions of vasopressin and the $Ca(^{2+})$ -ATPase inhibitor, thapsigargin, on Ca^{2+} signaling in hepatocytes. *J. Biol. Chem.*, **267**, 8230–8233.
- Goldbeter, A., Dupont, G. and Berridge, M.J. (1990) Minimal model for signal-induced Ca²⁺ oscillations and for their frequency encoding through protein phosphorylation. *Proc. Natl Acad. Sci. USA*, **87**, 1461–1465.
- Hajnóczky,G. and Thomas,A.P. (1994) The inositol trisphosphate calcium channel is inactivated by inositol trisphosphate. *Nature*, **370**, 474–477.
- Hajnóczky,G., Gao,E., Nomura,T., Hoek,J.B. and Thomas,A.P. (1993) Multiple mechanisms by which protein kinase A potentiates inositol 1,4,5-trisphosphate-induced Ca²⁺ mobilization in permeabilized hepatocytes. *Biochem. J.*, **293**, 413–422.
- Hajnóczky,G., Lin,C. and Thomas,A.P. (1994) Luminal communication between intracellular Ca²⁺ stores modulated by GTP and the cytoskeleton. *J. Biol. Chem.*, **269**, 10280–10287.
- Hajnóczky,G., Robb-Gaspers,L.D., Seitz,M.B. and Thomas,A.P. (1995) Decoding of cytosolic calcium oscillations in the mitochondria. *Cell*, 82, 415–424.

- Harootunian, A.L., Kao, J.P.Y., Paranjape, S. and Tsien, R.Y. (1991) Generation of calcium oscillations in fibroblasts by positive feedback between calcium and IP₃. *Science*, **251**, 75–78.
- Hofer,A.M. and Machen,T.E. (1993) Technique for *in situ* measurement of calcium in intracellular inositol 1,4,5-trisphosphate-sensitive stores using the fluorescent indicator mag-fura-2. *Proc. Natl Acad. Sci. USA*, **90**, 2598–2602
- Hofer, A.M. and Machen, T.E. (1994) Direct measurement of free Ca in organelles of gastric epithelial cells. Am. J. Physiol., 267, G442–G451.
- Iino, M. (1990) Biphasic Ca²⁺ dependence of inositol 1,4,5-trisphosphateinduced Ca release in smooth muscle cells of the guinea pig taenia caeci. J. Gen. Physiol., 95, 1103–1122
- Ilyin,V. and Parker,I. (1994) Role of cytosolic Ca^{2+} in inhibition of InsP₃-evoked Ca^{2+} release in *Xenopus* oocytes. *J. Physiol.*, **477**, 503–509.
- Kasai,H., Li,Y.X. and Miyashita,Y. (1993) Subcellular distribution of Ca^{2+} release channels underlying Ca^{2+} waves and oscillations in exocrine pancreas. *Cell*, **74**, 669–677.
- Lechleiter, J.D. and Clapham, D.E. (1992) Molecular mechanisms of intracellular calcium excitability in *X.laevis* oocytes. *Cell*, 69, 283–294.
- Lin,C., Hajnóczky,G. and Thomas,A.P. (1994) Propagation of cytosolic calcium waves into the nuclei of hepatocytes. *Cell Calcium*, 16, 247–258.
- Marshall,I.C.B. and Taylor,C.W. (1993) Biphasic effect of cytosolic Ca^{2+} on Ins(1,4,5)P₃-stimulated Ca^{2+} mobilization in hepatocytes. *J. Biol. Chem.*, **268**, 13214–13220.
- Marshall,I.C.B. and Taylor,C.W. (1994) Two calcium-binding sites mediate the interconversion of liver inositol 1,4,5-trisphosphate receptors between three conformational states. *Biochem. J.*, 301, 591–598.
- Meyer, T. and Stryer, L. (1991) Calcium spiking. Annu. Rev. Biophys. Biophys. Chem., 20, 153–174.
- Meyer, T., Wensel, T. and Stryer, L. (1990) Kinetics of calcium channel opening by inositol 1,4,5-trisphosphate. *Biochemistry*, **29**, 32–37.
- Missiaen, L., Taylor, C.W. and Berridge, M.J. (1991) Spontaneous calcium release from inositol trisphosphate-sensitive calcium stores. *Nature*, 352, 241–244.
- Missiaen,L., DeSmedt,H., Droogmans,G. and Casteel,R. (1992) Ca^{2+} release induced by inositol 1,4,5-trisphosphate is a steady-state phenomenon controlled by luminal Ca^{2+} in permeabilized cells. *Nature*, **357**, 599–602.
- Montero,M., Brini,M., Marsault,R., Alvarez,J., Sitia,R., Pozzan,T. and Rizzuto,R. (1995) Monitoring dynamic changes in free Ca²⁺ concentration in the endoplasmic reticulum of intact cells. *EMBO J.*, 14, 5467–5475.
- Morgan,A.J. and Jacob,R. (1996) Ca^{2+} influx does more than provide releasable Ca^{2+} to maintain repetitive spiking in human umbilical vein endothelial cells. *Biochem. J.*, **320**, 505–517.
- Nunn,D.L. and Taylor,C.W. (1992) Luminal Ca²⁺ increases the sensitivity of Ca²⁺ stores to inositol 1,4,5-trisphosphate. *Mol. Pharmacol.*, **41**, 115–119.
- Oancea, E. and Meyer, T. (1996) Reversible desensitization of inositol trisphosphate-induced calcium release provides a mechanism for repetitive calcium spikes. J. Biol. Chem., 271, 17253–17260.
- Parker,I. and Ivorra,I. (1990) Inhibition by Ca²⁺ of inositol trisphosphatemediated Ca²⁺ liberation: a possible mechanism for oscillatory release of Ca²⁺. *Proc. Natl Acad. Sci. USA*, 87, 260–264.
- Petersen,O.H. and Wakui,M. (1990) Oscillating intracellular Ca²⁺ signals evoked by activation of receptors linked to inositol lipid hydrolysis: mechanism of generation. *J. Membr. Biol.*, **118**, 93–105.
- Pietri, F., Hilly, M. and Mauger, J.P. (1990) Calcium mediates the interconversion between two states of the liver inositol 1,4,5trisphosphate receptor. J. Biol. Chem., 265, 17478–17485.
- Pizarro, G., Shirokova, N., Tsugorka, A., Blatter, L.A. and Rios, E. (1996) Quantal release of calcium in skeletal muscle. *Biophys. J.*, 70, A234.
- Renard-Rooney,D.C., Hajnóczky,G., Seitz,M.B., Schneider,T.G. and Thomas,A.P. (1993) Imaging of inositol 1,4,5-trisphosphate-induced Ca²⁺ fluxes in single permeabilized hepatocytes: demonstration of both quantal and nonquantal patterns of Ca²⁺ release. *J. Biol. Chem.*, 268, 23601–23610.
- Robb-Gaspers,L.D. and Thomas,A.P. (1995) Coordination of Ca²⁺ signaling by intercellular propagation of Ca²⁺ waves in the intact liver. *J. Biol. Chem.*, **270**, 8102–8107.
- Rooney,T.A., Sass,E.J. and Thomas,A.P. (1989) Characterization of cytosolic calcium oscillations induced by phenylephrine and vasopressin in single fura-2-loaded hepatocytes. *J. Biol. Chem.*, 264, 17131–17141.

- Rooney,T.A., Sass,E.J. and Thomas,A.P. (1990) Agonist-induced cytosolic calcium oscillations originate from a specific locus in single hepatocytes. J. Biol. Chem., 265, 10792–10796.
- Rouxel, F.P., Hilly, M. and Mauger, J.P. (1992) Characterization of a rapidly dissociating inositol 1,4,5-trisphosphate-binding site in liver membranes. J. Biol. Chem., 267, 20017–20023.
- Sanderson, M.J., Charles, A.C., Boitano, S. and Dirksen, E.R. (1994) Mechanisms and function of intercellular calcium signaling. *Mol. Cell. Endocrinol.*, 98, 173–187.
- Stauffer,P.L., Zhao,H., Luby-Phelps,K., Moss,R.L., Star,R.A. and Muallem,S. (1993) Gap junction communication modulates [Ca²⁺]_i oscillations and enzyme secretion in pancreatic acini. *J. Biol. Chem.*, 268, 19769–19775.
- Striggow,F. and Ehrlich,B.E. (1996) The inositol 1,4,5-trisphosphate receptor of cerebellum— Mn^{2+} permeability and regulation by cytosolic Mn^{2+} . *J. Gen. Physiol.*, **108**, 115–124.
- Tanimura,A. and Turner,J.R. (1996a) Calcium release in HSY cells conforms to a steady-state mechanism involving regulation of the inositol 1,4,5-trisphosphate receptor Ca²⁺ channel by luminal [Ca²⁺]. J. Cell Biol., **132**, 607–616.
- Tanimura,A. and Turner,R.J. (1996b) Inositol 1,4,5-trisphosphatedependent oscillations of luminal [Ca²⁺] in permeabilized HSY cells. *J. Biol. Chem.*, **271**, 30904–30908
- Thomas,A.P., Alexander,J. and Williamson,J.R. (1984) Relationship between inositol polyphosphate production and the increase of cytosolic free Ca²⁺ induced by vasopressin in isolated hepatocytes. *J. Biol. Chem.*, **259**, 5574–5584.
- Thomas,A.P., Bird,G.St.J., Hajnóczky,G., Robb-Gaspers,L.D. and Putney,J.W.,Jr (1996) Spatial and temporal aspects of cellular calcium signalling. *FASEB J.*, 10, 1505–1517.
- Thorn,P., Lawrie,A.M., Smith,P.M., Gallacher,D.V. and Petersen,O.H. (1993) Local and global cytosolic Ca^{2+} oscillations in exocrine cells evoked by agonists and inositol trisphosphate. *Cell*, **74**, 661–668.
- Toescu,E.C. (1995) Temporal and spatial heterogeneities of Ca²⁺ signaling: mechanisms and physiological roles. *Am. J. Physiol.*, **269**, G173–G185.
- Tse, A., Tse, F.W., Almers, W. and Hille, B. (1993) Rhythmic exocytosis stimulated by GnRH-induced calcium oscillations in rat gonadotropes. *Science*, **260**, 82–84.
- Tse,F.W., Tse,A. and Hille,B. (1994) Cyclic Ca²⁺ changes in intracellular stores of gonadotropes during gonadotropin-releasing hormonestimulated Ca²⁺ oscillations. *Proc. Natl Acad. Sci. USA*, **91**, 9750– 9754.
- Wakui, M., Potter, B.V.L. and Petersen, O.H. (1989) Pulsatile intracellular calcium release does not depend on fluctuations in inositol trisphosphate concentration. *Nature*, 339, 317–320.
- Woods, N.M., Cuthbertson, K.S. and Cobbold, P.H. (1986) Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. *Nature*, **319**, 600–602.

Received on January 8, 1997; revised on March 6, 1997