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Abstract

With national and global health policymakers facing numerous complex decisions related to
achieving and maintaining polio eradication, we expanded our previously developed dynamic
poliovirus transmission model using information from an expert literature review process and
including additional immunity states and the evolution of oral poliovirus vaccine (OPV). The
model explicitly considers serotype differences and distinguishes fecal-oral and oropharyngeal
transmission. We evaluated the model by simulating diverse historical experiences with
polioviruses, including one country that eliminated wild poliovirus using both OPV and
inactivated poliovirus vaccine (IPV) (USA), three importation outbreaks of wild poliovirus
(Albania, the Netherlands, Tajikistan), one situation in which no circulating vaccine-derived
polioviruses (cVDPVs) emerge despite annual OPV use and cessation (Cuba), three cVDPV
outbreaks (Haiti, Madura Island in Indonesia, northern Nigeria), one area of current endemic
circulation of all three serotypes (northern Nigeria), and one area with recent endemic circulation
and subsequent elimination of multiple serotypes (northern India). We find that when sufficient
information about the conditions exists, the model can reproduce the general behavior of
poliovirus transmission and outbreaks while maintaining consistency in the generic model
inputs. The assumption of spatially homogeneous mixing remains a significant limitation that
affects the performance of the differential equation-based model when significant heterogeneities
in immunity and mixing may exist. Further studies on OPV virus evolution and improved
understanding of the mechanisms of mixing and transmission may help to better characterize
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poliovirus transmission in populations. Broad application of the model promises to offer insights
in the context of global and national policy and economic models.
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Polio eradication; dynamic modeling; disease outbreaks

1. INTRODUCTION

The World Health Assembly resolved in 1988 to eradicate polio globally.) Since then,

the Global Polio Eradication Initiative (GPEI) worked with countries to successfully
eradicate one of the three wild poliovirus serotypes (i.e., type 2 in 1999),(@ certify three

of the six World Health Organization (WHO) regions as polio-free, and interrupt apparent
transmission of indigenous wild polioviruses types 1 and 3 (WPV1 and WPV3, respectively)
in all but three countries (i.e., Afghanistan, Nigeria, and Pakistan). Currently, all countries
remain at risk of outbreaks due to importations of wild poliovirus from the remaining
reservoirs of indigenous or reestablished poliovirus transmission(®) and at risk of outbreaks
of circulating vaccine-derived poliovirus (cVDPV) as long as oral poliovirus vaccine (OPV)
use continues.() Managing these risks requires focusing on managing population immunity,
®) for which countries face numerous different vaccine choices and delivery strategies.(®
Completing the eradication of WPV2 requires that countries coordinate and agree on a
minimum global policy that they implement nationally to achieve eradication.(®:") Ending all
cases of poliomyelitis will require that countries coordinate and agree to the synchronized
cessation of the different serotypes of OPV, including the imminent decision about cessation
of all type 2-containing OPV.(7:8)

Mathematical models of poliovirus transmission can help us understand population
immunity and its dynamic interaction with outbreaks and vaccination policies. Economic
evaluation of policy alternatives requires dynamic poliovirus transmission models to
correctly estimate the risks and benefits of the alternatives.(4-12) We previously developed a
dynamic poliovirus transmission model3) to support economic analyses of post-eradication
policies,(11:14) which also yielded important dynamic insights related to achieving
eradication.(10.1%) To address policies at a highly aggregate level (i.e., ultimately at a global
level, but while considering differences by income group), the model sought to minimize
complexity while maintaining the ability to characterize the impact of major policy choices
on the expected cases from outbreaks triggered by exogenously generated random events.
(14) specifically, the prospective outbreak model(X3) used model inputs reflecting “average
serotypes” and assumed secondary OPV infection rates independent of population immunity
levels, although later adaptations of the model include OPV transmission, but not evolution,
as part of the dynamic model.(8) Recent changes in poliovirus vaccine options and global
policies motivate the development of an expanded poliovirus transmission and evolution
model. Specifically, given the GPEI’s strategic shift after 2005 to focus increasingly on
individual serotypes using monovalent OPV types 1 and 3 (mOPV1 and mOPV3) and

since 2010 on bivalent types 1 and 3 OPV (bOPV) rather than trivalent OPV (tOPV) for
supplementary immunization activities (SIAs) and the possibility of cessation of all type-2
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containing OPV (OPV2), explicit consideration of population immunity and risks for each
serotype becomes much more important.(® With significant uncertainty remaining about
cVDPV risks after OPV cessation and the appropriate response strategies, the evolution of
OPV and its dynamic interaction with population immunity requires better assessment to
support the management of cVDPV risks.(1) In addition, recent pursuit of an aggressive
research agenda to stimulate the development of more affordable inactivated poliovirus
vaccine (IPV) options may substantially increase the attractiveness of policies involving IPV.
Discussion of various IPV immunization options (e.g., using a single dose of IPV) combined
with the potential impact of waning on population immunity to poliovirus transmission,(18)
motivate the consideration of an expanded set of immunity states, including states for
various IPV doses with or without infection with live poliovirus (LPV, including WPV,

OPV, or any OPV-related live virus) and for multiple stages of waning.>:19 In addition,
given that IPV protects much better against oropharyngeal than fecal excretion,8) fully
capturing the differences between the vaccines requires explicitly distinguishing fecal-oral
and oropharyngeal transmission.

This article describes our expanded poliovirus transmission model for use in risk, decision,
and economic analyses to help inform current and future polio policy questions. We present
the results of an iterative process of modeling past experiences with polioviruses in different
contexts. We base the selection of generic model inputs largely on an extensive expert
literature review process(18:19) and setting-specific inputs on the best available data for each
situation. The iterative process ensures internally consistent assumptions about the many
highly uncertain model inputs(18.19) and serves to demonstrate the ability of the model to
replicate different features of poliovirus transmission and evolution.

We assume familiarity with polioviruses(17:18.20-25) and prior poliovirus transmission
models.(13.26-29) The next section provides an overview of the model structure and inputs
and describes the methods for our application of the model to multiple situations selected

to test the model on different types of poliovirus dynamics. We present the results of
application of the model to one country that eliminated WPV using both OPV and IPV

(the USA), three polio-free countries that experienced WPV importation outbreaks (Albania,
the Netherlands, Tajikistan), one country in which no cVDPVs emerge despite annual OPV
use in campaigns and no routine OPV immunization (Cuba), three places that experienced
cVDPV outbreaks (Haiti, Madura Island in Indonesia, northern Nigeria), one area with
ongoing endemic transmission of WPV1, WPV3, and cVDPV?2 (northern Nigeria), and one
area with recent endemic circulation and elimination of WPV1 and WPV 3 (northern India).
In each situation, we used the best publicly available data to characterize the setting-specific
population dynamics and vaccination history. We discuss the performance of the model

and important issues and limitations with the hope that our transparent and comprehensive
analysis will facilitate assessments of further use of this and other models to support policy
and economic analyses. Specifically, the model may help assess the tradeoffs in costs,

risks, and benefits of current and future global vaccination options, including cessation of
type 2-containing OPV and the use of IPV,(") determine optimal SIA vaccine(s), scope,

and frequency in specific countries,(®) and explore outbreak response options after OPV
cessation.
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2. METHODS
2.1. Model Structure

Fig. 1 provides the model structure in the form of two diagrams, which expand on the high-
level conceptual diagram presented elsewhere (see Fig. 1 in Thompson et a/.®). Fig. 1(a)
shows the flows between eight immunity states as a result of various epidemiological events
(see Appendix Al for all of the model equations). An expert review process identified the
eight states in Fig. 1 as the minimum set needed to characterize significantly different states
with respect to poliovirus transmission, although each state reflects a distribution because
individuals and viruses vary.(18:19) We included immunity states for a single successful dose
of vaccine to accommodate the possibility of exploring real policy options under discussion
that might rely on delivery of a single dose.() We characterize each immunity state i by

the: (1) average relative susceptibility to infection compared to fully susceptible individuals
(e:), (2) average latent period (1/&) and average duration of infectiousness (1/y,) (both
different for fecal and oropharyngeal infections), and (3) average relative infectiousness

(nl) compared to fully susceptible individuals (also different with respect to fecal-oral (n’,f ec)

and oropharyngeal (z,7"°) transmission), defined as the daily probability of infecting others
by an infected individual in a given immunity state divided by the daily probability of
infecting others by a previously fully susceptible infected individual in an identical situation.
Individuals in the fully susceptible state never experienced (1) infection with a LPV or (2)
effective immunization with IPV, and they lack any residual maternal immunity. We assume
that fully susceptible individuals may contract paralytic poliomyelitis upon infection at a
serotype-specific paralysis-to-infection rate (PIR). We assume that children born to mothers
with any active recent or historical immunity, not including immunity from a single IPV
dose, receive maternal antibodies at birth, which we assume protect them to some extent
from infection and infectiousness until they age into the fully susceptible state after a short

time, and also reduce their PIR by a fixed fraction during this time (RPIR™M ). We assume

that maternally immunes not infected with a LPV or successfully vaccinated become fully
susceptible as they age into the second age group, which in the model always starts at age
3 months. While the model structure accommodates different PIRs by age (in the form

of a relative PIR compared to the first age group, or RPIR?¢), we used serotype-specific
but age-independent values for PIR given the large uncertainties about actual PIRs due to
our inability to observe predominantly asymptomatic infections. For all immunity states
other than maternally immunes, we assume that in the absence of further successful IPV
vaccinations or LPV infections, waning occurs over w stages as characterized by increasing
relative susceptibility, duration of infectiousness, and relative infectiousness. However, we
assume that any active immunity from IPV or LPV provides lifelong protection from
paralytic poliomyelitis.

Fig. 1(b) shows model characterization of the infection and reversion process for partially
infectibles P1, in a given immunity state i. We use a discrete number of reversion stages
to model the reversion process by which OPV viruses eliminate attenuating mutations
over time as they adapt to the human gut and revert toward WPV-like properties.(22-24.30)
We assume the same PIR and basic reproductive number (Rq)(3Y) as typical homotypic
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WPVs for the last reversion stage.(!”) This differential equation-based (DEB) model does
not attempt to simulate the exact random process by which individual viruses eliminate
mutations and change properties, but instead defines each discrete reversion stage as a
hypothetical virus strain characterized by a distinct average PIR and average relative Rg
compared to WPV.(I") However, like any multi-stage expiry process in a DEB model, the
reversion process implies that any inflow into the first stage results in a gamma distribution
over the time to reach the last reversion stage, with the mean equal to the total duration of
the reversion process and other parameters determined by the number of stages.(3233) The
model does not account for the possibility that the virus mutates towards a lower reversion
stage. Specifically, the model distinguishes # reversion stages and » + 1 different virus
strains ranging from the OPV viruses with all attenuating mutations intact for j = 0 (i.e., the
OPV virus as given to vaccinees) to the fully-reverted poliovirus (FRPV) for j=h—1to
WPV for j = h. We assume equidistant reversion stages, with ¢ characterizing the average
time for the OPV virus to reach the last reversion stage (i.e., to acquire the properties of

a typical homotypic WPV). Observations for £ from VDPV or vaccine-associated paralytic
poliomyelitis (VAPP, i.e., very rare cases of paralytic poliomyelitis associated with the
vaccine in OPV recipients or their close contacts(34) cases are conditional on the occurrence
of substantial reversion and therefore may represent underestimates of the actual average
reversion time for all healthy OPV recipients in any given population.(?)

In Fig. 1(b), relative susceptibility determines the relative rate at which individuals in this
immunity state become infected compared to fully susceptible individuals, and the absolute
rate depends on the force of infection of age group aand virus strain j (4,,). The force of
infection for virus strain j and age group a depends on the assumed R for the given virus
strain and the product of the setting-specific age-mixing matrix M(536) and the number of
people in each age group residing in infectious states with strain j,(3) weighted according
to their relative infectiousness and the relative importance of their transmission mode (i.e.,
fecal-oral or oropharyngeal) (see equations in Appendix Al). We further include seasonality
by oscillating Rq according to a sine function characterized by a peak day (i.e., day of each
year when the sine function becomes maximum) and an amplitude (i.e., a, defined as the
difference between the peak or trough R, and the average Ry, relative to the average R,).

For each age group, the mixing matrix M governs the relative weight that all age groups
carry onto the force of infection. We assume that M does not depend on the virus strain

and in the absence of empirical data on mixing by age for fecal-orally spread infections we
assume highly simplified mixing matrices based on the preferential mixing model described
below.(37-39) OPV infections can occur both as a result of contact with other OPV-infectious
individuals (4,) and through receipt of vaccine according to the effective force-of-OPV
vaccination, v°PV. For simplicity in Fig. 1(b) we characterize v°P" as a single quantity, but
the model separately accounts for delivery of both routine and supplementary immunization
doses and for the appropriate associated probability of “take” of the vaccine in any given
context (see below).(1949) Similarly, v'P¥ includes the effective force-of-IPV vaccination
from any routine and supplemental IPV use.

All individuals infected with a LPV enter both the chain of “progression through
oropharyngeal infection,” which leads to infectiousness to others via oropharyngeal
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poliovirus excretion, and the chain of “progression through intestinal infection,” which leads
to infectiousness to others via fecal excretion (Fig. 1(b)). Thus, we assume that anyone

with a fecal infection becomes an oropharyngeal excretor as well (i.e., we do not model
relative susceptibility to oropharyngeal infection separately). However, we characterize the
possibility of lower rates of oropharyngeal than fecal excretion and infectiousness in most
immunity states by assuming shorter durations and lower relative infectiousness compared to
fully susceptible individuals for oropharyngeal than fecal infections. These assumptions do
not preclude the possibility that oropharyngeal transmission may dominate in some settings,
which depends on the assumed situation-specific proportion of transmission occurring via
the oropharyngeal route (p°°), because the force-of-infection expression by excretion mode
factors in differences in duration (see equations in Appendix Al) and because differences

in relative infectiousness only account for disproportionate effects of immunity on each
excretion mode (i.e., for fully susceptibles, relative infectiousness is 1 by definition for both
fecal and oropharyngeal transmission). To preserve the correct population size, we model
the oropharyngeal infection process as a “co-flow,”(3) (i.e., we do not take oropharyngeal
infections out of the stock P/;or let them recover into the next LPV state, as indicated

by the clouds in Fig. 1(b), and we do not double count individuals in these states in the
population). We assume that individuals remain fully protected from homotypic reinfection
while still fecally infectious to others, but that as they enter the next LPV immunity state
after recovering from fecal infectiousness, they again become partially infectible according
to the relative susceptibility of the next LPV state. Fig. 1(a) shows the next LPV state for
each immunity state as a result of the arrows representing the epidemiological event “LPV
infection” (e.g., previously “fully susceptible” individuals recover to “1 LPV infection”). To
accommodate nonexponential distributions of the infectious period, we model the infection
by dividing the infectious period into sequidistant stages and the latent period into r
equidistant stages.(32) We characterize different levels of infectiousness for each infectious
stage, including zero infectiousness for latent stages immediately following exposure.

In the model, vaccination occurs as a result of two different mechanisms (both included

in v°P¥ and oPY in Fig. 1(b) (i.e., the effective vaccination rate (evr) for SIAs, and the
effective vaccination coverage (evc) for routine vaccination). The evr captures activities
focused in time that target individuals in wide age groups, while the eve captures activities
that occur continuously and target individuals as they reach specific ages according to an
age-dependent immunization schedule.

We calculate evrfor a given vaccine and age group at any given time point from the
proportion of the population subject to vaccination that should remain not effectively
vaccinated after applying evr for a given period of time. This proportion equals the product
of the effective per-round impact (¢) of the SIA round and the average per-dose take rate (tr).
For example, for an SIA round conducted over 4 days that leaves unvaccinated a proportion
U of a previously unvaccinated target population (i.e., U equals 1 minus the product of
coverage and tr), the daily evr must satisfy:

U=eerXxdg epr= —In(U)/d
= —In(1-¢xtr)/d.
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Given that polio immunization strategies typically do not differentiate between fully
susceptible individuals and immunes, other than by age or location, all immunity states

in a given targeted age group get exposed to the same evr, but multiplied by relative
susceptibility for OPV vaccination, to reflect the different probabilities of becoming LPV-
infected by immunity state. In contrast, for IPV vaccination, we do not multiply by relative
susceptibility because we assume that the vaccine takes in fully susceptible individuals at
the same rate that it boosts already primed or immune individuals.?) Given that our DEB
model stratifies only by immunity state and not by dose history, the same evrapplies to
each individual regardless of dose history, which implies that the entire target population
experiences an equal chance of receiving vaccine in any given round. This probably does
not correspond to the reality in many countries facing continued indigenous poliovirus
transmission or elevated WPV importation or cVDPV risks. In those settings, some children
get chronically missed by repeated SIAs, while others may receive a very high number of
doses, which implies a higher vaccination rate in already vaccinated children.(42) To account
for this phenomenon in these settings, we assume much lower ¢ for SIA rounds than the
actual reported coverage of individual SIA rounds in any setting in which multiple rounds
occur within a short period of time. To verify whether these lower ¢ s produce a realistic
cumulative effect of SIAs, we provide the annual cumulative percentage of missed children
(%u ), calculated as:

nr
%o =100x [ (1= frac,x¢,),

n=1

where nr is the number of rounds in a given calendar year, and frac, is the fraction of

the target age groups in the population targeted by the »th SIA round. The latter equals 1
unless the geographic extent of the round does not include the entire model population. For
example, if a country conducts five SIA rounds in a year with frac =1 and ¢ = 0.3 in each
round, then %,. = ~ 17 %. In reality, the same result in terms of missed children may have
occurred due to five rounds with 70% coverage, but that failed to reach the same 17% of
children in each round. Thus, the model input ¢ represents a model construct that depends
on the frequency of rounds and does not correspond to measured coverage in SIA rounds.
While it allows us to characterize realistic cumulative percentages of missed children, it
may underestimate the frequency of doses among well-reached children, which should
have limited impact because of their relatively small impact on transmission regardless

of how many doses they receive. Nevertheless, in some situations, we believe that the
concentration of missed children who mix more intensely with each other than with the
general population may play an important role in transmission, and in those situations we
model separate subpopulations with entirely different values of ¢ to better capture the reality
of chronically missed subgroups (i.e., the Netherlands, northern Nigeria, and western Uttar
Pradesh (WUP)).

To characterize routine immunization, we assume vaccination occurs at fixed ages (e.g.,
at birth and at exactly 3 months). At each of these ages, we divert a fraction evc©PV of
the aging flow for all partially infectibles into the first latent OPV stage of the next age
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group and a fraction evc!PV to the IPVE state of the next age group in Fig. 1(b). The

IPVE state represents the brief period (i.e., with average duration 1/¢) after receipt of

IPV, but before full protection from disease (in the case of previously fully susceptible
individuals or maternally immunes) and acquisition of the relative susceptibility, duration
of infectiousness, and relative infectiousness of the next IPV state. The remaining fraction
(i.e., 1 — evcOPV — euc!PV) ages into the next age group of the same partially infectible state.
The model assumes that any routinely immunized child either experiences an effective take
with IPV or with OPV, but not with both at the same time, so that evcOPV — evclPV < 1.

The eveadjusts for take and in the case of OPV vaccination we also multiply by relative
susceptibility for partially immunes. In many situations, we explicitly factor in the effect of
coverage with fewer than the recommended doses on the effective coverage, which we shall
refer to as partial coverage in the descriptions below of all situation-specific model inputs.

2.2. Model Calibration Process

We determined all model inputs through an extensive iterative process. Given the large space
of model inputs, their complicated interdependence structure, and the multiple different
objectives for the model calibration process (i.e., including reproducing cumulative cases,
kinetics of the case incidence, age distributions of cases, times of WPV elimination or
VDPV emergence, cumulative force of infection from OPV-related virus), we did not
attempt to develop a formal fitting algorithm that would likely yield a local optimum or

not meet all the requirements. We do not expect that our iterative process necessarily yielded
a global optimum set of model inputs, but instead we focused on the key requirement that
the model inputs produce behavior consistent with key features of poliovirus transmission
across the nine situations. We started with plausible ranges for generic model inputs that

we required to remain constant across the situations (Table 1) and situation-specific model
inputs. Within this space, we searched for combinations of generic model inputs that
produced realistic behavior across all situations. After fixing the generic model inputs

that produced realistic behavior across all situations, we varied situation-specific constants
in conjunction with situation-specific inputs that change over time, such as the effective
impact of individual SIA rounds, or cumulative coverage of campaigns on an annual basis,
including time-dependent situation-specific inputs (e.g., ¢). For this last step, we constrained
the space by requiring realistic percentages of annual cumulative missed children, and/or
available information about the total annual IPV doses used in IPV (Salk) era for the USA.
In the northern Nigeria and northern India models, we considered both the percentage

of annual cumulative children missed by SIAs, and separately the annual cumulative
percentage of children that did not receive OPV containing each serotype. Due to the
interdependence of model inputs, this multi-step iterative process did not occur in a linear
fashion, but involved multiple revisions and partial repeats of the process after making
changes to the generic model inputs.

2.3. Generic Model Inputs

Table | shows the uncertain generic model inputs that we keep consistent across all settings.
The first section of Table | shows the inputs that characterize the recent immunity states,
fully susceptible individuals, and maternally immunes. We assume that these properties
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represent inherent, average properties of the immunity states, although we recognize that
they may to some extent vary by setting and they certainly vary between individuals (i.e.,
we focus on population averages and assume that the use of relative values controls for

any setting-specific differences). Unless otherwise noted, the best estimates for the recent
immunity states reflect the means of the assessments from nine experts elicited during an
extensive expert review process that involved elicitation of expert input based on a collective
review of the literature, as described elsewhere.(8:19) Although very few experts expressed
significant serotype differences on any elicited quantities,19) we include their very small
impact by using the means of the elicited values for each serotype in the model. We elicited
relative susceptibility and durations of the latent and infectious periods with respect to

both fecal and oropharyngeal infectiousness directly from the experts. We compute relative
infectiousness as the relative contribution to transmission over the entire infectious period
divided by the relative duration of infectiousness, compared to fully susceptible individuals.
We used the contributions of transmission given infection as calculated separately for

fecal and oropharyngeal infectiousness from the expert assessments from the probability

of excretion over time, the concentration of excreted virus over time, and the relationship
between excreted virus titers and infectiousness to others.(9) These calculations ignore the
very small possible effect of differential mortality rates among infected people in different
immunity states or settings on average durations of infectiousness. While some experts
indicated some differences in the excretion pattern and infectiousness for OPV and WPV
infections, these differences remain relatively small when considering the mean values.
Given substantial uncertainty indicated by the experts related to these assessments and in
the absence of assessments for each reversion stage between OPV and WPV,(19) we use

the elicited values for WPV for both WPVs and all OPV-related infections in the model.
We emphasize that the assumption of equal durations and relative infectiousness does not
translate to equal transmissibility of WPV and OPV-related viruses, as we characterize the
latter separately by the relative R for each reversion stage. Thus, we assume that inherent
transmissibility represents at least to some degree a separate property from duration and
relative infectiousness because it may relate to the human infectious dose and survival in
the environment, which both probably differ for OPV compared to WPV.(18:1943) The expert
review process also revealed only very small differences between the immunity states “2 or
more LPV infections” and “IPV and LPV,” and therefore we assume identical properties for
both immunity states, although the model structure tracks them separately.

Both data from OPV challenge studies(1®) and the assessments we elicited from experts(19)
suggest that the duration of excretion does not follow the exponential distributions implied
by a single-stage infectious process.(32) In particular, the exponential distribution produces
a high fraction of infected individuals who recover almost immediately, as well as a high
fraction that recovers much later than the average. While a few individuals with very

rare immunodeficiencies may become chronically infected,(23) we treat these separately in
modeling risks,“4) and therefore the long tail from the exponential distribution remains
unrealistic. To better represent the infection process, we use two latent stages and four
infectious stages, which matches the elicited distribution of excretion and satisfies the
requirement that only about 1:600 previously fully susceptible individuals remain fecally
infectious for longer than 90 days, based on the known prolonged but time-limited fecal
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excretion of individuals with certain types of antibody deficiencies that occur in roughly
1:600 people (see infection curves in Appendix A2).(45) Besides the nonexponential
distribution of the excretion duration, we also obtained varying excreted virus concentrations
over time from most experts, which imply changing levels of infectiousness to others over
the excretion period. To reproduce this behavior we assigned different relative levels of
infectiousness to each infectious stage and compared the resulting infectiousness to others
over time with those computed from the expert assessments. We found that weighting
infectiousness (0, j =0, ...,r + s — I) according to the ratios 0:0:3:10:3:1 by stage (i.e., the
first two stages represent the latent stages) produced a good fit to the elicited expert
assessment curves for fecal and oropharyngeal infectiousness in most recent immunity states
(see Appendix A2). We did not attempt to mathematically derive best fits for each immunity
state and transmission route given the substantial uncertainty expressed by the experts.(9)

In addition, no data exist to support fitting each immunity state and attempting to fit these
would add significant complexity to the model (i.e., possibly different numbers of stages
and relative weights for each immunity state and transmission route). Assuming that both
the distribution of the duration and the changing levels of infectiousness over the infectious
period represent real phenomena that likely affect outbreak kinetics, we sought to include as
realistic assumptions as possible in our model.

The expert review process identified very large uncertainties with respect to the impact

of waning of immunity on the potential to contribute to transmission, sometimes with
assessments of the long-term impact of waning varying between no effect and an

eventual return to the same contribution to (asymptomatic) transmission as fully susceptible
individuals.(9) Consequently, we characterize waning using a general function and we use
the parameters of the waning function to fit the model to the set of historical experiences
with poliovirus transmission covered by the diverse situations we modeled. We define the
following functions to characterize a process that occurs over m stages to change a given
property b:

Bt = (b1 = bo) X ((m = 1 = j)/(m — 1))%,
om=1,

@

where j = 0 indicates the first stage, j = m — 1 the last stage, and z represents the shape
parameter (z = 1 yields a linear, z < 1 an exponential, and z > 1 a logarithmic relationship).
We apply this function to determine relative susceptibility, duration of infectiousness,

and relative infectiousness for each waning stage, assuming w = 5 waning stages, shape
parameter z,, = 5, and average time of 4 (types 1 and 2) or 3 (type 3) years to reach the last
stage with the assumed properties, as indicated in Table I (see Appendix A2 for the resulting
waning curves we used for all of the situations). We assume that immunity wanes somewhat
faster for type 3 than the other serotypes given the typically lower initial titers achieved
with type 3 infection or vaccination and the frequently observed low antibody levels of

type 3 in populations.#6-49) We assume that children born with maternal immunity become
identical to fully susceptible individuals after 3 months on average, based on the pattern
elicited during the expert review process.(19) We use the same function and parameters
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for all situations because we expect that waning in the absence of boosting infections or
vaccinations represents a biological phenomenon that will not vary by situation (i.e., we
assume similar waning behavior in populations in different situations, which represents an
average of any differential waning occurring by individuals within the population).

We characterize reversion using a function similar to Equation (1) to describe the increase in
R, from stage O (i.e., OPV) to n — 1 (i.e., FRPV). Although we assume a linear relationship
between R, and the reversion stage (i.e., shape parameter z, = 1), this assumption implies that
the average R, by age of virus increases logarithmically due to the exponential processes in
the DEB model (see Appendix A2). The average time to reach the last reversion stage (¢)
represents the most influential assumption related to reversion. Based on use of the model

in settings in which cVDPV outbreaks did and did not occur, we assume that the time to
exceed the threshold number of nucleotide changes in the VP1 region of the poliovirus
genetic sequence used to classify VDPVs by the Global Polio Laboratory Network (GPLN)
represents an adequate approximate estimate of the minimum time to reach the last reversion
stage and observe transmissibility similar to typical homotypic WPVs.(17) Given that these
observations represent the first observed instances of WPV-like behavior, we assume that
the average time remains 1.5 longer than the minimum time to reach the genetic thresholds
defined by the GPLN (i.e., given the structure of the model, this assumption produces
observations of cVDPVs in the model consistent with real observations in the field). We
also determined the relative R;s of OPV vs. FRPVs and homotypic WPVs (z,) within the
uncertainty range obtained by the expert review process,(18:19) the shape parameter (z,), and
the number of reversion stages (k) by testing the model against actual experiences, again
keeping these consistent across all situations. With respect to neurovirulence, animal studies
suggest a very steep increase for OPV-related viruses initially that levels off to become
similar to typical WPVs.(17:24) Therefore, we assume a logarithmic increase in PIR, with

the shape parameter z, > 1 fit to yield nonrecipient VAPP numbers consistent with data,

and Equation (1) applied to the natural logarithm of the PIR (i.e., b, = In(PIR,)), because

the scale of PIR runs from near 0 to 0.005 or less. This yielded a fitted value of z, = 2.5
(Table I). Appendix A2 includes plots of relative Rg and PIR as a result of reversion for each
serotype.

To estimate the P/R, for OPV recipients, we derive values that reproduce the actual number
of recipient VAPP cases reported during the routine tOPV and WPV-free period 1980-1996
in the USA model. Given that during this period the USA administered the first dose at

2 months of age, when most infants still reside in the maternally immune state in the

model, the protection from paralysis provided by maternal immunity represents a critical
assumption to calibrate P/Ry. Table 11 shows the results of calibrating our assumptions
regarding the PIRs for each reversion stage to the reported VAPP cases during 1980-1996.
In this calibration we assume that: 1) our model adequately approximates the number

of first OPV infections of each type among tOPV recipients, 2) our model adequately
approximates the number of fully susceptible and maternally immune individuals infected
with OPV-related viruses, and 3) a logarithmic relationship between PIR and reversion stage
(i.e., age of virus) appropriately characterizes the behavior. The top section of Table 11 shows
the estimated recipient and nonrecipient VAPP cases based on the total reported cases in
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each category multiplied by the distribution by serotype for those cases with an isolate of

a single serotype (unpublished data from CDC; excluding immunodeficient VAPP cases
and assuming 96% completeness of reporting(4459)). Based on our take rate and coverage
assumptions, we found that an assumed relative PIR of 50% for maternally immunes
compared to fully susceptible individuals produced approximately the same median age of
recipient VAPP of 3 months as observed in the USA during 1980-1996 (CDC, unpublished
data). With this relative PIR, we then determined that PIRs for fully susceptible individuals
of 0.26e78 (PV1), 1.2e78 (PV2), and 1.8e78 (PV/3) resulted in the same total number of
recipient VAPP cases as estimated from the data (within rounding error).(4450) Finally, a
shape parameter of z,, = 2.5 for the relationship between PIR and reversion stage produced
the best fit for the total number of nonrecipient VAPP cases. Given that the incidence of
nonrecipient VAPP depends strongly on model assumptions that we imposed to characterize
the uncertain reversion process (i.e., number of reversion stages, elimination threshold,
relative Rgs by reversion stage, functional form of the relationship between PIR and
reversion stage), we examine the VAPP numbers calculated by the model in other situations
when appropriate (i.e., Albania, Cuba, Haiti, northern Nigeria, northern India) to determine
whether they remained consistent with the expected true VAPP incidence.

Finally, Table I includes several other inputs used to characterize various features of
poliovirus transmission that we believe may significantly impact the model. First, we assume
that the inherent transmissibility of WPV3 remains lower than that of WPV2 and even

lower than that of WPV1 based on the relatively low frequency of WPV3 importations

or cVDPV3 outbreaks(?) despite generally lower observed type 3 antibody levels.(46-49)
Second, we adopt the same assumption about the incubation period of 10 days from our
previous model.(3) Third, we include a threshold to force die-out of transmission in the
model in order to partly overcome the well-known limitation of DEB models that they can
maintain very small fractional numbers of infectious people when in fact the virus would

die out (and a discrete stochastic or individual-based model would have 0 infectious people).
(3251) To do so, the model tracks the effective proportion of the population infectious with
virus strain j to age group a (EPI, ;,a =0, ... number of age groups -1; j =0, ..., k) as the
sum of the number of fecally- and oropharyngeally-infectious people from any immunity
state and in any infectious stage, weighted by their relative infectiousness, the proportion

of transmissions via the appropriate transmission route, and the relative weight of each age
group to age group aaccording to the mixing matrix M (see Appendix Al). We define EPI*
as the transmission threshold. If EPI, , < EPI*, then we set the force of infection for age
group aand virus strain j (4, ;) to 0. This formulation implies that, with very low levels of
transmission, the EP1 may stay above the threshold in some age groups but die out earlier in
others. In practice, we found that transmission may continue longest within the first (mixing)
age group (i.e., children under 5 yrs), because it contains the most susceptibles due to inflow
of births. The difference in timing of reaching the transmission threshold by age remains of
little consequence for the overall model behavior because we cut off transmission at such

a low level that any difference in the timing does not significantly influence population
immunity. With a very high threshold, we found that WPVs die out too easily in the model,
including during seasonal troughs even in geographic areas that could sustain indigenous
transmission (e.g., northern Nigeria, northern India), or too soon after the introduction of
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vaccination campaigns (e.g., Haiti, Madura). With a very low threshold, we found that
OPV-related viruses can sustain transmission even in places in which these viruses die out
naturally. Given our other model input assumptions, we found only a small range of values
for the transmission threshold £P/* that produced results consistent with the evidence for all
modeled situations, and our value in Table | remains within this range and produces realistic
elimination behavior across all of the situations.

2.4. Setting-Specific Model Inputs

Table 111 shows ranges of values we used for common model inputs across multiple
situations that we believe should vary with specific situations (i.e., Rg and OPV take rates).
(6.13,40.52-54) For each situation, we assess the development-hygiene tier the country falls
into and use model input values consistent with the ranges in Table I11. Only two situations
(the Netherlands and USA, both in the highest tier) involve significant IPV use, and we
ensure minimal differences in the average per-dose take rates for Salk IPV and enhanced-
potency IPV (elPV) between these situations. To mimic the effective cumulative take of
multiple vaccine doses administered during routine immunization or successive SIAs, we
base average effective per-dose take rates (¢r) on the observed cumulative seroconversion(®)
after multiple doses or on the observed efficacy of multiple doses as appropriate.(®) We
define ¢r as the average probability that a dose of vaccine administered in field conditions
to a fully susceptible recipient leads to infection (for OPV) or successful vaccination (for
IPV) (i.e., it moves the recipient to the next LPV or IPV state). This may differ from

the seroconversion observed in controlled studies with good delivery since the cold chain
conditions may affect the effective take,(657) and therefore we adjust take rates where

appropriate (e.g., in Albania). For estimated take ¢, after n doses, the average per-dose

take rate equals tr =1 - (1 - lrn)l/ " 6) The use of the average per-dose take rate allows

us to model the effect of vaccine given during a single SIA round, and in the case

of tOPV averages out the effect of serotype interferences over multiple doses. Due to
interference of the three Sabin strains in tOPV, individuals fully susceptible to all three types
typically become infected with type 2 from the first dose and with types 1 and 3 from
subsequent doses.(®859 Consequently, calculating take based on observed seroconversion
after the first tOPV dose for each serotype and applying these results to multiple doses
would overestimate the cumulative take after multiple doses for type 2 and underestimate
the cumulative take for the other two serotypes. We run our model for each serotype
independently and account for the impact of interference by using appropriate type-specific
take rates for tOPV. The DEB model does not track heterotypic immunity, which requires
stratifying the population according to each possible combination of immunity states for the
three serotypes (which would increase model complexity multiplicatively). The use of an
individual-based model might allow better characterization of the timing of immunity by
serotype for each individual, but it would do so at the expense of significantly increased
assumptions about population structure and individual contact and mixing patterns.(60)

We use “medium variant” estimates from the UN Population Division(®1) available for
all countries from 1950 forward to simulate the population by age in each situation. In
the absence of mortality rates by age, we calculated mortality rates such that the model
reproduces the reported population by age (see Appendix A3). Given that these data provide
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the age distribution by five-year age groups, we also calculate mortality rates by five-year
age groups, thereby ignoring age differences when we use narrower age groups in the model.
To partly overcome this limitation in the context of the known high mortality rates among
infants (age 0) compared to 1-4 year olds, the model only adds the number of newborns that
survive to age 1 (i.e., surviving infants) to the population at age 0, thus ignoring the impact
on poliovirus transmission of the fraction of 0—11-month-old infants that die sometime
during the first year of life.(51) In situations in which we model subnational regions (i.e., the
Netherlands, Albania, Tajikistan, Madura, northern Nigeria, and northern India), we assume
those populations follow the estimated national demographic multiplied by the relative size
of these regions according to an appropriate census of subnational data.

Tables IV-XII summarize our assumptions about setting-specific model inputs for each of
the situations we modeled with time-dependent inputs provided in Appendix A4. The top
of each table lists model input choices that directly relate to framing the model, including
subpopulations, age groups, and the model time horizon. For each situation, we choose age
groups that allow us to model different vaccination strategies used in that situation and/or to
compare our results to age-specific data available for that situation (e.g., age distribution

of cases). The width of the age groups affects the distributions implied by the aging

process (e.g., multiple-stage processes like waning, reversion, and infection) and narrower
age groups result in more realistic age distributions. In most situations, the most important
changes related to poliovirus immunity occur in young children, and therefore we typically
break the first five years into multiple smaller age groups. In some situations (i.e., the
Netherlands, northern Nigeria, northern India) the available evidence motivates us to model
important heterogeneity in mixing or vaccination by capturing multiple subpopulations.
Our selection includes four situations (i.e., the USA, the Netherlands, Albania, northern
India) that we previously modeled using our prior transmission model.(913) For those prior
simulations, we used the available data to specify initial conditions in terms of the fraction
of the population in each of the limited number of immunity states in that model.(33) with
the expanded model, it becomes very challenging to estimate initial proportions in each of
the immunity states from the data because the new model differentiates between varying
numbers of successful doses and/or infections and multiple waning stages. Therefore, we
determine the initial conditions from the model itself by calibrating the model based on
assumptions leading up to the observed experiences. Thus, for each situation we begin the
model well before routine or mass vaccination starts by introducing one infectious individual
into an assumed entirely susceptible population. We then run the model so that it settles
into an endemic equilibrium before we introduce vaccination, which typically requires going
back relatively further in time for low-Rg situations. The approximate equilibrium may

still involve some oscillations due to seasonality and/or changes in birth rates or other
demographic model inputs. To speed up the process to reach the approximate pre-vaccine
equilibrium, in some cases we run the model without seasonality and/or die-out for several
years, depending on the situation, and then introduce these processes.

The bottom parts of Tables IV-XII provide other setting-specific model inputs, including
assumptions about Ry and heterogeneity in mixing between age groups, the relative
importance of the two transmission routes, routine vaccination, regular SIAs, any outbreak
response activities, and the assumed date of the virus introduction for the WPV importation

Risk Anal. Author manuscript; available in PMC 2025 January 04.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Tebbens et al.

Page 15

outbreaks. When we introduce a single initiating infection in a large-population and
WPV-free model, this does not lead to any transmission because at that point the
prevalence remains below the threshold £P/* for transmission. Therefore, we instead create
introductions by increasing the proportions of individuals in the first fecal and the first
oropharyngeal infectious stage of each age group to £P/* and reducing the number of fully
susceptible individuals by the corresponding number.

Very little empirical data exists about mixing patterns between age groups, particularly for
fecal-oral transmission in developing countries. A survey designed to collect empirical data
on contact patterns relevant to respiratory infection in a number of European countries
suggests highly heterogeneous mixing between age groups, with highly preferential mixing
between individuals of similar age and the highest mixing between different age groups
occurring between young children and adults in their 30s.(62) Results of a similar approach
applied to a nontemperate developing country (Viet Nam) reveals a similar overall

pattern but with weaker preferential mixing.(63) In the absence of data for fecal-orally
transmitted infections and specific to the situations and age groups we modeled, we
assume highly simplified mixing matrices in an attempt to still reflect the possible impact
of age-heterogeneity on transmission dynamics. We adopt the expression for preferential
mixing proposed by Jacquez et a/. (1988),(37) which assumes that for individuals in any
given age group & a proportion «, of potentially infectious contacts remains reserved for
individuals of the same age group, while the remainder 1 — «, occurs with any individual

in the population (including from age group &) with equal chance (see Appendix Al).

For simplicity, we consider such preferential mixing only for relatively wide mixing age
groups (i.e., 0-4, 5-14, and 15 years) for all situations, unless we note specific reasons for
different mixing age groups. While «, probably varies by age group, we do not know the
directionality for fecal-oral transmission and we generally keep it equal for all mixing age
groups. Given the uncertainty about mixing matrices for poliovirus, we determine «, partly
based on fitting the situation-specific models. Specifically, we verified whether the mixing
assumptions produce secondary OPV infection rates (USA, Cuba) or age distributions of
cases (the Netherlands, Albania, Tajikistan, northern Nigeria, northern India) consistent with
the data. For Albania, we encountered conflicts in the epidemiological evidence related to
the historical experience and significant population changes (e.g., large net decreases in
population due to emigration), which led us to explore different age-mixing inputs.

Our model for the USA (inputs in Table V) focuses on first reproducing the elimination of
WPVs at a highly aggregate level and then verifying that the model correctly reproduces
the occurrence of sporadic VAPP cases without any known cVDPV outbreaks in the
general population during widespread OPV use from 1962-1996.(3%) We also compare rates
of secondary OPV spread with those obtained by serologic surveys among unvaccinated
inner-city pre-school children in the early 1990s.(4) The USA became the first country

to use poliovirus vaccines on a large scale with the licensing of Salk IPV in 1955,

and the history of poliomyelitis in the USA remains very well-studied and documented.
(34.65-67) We previously described the history in the context of a retrospective economic
analysis of the changing vaccination programs over time,(®) which includes estimates

of the national incidence of paralytic poliomyelitis, and vaccine coverage for each year
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between 1948-1996. In short, the massive campaigns with Salk IPV from 1955-1962 led

to a dramatic reduction in the incidence, but outbreaks continued to occur, particularly
affecting communities of lower socioeconomic status (SES). Researchers hypothesize that
IPV effectively prevented oropharyngeal transmission of poliovirus, but that lower standards
of hygiene in lower SES settings allowed the virus to spread by fecal-oral route even among
successful IPV vaccinees to reach and cause paralysis in individuals not vaccinated or not
successfully vaccinated with the Salk IPV of relatively low immunogenicity.(68-70)

After the licensure of OPV, the USA conducted massive catch-up campaigns with mOPV1,
mOPV2, and mOPV3 during 1962-1964 and then gradually replaced all IPV and mOPV
use with tOPV.("1) The use of OPVs further dropped the incidence until only importations
of WPV occurred, occasionally leading to outbreaks, and eventually VAPP became the main
cause of paralytic poliomyelitis in the 1970s,(®) with 4-13 cases per year.(34) In the absence
of much data on IPV campaigns by area or age and lacking reliable immunization coverage
surveys,(72) we fit the IPV vaccination rates to the reported cases while approximately
matching the total of 420 million IPV doses distributed during 1955-1963 (see Appendix
A4).(71) We use the available coverage data only to estimate a relative coverage of 55%

in adults compared to people under the age of 20 years, which represented the main focus
of the IPV campaigns.("? To model the mOPV campaigns that distributed just over 100
million mOPV doses of each type, we assume 1 dose of each type per covered person and
differential coverage between the age groups similar to the IPV campaigns.(’Y) Based on
assumed 16% wastage during the mOPV campaigns,®) the approximately 100 million doses
of each type translate into approximately 80% and 40% cumulative coverage with each type
in people under and over 20 years old, respectively. A review of mOPV seroconversion
studies(®2) that served as the basis for our estimates in Table IV showed ranges and
suggested approximately 90% or more take per dose depending on the conditions, with

the highest take for type 2. While the routine tOPV immunization schedules probably varied
with time and by state,(73-75) we simplify routine tOPV immunization in the model by
combining the first two doses (consistently recommended at 2 and 4 months) as 1 dose

with the cumulative effect of 2 doses at age 3 months. We model the third dose as an
additional dose at 6 months until 1976 and at 12 months after 1976 based on changes in

the recommended immunization schedule. We model the fourth dose as a preschool booster
at age 5 years. USA coverage estimates with the recommended 3 primary doses dipped
during the 1980s and early 1990s,(%.75.76) but population immunity nevertheless stayed high
enough to prevent transmission due to the school-entry requirements and a high proportion
of children who received 1 or 2 doses by age 12 months and the third and/or fourth dose at
school entry (although not covered on time with the 3 primary doses).(64:75.77) To capture
this, we assume 90% coverage with the booster dose regardless of the annually varying
primary coverage estimates, which combined with the take rate for a single dose (sr), leads to
an evcat 5 years of 0.9x#. We calculate the coverage with 1 or 2 doses by age 12 months for
children who did not receive 3 or more doses by age 12 months from the reported difference
between DTP1 and DTP3 coverage:(7®)

cov; = cov, = (DT P, — DT P;) x 0.5/(1 — DT P;),
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where cou; is the coverage by age 12 months with i polio vaccine doses given receipt of fewer
than 3 doses by age 12 months and DT P, the coverage by age 12 months with i DTP doses.
The formula assumes that among those children who receive a first dose but not a third dose,
half receive a second dose. This leads to effective cumulative vaccination coverage by 12
months of age of:

evey, = POLstrs + (1 — POL;)(covstr, + couytry),

where 1r, is the cumulative take rate for i doses (= 1 - (1 — #)) and POL 3 the coverage with

3 or more polio doses by 12 months of age. We then use an average evc of 1 — (1 — evclz)2/3
for the cumulative effect of the first two doses, modeled to occur at age 3 months, and an
average eve of eve, = 1 — (1 — evey)!’> for the third dose at age 6 (until 1976) or 12 months
(from 1977). In reality, significant seasonality exists for poliovirus transmission in the USA,
(67.78) which leads to inter-epidemic periods of multiple years. However, for the entire USA,
different locations oscillate with different phases and this explains why the USA as whole
did not experience long periods of near-zero incidence or transmission. To avoid very large
differences between years in the immediate pre-vaccine era and thus better reproduce the
reported annual national incidence pattern in this era, we assume very low seasonality in the
USA model.

We previously described the outbreaks of WPV1 in Albania in 1996 and WPV3 in the
Netherlands in 1992-1993 in the context of modeling those outbreaks.(X3) Briefly, the
outbreak in the Netherlands in 1992-1993 involved a WPV probably imported from India
and caused 59 paralytic cases.("%) However, all but one of the cases during the outbreak
remained limited to a socially well-connected subpopulation of members of orthodox
reformed churches with a very low rate of vaccine uptake based on religious concerns. The
Dutch outbreak involved predominantly older children and adults and unimmunized infants
less than 1 year old.(® The Netherlands relied on IPV exclusively for its immunization
program that eliminated indigenous WPV transmission, although periodic outbreaks in
vaccine-objector communities continued to occur until the large WPV1 outbreak in 1978.(80)
In small, temperate-climate countries, strong seasonality possibly interrupted indigenous
WPV transmission during the low season even in the pre-vaccine era,(8D) with importations
from endemic countries frequently reintroducing WPVs. We model this behavior assuming
substantial seasonality and by introducing WPV (at the transmission threshold £P/* in
each age group) in the spring of each year until 1960, after which, based on the age
distribution of cases,("®) no widespread events of type 3 LPV exposure occurred. In
response to the 1992-1993 outbreak, Dutch authorities offered tOPV to the affected
communities, but they achieved only low uptake, and they offered elPV to unvaccinated
individuals in the general population with approximately 50% uptake.(13) Table V shows
our assumptions for the Netherlands outbreak based on limited data on the IPV campaigns
in the 1950s and previously established model inputs for the outbreak.(!3) Notably, we
model the orthodox reformed communities and the general population separately, with
assumed significant interaction between them, to demonstrate that the model reproduces
no cases in the general population due to IPV-induced herd immunity based on assumed
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predominant oropharyngeal transmission. Specifically, we assume that 1 in 100 potentially
infectious contacts of people in the orthodox reformed communities of about 300,000 people
occur with people in the general population. For routine vaccination, we assume no partial
coverage with less than the full schedule given very high coverage with the full schedule.
We otherwise follow a similar approach to the U.S. model, with the cumulative effect of the
first 3 primary doses (scheduled at age 3, 4, and 5 months) modeled to occur at 3 months

of age, the fourth primary dose (scheduled at age 11 or 14 months) modeled at 12 months,
and two boosters (scheduled at age 4 and 9 years) modeled at 5 and 10 years with the slight
differences due the age groups used in the model.(8% For the Dutch model, we include a
fourth mixing age group of people aged 40 years or more because the age distribution of
cases involving older adults motivated us to look more closely at the mixing for adults (i.e.,
in most other situations, we lump them together because we do not have data to compare to
for adults of different ages).

The outbreak in Albania in 1996 involved widespread transmission of an imported WPV
with 138 confirmed paralytic cases and documented exportations into neighboring countries.
(57.82,83) The outbreak followed a preemptive national immunization day (NID) conducted
due to concerns about vaccine failure in the past resulting from cold chain issues. The NID
targeted children under the age of 5 years and reportedly provided relatively good protection
to that age group, although the WPV1 continued to spread until after Albania conducted
two rounds of response campaigns targeting all people under 50 years of age. Both the age
distribution of cases and serologic results#”) among Albanian immigrants to Italy conducted
prior to the outbreak suggest that suboptimal cold chain performance and disruptions in the
supply of OPV contributed to a large immunity gap in adults. Until 1978, Albania relied
only on annual mMOPV campaigns with a poor cold chain and unstable vaccine supply, and
the country sustained endemic transmission until probably around 1980.(57:82) However,
from an epidemiological perspective, the large accumulation of susceptible individuals over
20 years of age by 1996 remains poorly understood in the context of presumed continued
WPV circulation until ~ 1980 (with a large outbreak in 1978), reported high coverage

of OPV in most years that even under poor cold chain conditions would immunize some
recipients and contacts, and no documented emergence of widespread cVDPV transmission.
Table VI shows our assumptions for Albania, which include characterization of the changing
vaccination strategies from the available data. Following similar calculations as in the USA
model, we model the primary routine tOPV doses (recommended at ages 2, 4, and 6 months)
as the cumulative effect of 3 doses at 3 months, and the 2 booster doses at 18 months

and 5-6 years as separate booster doses at 18 months and 5 years, respectively. Given

that DTP1 and DTP3 estimates for Albania remain very close,(7®) we assume 0 partial
coverage with 1 or 2 doses by age 1 year. We capture uncertainty about the actual routine
immunization coverage (since 1978) by using an overall coverage correction factor. For

the mOPV campaigns that occurred between 1960 and 1977, we remain highly uncertain
about quality of the campaigns, which were “strictly dependent on vaccine supply and
availability,” resulting in “long time intervals between immunization campaigns.”(82. P- 941)
We capture the uncertainty about both the coverage and the effective take rate of the vaccine
schedule (i.e., one monovalent dose of each type followed by a mix of all three monovalent
vaccines one year later)®”) by adjusting the take rate below typical values for mOPV in the
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mid-tier (Table 111) and by adjusting the coverage, which we assume became as low as 40—
60% during the mid-1960s to late-1970s (see Appendix A4). Alternatively, assuming higher
coverage, but much lower take rates would result in the same model behavior. Importantly,
in an attempt to approximate both the age distribution of cases and the size and kinetics

of the outbreak in 1996, we introduced several nonstandard assumptions. First, based on

the geographic and age distribution of cases and serologic studies conducted before the
outbreak,#”) we assume that the Albania outbreak affected primarily a relatively isolated
subpopulation within the country in which indigenous WPV transmission stopped soon after
the beginning of OPV campaigns in 1960. We assume that this subpopulation consists of
half of the total population in Albania and that it did not experience any substantial WPV
exposure until the 1996 outbreak, including no substantial exposure from the last prior WPV
outbreak in 1978.(57:82) Second, we assume that the wave of emigration from Albania in

the early 1990s disproportionately involved individuals from social classes that received
better vaccination. We do so by reducing the emigration rate (captured by the age-specific
net rate of population change (i.e., #in Appendix Al)) for fully susceptible individuals to
5% of that for the rest of the population (i.e., the immunes) aged 10-49 years from 1990
forward. Third, we assume very strong preferential mixing once children reach the age of

5 given the evidence that children who escaped effective vaccination or secondary OPV
infection in their early years did not get exposed to OPV as the immunization program
improved between 1980 and 1996. We model narrower mixing age groups than for the other
situations to characterize this behavior. Finally, we assume that the virus introduced in 1995
or 1996 represents a more transmissible strain (i.e., /Ay = 8) than the endemic strains that
previously circulated in the country (i.e., Ry = 7). The latter assumption may reflect different
antigenic properties(®3) and/or changing conditions in the country, as existing public health
infrastructure declined. The higher R for the outbreak virus proved necessary to produce a
large outbreak consistent with the evidence across a wide range of model assumptions that
we explored during the course of our iterative validation process.

Tajikistan experienced an explosive outbreak due to a WPV1 importation in 2010, with 458
reported cases.(® The majority of cases occurred in children younger than 5 years of age
(65%), but the proportion of cases in children between 5-14 years of age (23% of cases)
and over 15 years of age (12% of cases) increased as the outbreak neared its peak and
continued after the first two mOPV1 response rounds that targeted only children younger
than 6 years of age. Two more rounds targeting children younger than 15 years of age
preceded the last case by less than four weeks. Tajikistan had not conducted SIAs since
2002 or 2003 (with the possible exception of a round with small geographic scope in 2007
targeting children younger than 15 years of age) and it experienced low routine coverage
according to several surveys conducted between 2000 and 2007.(84-86) The country may
have interrupted indigenous WPV transmission during the Soviet era, but it experienced
significant numbers of WPV cases again in the 1990s during a period of civil unrest,

until the reported incidence again dropped to 0 from 1995 on.(86) As in the Netherlands
model, we introduce annual WPV1 importations into the model until 2000, after which we
assume the country experienced no importations that established widespread transmission.
Given that all but 1 case during the 2010 outbreak occurred in 3 of the 6 regions of

the country (i.e., Dushanbe, Khatlon, and the Districts of Republican Subordination), we
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focus on these for the model (Table VI1I). We model routine vaccination based on available
coverage surveys, which include polio vaccine coverage by dose, so that we do not need to
approximate partial coverage from DTP1 and DTP3 data (as we did for the USA model). We
estimate the coverage of 1 dose given fewer than 3 doses (covl) and 2 doses given fewer than
3 doses (cov2) as:

covl = (POL1 — POL2)/(1 — POL3)
cov2 = (POL2 - POL3)/(1 — POL3)

where POLi denotes the coverage with the i/ nonbirth routine dose, measured at 12-23
months of age.(88-90) We model the cumulative effect of these 3 doses at 3 months by taking
the aggregate effect of all 3 doses similar to the USA model. We assume coverage with the
birth dose does not get recorded in the coverage survey results for POL1, POL2, and POL3,
and approximate the coverage of an additional birth dose by the Bacille Calmette-Guérin
(BCG) coverage (administered 3-5 days after birth). We further conservatively assume that
the booster dose at 12 months of age gets included in the POL1, POL2, and POL3 coverage
estimates (measured at 12—23 months of age), such that we do not add an additional dose
at 12 months of age, and use the survey that reported the lowest coverage among 3 surveys
during 2000-2007 as the basis for POL1, POL2, and POL3 coverage estimates.(84-86) We
further assume no increase in routine coverage occurred since the 2007 survey despite the
increase estimated by WHO/UNICEF based on administrative data.(®1) We further apply a
correction factor of 90% to all coverage values to account for unregistered children, which
may represent an important group in the regions affected by the outbreak in Tajikistan.

Cuba probably became the first country to interrupt indigenous WPV transmission with

a strategy of vaccinating young children exclusively during annual two-round campaigns
with tOPV (except for two years of use of mOPV1 and bOPV types 2 and 3), with its
apparent incidence dropping to 0 cases after the first two rounds in 1962.(92.93) Despite

18 reported VVAPP cases during 1963-1996, no evidence exists of emergences of cVDPVs
between campaigns, and several studies document the rapid disappearance of OPV-related
viruses following campaigns.(48.94.95) We explored the situation in Cuba to verify that the
campaigns in our model accomplish rapid WPV elimination and that OPV-related viruses
also disappear quickly with no FRPV circulation between campaigns. We then use the same
generic model assumptions about OPV evolution to simulate the cVDPYV outbreaks that
occurred in Haiti, Madura, and Nigeria. Our characterization in Table VII1 of the vaccination
history in Cuba draws directly from the overview by Mas Lago. ¢2)

The type 1 cVDPV (cVDPV1) outbreak in Haiti during 2000-2001 represents the first
cVDPV outbreak detected in real time (with a few other cVDPV outbreaks identified
retrospectively).(23) While investigators found only 8 VDPV isolates from AFP cases and
identified only 2 additional polio-compatible cases also probably caused by the cVDPV
outbreak virus, poor surveillance probably led to approximately 80% underreporting(96:97)
or even more given that not a single isolate from AFP cases exists for the years leading

up to the outbreak. The virus spread to the Dominican Republic on the same island of
Hispaniola to cause 13 more laboratory-confirmed cases and it continued to circulate in
Haiti through two poor-quality response immunization campaigns until a rolling campaign
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targeting all children up to 10 years of age controlled the outbreak. We found very little
available information about polio vaccination leading up to the outbreak in Haiti. Like

all countries in the Western Hemisphere with ongoing indigenous WPV transmission near
the end of the Pan American Health Organization’s campaign to eliminate polio from the
region, Haiti implemented NIDs periodically, probably starting in the late 1980s.(98:99) The
last WPV case occurred in 1989 and no evidence exists of any SIAs conducted after 1995.
(96) Consistent with other cVDPV outbreaks,(23) Haiti experienced relatively low routine
vaccination coverage, probably including large pockets of people with very low coverage.
(76.90) We take the same approach as for Tajikistan to model routine vaccination and partial
coverage, linearly interpolating between data points from Demographic and Health Surveys
(DHS) conducted in 1994-1995, 2000, and 2005-2006.(99) The surveys report birth dose
coverage, which we model as a separate dose at birth that occurs in addition to the effect
of the 3 primary doses with cumulative effect at 3 months. Table I)X summarizes the model
inputs for Haiti.

Madura, a small, densely populated island off the coast of Java in Indonesia, experienced a
type 1 cVDPV outbreak in 2005 around the same time that it imported WPV1 from a large
outbreak that occurred in other parts of Indonesia. Overall, Madura reported 45 laboratory-
confirmed cVDPV1 cases, 8 laboratory-confirmed WPV 1 cases, and 10 polio-compatible
cases.(100) The cases occurred predominantly in rural areas of the island with routine
vaccination coverage much below the averages for Indonesia, West Java, and Madura.(100)
After an initial small-scale response in the cVDPV-affected villages, 3 national campaigns
with tOPV in response to the WPV1 outbreak controlled both the cVDPV1 and the WPV1
outbreak. The WHO vaccine-preventable disease incidence series reports cases through
2000,87) although Estivariz et a/.(1%9) report no WPV circulation for Indonesia between
1995-2004. We assume that WPV circulation in Madura probably stopped well before
2000. The WHO also reports that Indonesia conducted 2 NID rounds targeting children
under 5 years of age in 1995-1997 and 2002, mop-ups in 1999, and subnational NIDs in
2000-2001, with no SIAs between the NIDs in 2002 and the outbreak response in 2005
(Gacic-Dobo, 2009, personal communication). Table X shows our assumptions related to the
Madura outbreak, with time series for effective perround impact documented in Appendix
A4. Given the reported heterogeneity in coverage between rural and urban areas9% and the
possibility that the fixed-post campaign in 2002 missed entire rural villages, we focus on the
rural population of approximately 900,000 people in 2005. Consistent with the progression
of outbreak cases in time and space, we assume that the VDPV emerged from the rural
areas although this remains uncertain. We emphasize our assumption of high Rg in the
affected subdistricts given the reported “suboptimal hygienic conditions...observed in all
households, with a lack of latrines in half of the villages visited and with boiling water

for drinking reported by <40% of caregivers.”(100. - 350) Similar to other situations, we
model the cumulative effect of the primary doses as a single dose at age 3 months, taking
into account estimates of the partial coverage of up to 4 doses in the affected population
(Estivariz, 2012, personal communication).

Table XI lists the model inputs for Nigeria. Nigeria remains one of only 3 countries that have
never interrupted indigenous transmission of WPV1 and WPV3 in all areas. Moreover, while
Nigeria reported the last case of WPV2 in 1998,(2) it experienced sustained transmission
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of VDPV2 since 2005.(192) Nigeria conducted the first NID in late 1996. When Nigeria
switched to a virological case definition in 2001 as surveillance improved, it reported only
56 WPV cases, but this probably still represents a low estimate.(102.103) |n 2003-2004,
some northern states suspended all immunizations, leading to exportations of WPV1 and
WPV3 to previously polio-free states(193) (and to other countries).(®) Nigeria introduced
mOPV1 for SIAs in 2006 and mOPV3 in 2007,(193) resulting in gaps of immunity to types
2 and 3. In 2010, Nigeria started using bOPV for most SIAs(191) while it continued to use
tOPV in some NIDs and both mOPVs in some areas depending on the epidemiological
situation. Continued circulation of all 3 poliovirus serotypes in Nigeria reflects chronic
failure to vaccinate and to attain high coverage with routine immunization and SI1As in the
northern states.(101) The northern Nigeria model (see Table X1 for inputs) focuses on the
northwestern (NW) zone, which accounts for ~ 25% of the national population according to
the 2006 census(194) and the majority of confirmed polio cases (WPV or cVDPV) during the
last decade.(102.103,105-109) \A/e assume that in this zone, a large fraction of the population
gets chronically undervaccinated, while the general population receives most of the doses.
Thus, we model two subpopulations (i.e., the general population that represents 90% of the
total population and the remaining 10% an undervaccinated subgroup that mixes somewhat
preferentially within itself). In reality, the undervaccinated children probably live scattered
across the region and involve underserved urban and rural communities as well as migrant
groups that remain poorly identified. Modeling these as one spatially homogeneous mixing
subpopulation represents a simplification since scattered groups do not mix instantaneously
with each other, but the inclusion of this subpopulation provides a better characterization

of heterogeneity in coverage than including this group as part of one big population for the
northwest. To characterize effective vaccination rates in these states, we use information on
each SIA conducted since 1996 (Gacic-Dobo, 2009, personal communication). For SNIDs,
we multiply the coverage by the fraction of the total population of the northwest using data
on targeted states or districts when available and informed guesses otherwise. For routine
immunization, we model the birth dose separately and the cumulative effect of the 3 primary,
nonbirth doses at 3 months of age, taking into account data on coverage by dose and zone
for surveys conducted periodically between 1999 and 2008 (see Appendix A4).(88)

Table XII lists the model inputs for northern India. India reported the last WPV2 case in
1999, within a few years after introducing NIDs in 1995. SIAs with tOPV continued to
intensify, but failed to interrupt transmission of WPV1 and WPV3 in the northern states

of Uttar Pradesh and Bihar, probably due to a combination of poor take of tOPV and
failure to reach the last pockets of susceptibles. India first started using mOPV1 in January
2006 (following small field trials that began in April 2005(110)) mOPV3 in December
2006, and bOPV in January 2010 (Gacic-Dobo, 2009, personal communication). After
concerted efforts to reach the last remaining reservoirs of WPV transmission, India reported
the apparent last case of WPV in January 2011.(111) To model poliovirus transmission

in northern India, we separately consider Bihar and those districts (listed in Table XII)

in WUP that reported the majority (i.e., 69%) of cases from Uttar Pradesh.(112) Similar

to the northern Nigeria model, we further divided the population of WUP into a general
population (96% of the total population considered) and a small reservoir of chronically
undervaccinated subgroups. We follow the same approach as Nigeria to model routine
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vaccination using linear interpolation of data from available surveys.(8%) However, given

the very large difference between estimated DTP3 versus POL3 coverage, we suspect that
doses administered during SIAs may inflate the OPV3 coverage, while the relatively lower
focus on DTP than polio as well as possible DTP shortages may contribute to lower DTP3
coverage. Consequently, we assume for our coverage estimates the midpoints between DTP
and POL coverage. We use information on actual SIAs conducted in India (Gacic-Dobo,
2009, personal communication) about dates, vaccine used, and target population (for SNIDs)
as well as fitted estimates of effective per-round impacts to characterize the effective
vaccination rates due to SIAs in the model (see Appendix A4).

3. RESULTS

We present the results for each of the modeled situations separately. Tables X111-X1V and
Figs. 2-10 provide the main results. Appendix A5 includes further results for each situation,
including figures that show the run-ups and specific comparisons with data.

3.1. USA

Fig. 2 shows the results for the USA model using the best estimates for the generic model
inputs in Table I and for the USA-specific inputs in Table IV. The model reproduces

the general behavior observed in the USA, with a significant drop in incidence after the
introduction of IPV in 1955, and behavior in the late 1950s reflecting the accumulation

of susceptibles and continued outbreaks leading to a resurgence of cases. The assumption
that the majority (80%) of transmissions comes from oropharyngeal infections (Table 1V)
represents a major determinant of the impact of IPV. For example, if we decrease this
proportion to 50%, then the incidence of type 1 poliovirus in 1961 (i.e., the year before
OPV use starts in the model) is 3.5 times higher than for the run shown in Fig. 2, and

the cumulative incidence during 1955-1961 1.4 times higher. WPV elimination occurs
soon after the start of the mOPV campaigns, which the model begins in 1962. Given the
uncertainties and the oversimplification of one large homogenous population with perfect
mixing, we observe some differences. First, the model estimates higher incidence than

the reported estimates of paralytic cases in the pre-vaccine era. Underreporting(’® may
account for some of the difference, and the PIRs, which directly impact the absolute
numbers of cases in the model and that we based on typical estimates,(25.70.113) may
slightly overestimate the true values. Second, once we uniformly introduce mOPVs, WPV
elimination occurs in the same year as the effective proportion infectious (£P/) drops below
the transmission threshold £P/*=5 x 1076 (Table I). Continued WPV transmission beyond
1962 in reality(®7.70.71) Jikely involved pockets of unvaccinated populations with relatively
higher /y and/or lower coverage that sustained some local WPV transmission naturally until
seasonality and vaccination led virus transmission to completely die out.(67.70)

Despite the above limitations, our model provides an opportunity to compare the more
stable situation after the last known WPV transmission in 1979(34) with data obtained during
this era of routine tOPV use in the USA. First, we found no emergences of FRPVs (i.e.,
defined as OPV-related viruses with the same PIR and Ry as typical homotypic WPVs)

of any serotype exceeding our transmission threshold £P/*(Table I). Thus, although very
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low prevalence of FRPV occurs due to fractional reversion from more attenuated states,
our model remains consistent with the lack of evidence of cVDPVs in the USA during the
OPV period from 1980-1996. This result depends on the assumed elimination thresholds
and number of reversion stages, which we fitted to produce cVDPV outbreaks where they
occurred (i.e., Madura, Haiti, northern Nigeria) and no cVDPV outbreaks where none
occurred despite OPV use (e.g., Albania, Tajikistan, Cuba).

Second, we compared the average forces of infection generated by all OPV-related viruses
(including OPYV itself) in the model with the average force of infection needed to produce
the observed seropositivity levels among unvaccinated children measured by Chen et a/.(64)
during 1990-1991 (see Appendix A5). Both the model and the data remain consistent with
substantial exposure to OPV viruses, particularly for type 2, and the model produces values
within the reported confidence intervals (except for type 1 in one of the two study sites, but
not in the other).(64)

The assumed weak seasonality in the model to compensate for the averaging out of local
periodicity at the aggregate level reduces the time between peaks in the model, and therefore
we cannot make meaningful comparisons between data and model for the USA as it relates
to the age distribution of cases, although good information exists about the age distribution
of cases in the USA in the pre-vaccine era.

3.2. The Netherlands

Fig. 3 shows the results of the model for the type 3 WPV outbreak in the Netherlands

in 1992-1993, which involves the two subpopulations described in the methods section.
Due to strong seasonality coupled with a low Ry, the model produces WPV3 elimination
in the pre-vaccine era. However, we reintroduce virus annually from importations, so that
significant outbreaks continue to occur. Following large-scale campaigns with 1PV during
1957-1959 and subsequent high routine coverage, WPV 3 introductions no longer take off
in the general population, and we assume no WPV 3 introduction established circulation in
the religious communities from 1960 on (Table V). As in the USA, the assumption that
oropharyngeal spread dominates transmission plays an important role in IPVs ability to
provide herd immunity in the Netherlands because we assume IPV-induced immunity does
not reduce participation in fecal-oral transmission by as much as it reduced participation
in oropharyngeal transmission. Although we do not have data by type during the WPV
elimination phase in the Netherlands, occasional WPV outbreaks continued to occur through
the 1970s, including one large WPV 1 outbreak in 1978 in the same subpopulation of
religious vaccine-objector communities.(®9) With the introduction of the WPV3 in late
1992, the large numbers of susceptibles that had accumulated in the low-coverage orthodox
communities led to the outbreak shown in Fig. 3, which corresponds well with respect to
the timing and size of the reported outbreak due to calibration of the date of introduction
and peak of seasonal transmission (Table V).("9) The small difference in total number of
cases in the model compared to the data may reflect variation in the true PIR for the
WPV 3 of the outbreak compared to the average value of 1:1000 that we assumed (Table

1). Alternatively, different assumptions about Ry (including seasonality), coverage in the
religious communities, date of introduction, outbreak response, and relative importance of
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oropharyngeal transmission all affect the case total, but unlike the PIR they also affect

the timing of the outbreak. Importantly, our model remains consistent with the evidence

of significant herd immunity in the general Dutch population in that it does not produce

any cases outside of the religious communities.(®) This remains true even if we assume

no vaccination response in the general population and/or if we increase the proportion of
contacts with the general population for individuals in the orthodox communities to as much
as 50%.

Table XI1I compares the age distribution of cases for the Netherlands model with the data,
showing a consistent pattern. This suggests adequate characterization of the run-up in the
model, as well as a realistic aging process in the model owing to the large number of age
groups. The higher frequency of cases in adults of 40 years of age in the model probably
still relates to the exponential aging process in the model, which allows some fraction of
individuals to escape WPV exposure as they age into the next age group. Alternatively,
older adults may in reality have participated less in transmission compared to school-aged
children,(314 or some underreporting among older adults occurred. Uncertainty remains
about the possibility that the PIR increases by age.(?®) Given the exponential aging processes
in our model, an increasing PIR by age, while supported by some evidence,(?® would
further shift the age distribution towards older adults in the Netherlands. The use of tOPV
for the response in the religious communities did not produce any spread of FRPVs of any

type.

3.3. Albania

Fig. 4 shows the results for the WPV 1 outbreak in Albania in 1996. Unlike our prior model
for this outbreak, which assumed the initial values immediately before the outbreak,(13) we
generated the initial conditions for the model by running it from a pre-vaccine time up to
the outbreak. This proved challenging given very limited data on the vaccination history, in
particular during the 1960s and 1970s when Albania relied solely on OPV campaigns for
which timing depended on vaccine supply,(82) and complicated population dynamics that
led to a net decline in the population of adults around the time of the outbreak.(®1) The
Appendix shows the run-up of the model to 1996, with die-out in the modeled subpopulation
in 1960 as a result of strong seasonality and the onset of campaigns with mOPV. Due to

the assumed heterogeneity in mixing between age groups (Table V1), parts of cohorts that
escaped OPV vaccination remain relatively unaffected by secondary OPV spread, leading to
accumulation of fully susceptible adults until 1996, which we assume did not emigrate at the
same rate as immunes (see methods section). The model does not generate FRPVs because
OPV-related viruses primarily transmit between younger children and die out before they
reach the last reversion stage or transmit within the more susceptible older age cohorts. The
introduction in early 1996 of a WPV 1 causes an outbreak roughly similar to the observed
outbreak (Fig. 4). The low population immunity over many years leading up to the outbreak
suggests the possibility that Albania faced a potentially high risk of a cVDPV outbreak and
this appears consistent with the relatively high rates of VAPP it experienced for types 2

and 3.(82) Table XIII includes the age distribution of cases for Albania and suggests some
differences between the model and the data. While the reported data®?) suggest most cases
occurred in people over 20 years of age, the model yields similar numbers more cases in
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the 10-19 than the over 20 year olds. While we found no conclusive evidence to suggest
that the PIR changes as a function of age,(2%67) strong evidence exists that the severity of
paralysis and case fatality rates increase significantly with age,(2>67) which would explain

a higher probability of detection for the older age groups. Our model for the Albanian
outbreak assumes both constant PIR and constant probability of detection with age (i.e., of
100%) while in reality undetected paralytic cases in children probably occur more often than
in adults. We emphasize that the epidemiology of the 1996 outbreak remains a puzzle in

the context of the reported history of polio in the country and high quality of immunization
leading up to the outbreak that remains uncharacteristic,(7:57:82:83) and that modeling this
outbreak required non-standard assumptions about the transmissibility of the outbreak virus
compared to earlier viruses in the same population, the strongly age-heterogeneous nature of
mixing, and disproportionately low rates of emigration for fully susceptibles.

3.4. Tajikistan

3.5. Cuba

Fig. 5 shows the results from the Tajikistan model. The run-up yields elimination as soon

as we allow it in 1960 with the onset of routine OPV immunization (Table VII), owing to
the assumed strong seasonality (see Appendix A5). The WPV1 importations introduced into
the model do not take off until outbreaks in the early 1990s, when routine immunization
coverage decreases. The SIAs during the mid-1990s to early 2000s again raise population
immunity. With conservative assumptions about routine vaccination since the last SIAs and
fitted data of introduction and peak of seasonality (Table VI1), the model of the three regions
affected by the outbreak produces a good fit to the reported data.(®) The model results
suggest that within the assumed closed population of the three affected regions, the outbreak
nearly reached its natural peak by the time the outbreak response campaigns started. Table
X111 includes the comparison of age distributions of model vs. reported data,® which also
shows a good match. Unlike the Netherlands model, slightly increasing the PIR by age
would improve the fit of the proportion of cases over 15 years of age.

Due to the absence of cases since the early 1960s, Fig. 6 shows the behavior of the
persistence of OPV-related viruses for Cuba during 2 years (1990-1991), rather than the
incidence of WPV as shown in the previous result figures. Although the pattern shown in
Fig. 6 looks very similar to the pattern in other years, we focus on 1991 because we can
compare the model results to data reported by a seroprevalence study conducted following
the NIDs in 1991.(48) Consistent with the evidence, 2 the first campaigns in 1962 led to
WPV elimination of all three poliovirus serotypes in the model within a year (see run-up
shown in Appendix A5). Fig. 6 shows the £P/to 0-4 year olds for all three serotypes and
broken down by reversion stage. Not surprisingly, administration of OPV to children under
5 years of age with high coverage and relatively high take rates (Table VII1I) leads to a high
prevalence of OPV viruses (i.e., reversion stage 0) during and immediately after NIDs. This
keeps population immunity high enough to prevent sustained transmission of all three types
of WPV, FRPV, or OPV-related virus. At this level of population immunity, each infection
generates less than 1 new infection, but more than 0 new infections. The number of new
infections generated per infection increases with the reversion stage due to increasing Ry,
but remains below 1 even for the Ry of WPVs and FRPVs. A fraction of OPV infections
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generated during the NID (from recipients and contacts) reaches the next reversion stage
(stage 1), which also generates some transmission, but not as much as the OPV virus.
Similarly, we find some £P/ for subsequent stages, but the proportion rapidly decreases with
the reversion stage. Fig. 6 only shows those reversion stages for which the £P/ exceeds the
transmission threshold £P/*at any time during the time period shown. Because of the high
level of population immunity, none of the viruses sustain transmission following the initial
pulse of OPV viruses during the NID, such that the £P/for each reversion stage rapidly
drops below the threshold for transmission. Type 2 viruses achieve the highest reversion
stage (i.e., stage 9) that exceeds the transmission thresholds following the NID, consistent
with the assumption of faster reversion and higher relative /&, for type 2 (Table I). Although
we see very low prevalence of FRPVs due to reversion from infections that started in lower
stages of reversion, our model does not record any emergence or spread of FRPVs of any
type over the full time period 1962-1997.

The model for Cuba yields approximately 18 total VAPP cases (60% recipient VAPP) for
all serotypes combined during 1963-1996, compared to 18 total reported VVAPP cases.(%2)
As a direct result of the serotype distribution for recipient VAPP in the USA, our model
yields mostly type 3 VAPP cases (59%) while investigators in Cuba reported the isolation
of type 2 in 12 (71%) of the 17 VAPP cases with a single serotype isolated.(®2) Table

XIV compares the cumulative secondary OPV infection rates in the model based on the
cumulative force of infection from all OPV-related viruses after the second NID round in
1991 with reported seropositivity levels among unvaccinated infants born after the second
round of NIDs and tested before the next round.(#8.95) Remarkably, the study conducted
after the 1991 NID®8) found much higher seropositivity levels than the study conducted
after the 1997 NID.(9%) The fact that the 1991 NID targeted children 0-3 and 9 years of age
and the 1997 NID targeted only children 0-2 and 9 years of age(®2) may partly explain this
difference. Moreover, the number of children in the study born immediately after the 1997
NID remained very small (7= 14) and only 3 (21.4%) had older siblings in the household.
(95) We requested and failed to obtain information about siblings for the study conducted
after the 1991 NID.(8) In any case, both studies found that secondary OPV spread ceases
by 3 months after the second NID round. Our model, which does not track siblings or
households but reflects the average force-of-infection for the entire mixing age group, also
yields a very rapid drop in the force-of-infection of OPV-related viruses (see Appendix
Ab) and therefore in the cumulative exposure to those viruses over time after the second
NID round. Transmission of all OPV-related viruses stops 115 days after the second NID
round in 1991 (August 22), a little after the period when laboratories typically stop isolating
OPV-related viruses from environmental samples in Cuba.(®2) We did not obtain such high
rates of secondary infection immediately after the second NID round as those reported by
Mas Lago et a/,,(48) and we found that even with higher Rys and/or take rates, our model
would not produce such high rates. We also did not obtain the contrasting relatively lower
rates implied by Mas Lago et a/.,(%) and thus our model remains within the combined
range of the divergent findings reported by these two studies. Given limitations in the data,
we believe that intense household transmission due to a high proportion of infants in the
study population with older siblings vaccinated during the NID may offer the most likely
explanation for the 1991 data(8:9%) and the discrepancy in the results for our model that
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does not explicitly differentiate household and community transmission but only reflects an
average-based effect based on the age-heterogeneous mixing matrix.

Fig. 7 shows the results for the cVDPV outbreak in Haiti in 2000-2001. The run-up to

the outbreak includes the beginning of routine immunization in 1980 and NIDs in 1986,
which leads to WPV elimination in 1989, consistent with the evidence (see Appendix A5).
(96) As in most settings without active, systematic surveillance, the model produces much
higher paralytic poliomyelitis incidence in the pre-eradication era than the reported numbers,
but this remains consistent with the difference between the reported numbers of paralytic
poliomyelitis cases and findings from lameness surveys before the GPEI organized active
AFP surveillance in all countries.(16:115) Replicating this outbreak with the model proved
challenging due to limited data on the true size of the outbreak and vaccination activities
between the last reported WPV case in 1989 and the response to the c\VDPV outbreak in
2000. Haiti reported no AFP cases at all in the years leading up to the outbreak and the

10 reported virologically-confirmed and polio-compatible outbreak cases may represent only
20% or less of true paralytic incidence for the outbreak.(®”) Fig. 7(a) shows the prevalence
of OPV-related viruses assuming significant partial coverage despite low coverage with the
third dose in Haiti.(76:99) Unlike the results from the Cuba model (Fig. 6), we can discern
continuous prevalence of OPV virus and viruses in early stages of reversion due to routine
immunization and increasing prevalence of OPV-related viruses in high reversion stages as
time since the last assumed NIDs in 1995 passes. The model then produces a relatively
gradual outbreak, which gets curtailed by the response efforts initiated before the outbreak
reaches its natural peak (Fig. 7(b)). The first FRPVs emerge in the model in the summer
of 2000, and viruses in earlier reversion stages, but with elevated PIRs, already lead to an
increasing number of nonrecipient type 1 VVAPP cases (i.e., 1 in 1998, 3 in 1999, and 8

in 2000 before the FRPV emergence). The occurrence of cases before the first detected
case remains likely for the actual outbreak.(®”) The inclusion of much more heterogeneity
would slow down the propagation of the outbreak and could accommodate earlier FRPV
emergences without a very large undetected outbreak, but this requires better data on the
population structure and immunization coverage in Haiti. The model produces no FRPV
transmission for types 2 and 3. Given the low numbers of reported cases, we did not
compare the reported age distribution of cases to that obtained by the model (Table XIII),
which includes approximately 75% of cases in children younger than 5 years of age.

3.7. Madura Island

Fig. 8 shows the results of the model for the 2005 type 1 cVDPV outbreak in Madura.
Unlike Haiti, Madura conducted SIAs up to as recently as 3 years before the outbreak and
nationwide coverage estimates remained higher than those in Haiti in the years leading

up to the outbreak.(76:100) However, the outbreak primarily affected and probably emerged
from a small number of rural subdistricts in Madura with very poor hygiene and very

low coverage, based on convenience surveys conducted during outbreak investigations.(100)
Consequently, our model focuses on the rural population of Madura and assumes: 1) a
relatively high average Ry of 9 for a country with otherwise relatively good sanitary
conditions, and 2) very low routine coverage in recent years of 15% with 4 doses and
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some additional partial coverage with fewer than 4 doses (Table X). With these assumptions,
type 1 FRPVs emerge in the model in early 2005 and lead to a rapid initial growth of
paralytic poliomyelitis incidence consistent with the data (Fig. 8). Several factors may
explain the differences in total cases between our model and the reported data. First,

the outbreak involved 10 polio-compatible AFP cases probably caused by the cVDPV,

(100) and intensive outbreak investigation possibly missed some paralytic cases in isolated
communities altogether. Second, health authorities conducted small-scale vaccination efforts
in affected villages early during the outbreak (covering approximately 19,000 children) and
several weeks before the NID, which probably slowed down the outbreak effectively before
the NID.(190) Third, significant heterogeneity in the population of relatively isolated villages
potentially slowed down the spread across the island or spared areas with better coverage
altogether, while our model assumes uniformly low coverage for the entire rural population.
Nevertheless, even without spatially homogeneous mixing, our model for OPV evolution
appears to correctly reproduce the emergence of cVDPVs on the island of Madura in 2005
and the approximate outbreak curve. The model produces a total of 1.4 FRPVs for type

2 between 1981 and 1987 during times of very low routine coverage and a FRPV type 2
emergence in 2005 that translates into less than a case (i.e., cumulative paralytic incidence of
0.05). The model produces no FRPV transmission for type 3. Given that no surveillance for
VDPVs existed in the 1980s, we cannot verify the correctness of this model behavior.

3.8. Northern Nigeria

Fig. 9 shows the behavior of all three types in the model of the NW zone of Nigeria
during 2003-2011. In the absence of data by type and region, Appendix A5 includes the
run-up, comparing the models with the approximate annual totals by type for the entire
country.(42:101-103,105-109,116,117) Gjyen the frequent isolation of orphan viruses from AFP
cases (i.e., polioviruse isolations in the absence of isolations of genetically close progenies
from other AFP cases) in parts of northern Nigeria, we suspect that the reported cases may
represent as little as 50% of true cases in the early 2000s although with improvements

in surveillance we believe reported cases probably represent a much higher percentage of
actual cases since 2007 or later. Thus the overall level of incidence in the model appears
consistent with the likely true level. To fit the model to produce plausible kinetics, we
used detailed data about SIAs (Gacic-Dobo, 2009, personal communication) and varied
the effective per-round impact (¢) of rounds, as detailed in Appendix A4. This process
produced estimates of the annual cumulative percent of missed children consistent with
our understanding of the situation in northern Nigeria (Appendix A4). Overall, the model
produced fits for types 1 and 3 that appear reasonable compared to annual averages and
reproduced WPV2 elimination in 1999(2:118) (in the undervaccinated subpopulation) and
subsequent emergence of FRPV2s in 2004. However, given that we do not characterize
the geographic heterogeneity in the undervaccinated subpopulation but instead lump them
all as one instantly mixing population (see methods section), we do not get the same
extent of local VDPV?2 outbreaks during 2006-2008 that probably occurred in reality.(101)
With the absence of tOPV SIAs for an extended period of time during 2007-2009, the
model accumulates sufficient susceptibles to allow an explosive outbreak in 2009. The
more explosive nature of the outbreak results from the assumption of instantaneous mixing
in each subpopulation (i.e., a more geographically scattered subpopulation would produce
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a more gradual outbreak). Nevertheless, the model adequately reproduces the cumulative
total number of cases and occurrence of major peaks and troughs in incidence for each
type.(42,106,108,111,116) This suggests that the model captures the overall impact of changing
vaccination strategies (i.e., timing and vaccine choices for SIAs) on the average population
immunity, and that the OPV evolution process approximates the behavior for type 2. The
inclusion of at least 1 undervaccinated subpopulation proved important to reproduce the
behavior of polioviruses in northern Nigeria.

3.9. Northern India

Fig. 10 shows the results for the northern India model for 2002-2012 compared with the
incidence of laboratory-confirmed cases.(112) Detailed data on WPV cases(112) allowed us

to focus on the key WPV reservoirs of Bihar and WUP as separate subpopulations (see
methods section) and to compare cases at a better resolution than annual aggregate case
counts. In calibrating the model, we separately varied for each type and subpopulation the
implied cumulative missed children with all SIA doses containing the given type. Appendix
A5 shows the impact of the start of the routine immunization and SIAs on the reported
incidence (for all of India) and on the modeled incidence (for Bihar and WUP only),
showing overall similar patterns. For types 1 and 3, the model calibration process led to

a good correspondence with the observed incidence. In Bihar, the model yields WPV3
elimination by 2004, as observed in reality, and after we reintroduce WPV3 in January 2007,
we obtain an outbreak consistent with the reported outbreak.(112) WUP sustains indigenous
WPV1 and WPV3 transmission through 2010, with the last WPV infections occurring

in the undervaccinated subpopulation in November 2010, soon after the introduction of
bOPV and assumed further improvements in reducing the percentage of missed children

in the chronically undervaccinated subpopulation (see Appendix A4). Discrepancies in

the size of outbreak peaks (e.g., WPV1 in 2002 and 2006) reflect the assumption of
spatially homogeneous mixing within Bihar and within WUP, which clearly represents a
simplification for the very large populations modeled for this situation. WUP and to some
extent Bihar experienced a limited cVDPV2 outbreak during 2009-2010, although the origin
of the VDPV emergence from within or outside these areas remains uncertain. Our model
does not reproduce an indigenous emergence of FRPVs in either of these areas, consistent
with the self-limiting nature of the observed VDPV2 event due to the uninterrupted policy of
two annual tOPV NIDs.

4. DISCUSSION

Despite decades of intense study of polio, many aspects of poliovirus transmission and
evolution remain highly uncertain and variable, (1819 mainly due to the high fraction of
asymptomatic infections, which makes it very challenging to observe transmissions. In
addition, the inability to conduct ethical experiments with neurovirulent polioviruses in
humans further limits observations. The detection of cVDPV outbreaks remains relatively
recent and we do not know how well /in vitro studies of vaccinederived polioviruses translate
to neurovirulence and more importantly to transmissibility in humans.(!7) Given the high
number of uncertain model inputs related to poliovirus evolution and transmission, our
iterative process to validate the model suggested the need to model as many situations as
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we did. Specifically, we did not obtain confidence in the model’s ability to adequately
represent the behavior of OPV-related viruses in large populations until we were able to
simultaneously generate cVDPV outbreaks in Haiti, Madura Island, and northern Nigeria
while not seeing transmission of highly evolved viruses in the USA, the Netherlands, and
Cuba.

We developed an expanded differential-equation-based (DEB) model for poliovirus
transmission that we believe captures the most important features of poliovirus immunity
and transmission to model the average behavior of poliovirus spread in large populations.
Despite the uncertainty in model inputs and the simplifying assumptions of space-
homogeneous mixing and mixing patterns between very wide age groups, the model
appears to produce realistic behavior for endemic WPV transmission before vaccination,
for the impact of OPV and IPV vaccination, and for WPV importations into populations
with low immunity. With respect to the impact of IPV on transmission, we found more
impact as the role of oropharyngeal transmission increases, and we expect that a better
understanding of the importance of oropharyngeal transmission will help assess the potential
impact of IPV in developing countries. The model also does not produce emergences of
cVDPVs in situations in which they did not emerge and generates cVDPVSs in situations

of very low population immunity in which they did emerge. However, our model does

not capture potentially important micro-dynamics that may affect the emergence and
kinetics of VDPVs, in particular as it relates to the dichotomy between household and
community transmission.(17) The process of calibrating our model indirectly accounts for
these dynamics at the average level by adjusting average-based model inputs such as the
relative Ry and timing of different reversion stages, which for individuals might occur faster,
but for populations might not progress as fast because most viruses die out before gaining
increased transmissibility. Interpretation of results from this DEB model must consider the
limitations associated with the assumption of homogeneous, instantaneous mixing within
subpopulations, which can imply rapid transmission across large populations. As seen in
the context of modeling the Netherlands, northern Nigeria, and northern India, potential
chronically undervaccinated subpopulations can play an important role in both outbreaks
and sustained endemic transmission. For one of the nine situations (i.e., Albania), we

faced very significant challenges to reproduce the run-up to the outbreak and could only
approximate some of its features by making questionable assumptions about /Ry differences,
more heterogeneous age-mixing than in the other situations, and a disproportionately

low immigration rate for fully susceptibles. The epidemiology for this event remains not
fully understood,(47-57:82:83) and we could not fully resolve this situation in the model
either. Possibly, some highly isolated communities may have missed vaccination and WPV
exposure altogether for long periods of time, and some fraction did not get exposed to OPV
in households when coverage improved in the 1980s. However, our model does not provide
this level of granularity and data to support such hypothesis do not exist.

Our assumptions about the highly uncertain OPV evolution process might also significantly
affect performance of the model. In our DEB model, we included multiple stages of
reversion such that the implied distribution of the duration until full reversion remains
centered around the assumed mean reversion times, but some fraction of OPV infections
still revert to FRPV virtually immediately. If a true minimum time exists before an OPV
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virus can acquire the 7y of FRPV or typical homotypic WPVs, then a more discrete
reversion process that one cannot easily implement in a strict DEB model may provide

a more realistic approximation. In constructing the model, we considered and tested fixed-
delay processes(33 for reversion, but for short reversion times this still did not produce
results consistent with the evidence (e.g., emergence of VDPVs in places where they did
not). Moreover, in reality, distributions exist for the time it takes for individual viruses to
gain neurovirulence and transmissibility, and in this sense the high-order exponential delay
process that we assumed provides a more realistic model than a fixed-delay process, even if
we remain uncertain about the true distributional forms. Randomness both in the reversion
process and contacts encountered by any individual OPV-related virus in a population or
other unknown factors (e.g., recombination with nonpolio enteroviruses) may explain why
cVDPV outbreaks did not occur in some places where we might expect them to occur based
on population immunity alone (e.g., Albania, Haiti before 2000 or with type 2).

Individual-based, stochastic, and discrete poliovirus transmission models may draw from the
model inputs and structure of immunity states developed for this DEB model given that

it performs relatively well in several diverse situations. However, individual-based models
face significant challenges with respect to specification of assumptions about the population
structure, mixing, and transmission dynamics.(69.119) Thus, while individual-based models
might yield important insights about the risk of cVDPV emergence in particular, they will
face the same significant limitations in data and knowledge that arise from our inability

to observe OPV evolution as it occurs, due in large part to the spread of OPV through
asymptomatic infections.(17) On top of this, they also face challenges associated with
specifying the appropriate population network structures and mixing rates, which depend on
both the specific population and the nature of viral transmission. For large policy decisions,
we believe that the average-based DEB approach offers sufficiently accurate results to
assess the impact of the decisions on population immunity and expected poliomyelitis
cases. Although the model reproduced poliovirus behavior in a large number of situations,
this validation does not prove the correctness of all model inputs. Most inputs remain
interdependent, and thus other combinations of inputs may lead to similar or better fits. For
example, largely due to the absence of good data, we assumed no differences in duration
and level of infectiousness between OPV and WPV. If important differences exist, then

this means that the model requires a different relative 7y of OPV compared to WPV or
other input to produce similar behavior. Thus, significant uncertainty remains related to
poliovirus transmission and evolution and therefore uncertainty and sensitivity analyses of
policy models remain critical to interpret results and identify drivers of uncertainty.(14:120)
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

Overview of the model structure.

(a) Flows between immunity states as a result of epidemiological events.

(b) Infection and reversion processes.

Acronyms: FRPV = fully-reverted poliovirus; IPV = inactivated poliovirus vaccine; OPV =
oral poliovirus vaccine; WPV = wild poliovirus

Symbols: P1,, = partially infectible in age group aand immunity state i

IPVE,, = IPV-exposed individual from immunity state i and age group a
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FL..,« (OL. ;) = individual in age group & from immunity state i, infected with virus strain /
and in fecal (oropharyngeal) infection stage k

A.; = force-of—infection to age group afor virus strain j

vPY (0,°PY) = force-of-IPV(OPV)-vaccination to age group aas a result of routine and
supplementary immunization

o, = relative susceptibility for immunity state i

gifec(::,."m) = average duration of the fecal (oropharyngeal) latent period for immunity state i
y[fec(y,.oro) = average duration of the fecal (oropharyngeal) infectious period for immunity
state i

¢ = IPV immunity delay

h = number of reversion stages

r = number of latent stages

s = number of infectious stages
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Fig. 2.

Regported paralytic cases(®) and modeled paralytic incidence for the USA. Acronyms: IPV
= inactivated poliovirus vaccine; mOPV = monovalent oral poliovirus vaccine; PV1,2,3 =
poliovirus type 1, 2, and 3, respectively; tOPV = trivalent oral poliovirus vaccine; USA =
Unites States of America; VAPP = vaccine-associated paralytic poliomyelitis.
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Fig. 3.

Reported poliomyelitis cases("® and modeled paralytic incidence for the Netherlands.
Acronyms: elPV = enhanced-potency inactivated poliovirus vaccine; tOPV = trivalent oral
poliovirus vaccine.
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Reported paralytic poliomyelitis cases(®7:83) and modeled paralytic incidence for Albania.
Acronyms: tOPV = trivalent oral poliovirus vaccine.
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Fig. 5.
Wild poliovirus type 1-confirmed poliomyelitis cases(® and modeled paralytic incidence

for Tajikistan. Acronyms: mOPV1 = monovalent oral poliovirus vaccine type 1; tOPV =
trivalent oral poliovirus vaccine.
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Fig. 6.

Behavior OPV-related virus in the model following bi-annual NIDs in Cuba, 1991-1992.
Acronyms: NID = national immunization day; OPV = oral poliovirus vaccine; PV 1,2,3 =

poliovirus type 1, 2, or 3, respectively.
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Fig. 7.
Results for the type 1 circulating VDPV emergence and outbreak in Haiti. (a) Behavior

of OPV-related viruses. (b) Outbreak curve showing laboratory-confirmed VVDPV and polio-
compatible cases,(8) and modeled paralytic incidence for Haiti. Acronyms: AFP = acute
flaccid paralysis; FRPV = fully-reverted poliovirus; OPV = oral poliovirus vaccine; PV1 =
poliovirus type 1; tOPV = trivalent OPV; VDPV = vaccine-derived poliovirus.
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Fig. 8.

Laboratory-confirmed VDPV cases,(190) and modeled paralytic incidence for Madura.

36
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Acronyms: mOPV1 = monovalent OPV type 1; OPV = oral poliovirus vaccine; PV1 =
poliovirus type 1; tOPV = trivalent OPV; VDPV = vaccine-derived poliovirus.
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in the model

-+« Paralytic incidence due to PV2 (all
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Fig. 9.

Year

Modeled paralytic incidence for northern Nigeria, 2003-2011. Acronyms: PV2 = poliovirus
type 2; WPV1,3 = wild poliovirus type 1 or 3, respectively.
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@ Confirmed WPV1 cases (Bihar
and WUP), 2002-12

- Paralytic incidence due to
WPV1 in the model

2007 2008 2009 201 2011 2012
Year

- Confirmed WPV3 cases
ﬂ (Bihar and WUP), 2002-12

- Paralytic incidence due to
WPV3 in the model

2007 2008 2009 2010 2011 2012
Year

Laboratory-confirmed wild poliovirus cases 2002-2012,(112) and modeled paralytic
incidence for the combined results from Bihar and WUP. Acronyms: WPV1,3 = poliovirus
type 1 or 3, respectively; WUP = Western Uttar Pradesh.
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Table Il.

Calibration of the PIR of OPV and OPV-Related Viruses to the Observed VAPP Incidence After WPV
Elimination and Before the Switch to the Sequential elPV-tOPV Schedule in the USA (from CDC,

unpublished data; excluding immunodeficient VAPP and assuming 96% completeness of reporting)(44:50)

VAPP cases, 1980-1996 Typel Type2 Type3

Estimated actual VAPP cases?

- recipient VAPP 24 19.2 43.2

- nonrecipient VAPP 4.7 204 28.2
VAPP cases estimated by the USA model

- recipient vAPPY 25 200 46.1

- nonrecipient VAPP¢ 6.0 269 255

Acronyms: CDC = (U.S.) Centers for Disease Control and Prevention; elPV = enhanced-potency inactivated poliovirus vaccine; OPV = oral
poliovirus vaccine; PIR = paralysis-to-infection ratio; tOPV = trivalent OPV; USA = United States of America; VAPP = vaccine-associated
paralytic poliomyelitis; WPV = wild poliovirus

a . . . . . -
Numbers by serotype reflect relative frequency of each serotype isolated from VVAPP cases with a single isolated serotype, multiplied by total
estimated VVAPP cases in the same category (i.e., recipient or nonrecipient).

bRecipient VAPP incidence calibrated to match the estimated actual incidence by setting the PIR for OPV (P/Ry; see Table I) equal to the

estimated actual incidence divided by the total number of paralytic infections in OPV recipients in the model (small differences due to rounding of
the PIR for OPV).

cNonrecipient VAPP incidence calibrated by finding the approximate shape parameter (Zpjr; see Table 1) that best matches the estimated actual
nonrecipient VVAPP cases for each serotype.
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Page 78

Comparison of Modeled and Observed Age-Specific Paralytic Incidence for Situations that Allow Meaningful

Comparison?

Paralytic cases (percentage of total cases)

Age group Reported Model
The Netherlands, 1992-1993(79)9

0-4 years 14 (20%) 12 (17%)
5-9 years 8 (11%) 8 (12%)
10-19 years 16 (23%) 14 (20%)
20-29 years 16 (23%) 15 (22%)
30-39 years 14 (20%) 12 (17%)
240 years 3 (4%) 9 (13%)
Albania, 199667

0-9 years 19 (14%) 12 (10%)
10-19 years 42 (30%) 62 (51%)
20-39 years 76 (55%) 47 (39%)
>40 years 1(1%) 1(1%)
Tajikistan, 20100

<1 year 90 (20%) 104 (23%)
1-4 years 208 (45%) 217 (47%)
5-14 years 107 (23%) 108 (4%)
>15 years 53 (12%) 29 (6%)
Madura, 2005(100)¢

0-4 years 36 (80%) 75 (90%)
=5 years 9 (20%) 8 (10%)
Northern Nigeria, 2003-2011 d

0-4 years Not available 5,099 (94%)
=5 years Not available 282 (6%)
Northern India, 2002-2010(112)¢

0-4 years 3,286 (97%) 4,784 (95%)
=5 years 102 (3%) 257 (5%)

a . . . . .
For Cuba and Haiti, the number of cases remains too low for meaningful comparison; for the USA, the model does not produces a realistic age
distribution of cases because it averages out local inter-epidemic periods with low seasonality to yield relatively consistent national totals in the

pre-vaccine era.

b . .
Reported numbers include 10 nonparalytic cases.

Cases from OPV-related type 1 virus in all reversion stages combined (excluding recipient vaccine-associated paralytic polio).

Cases from all types and all reversion stages combined (excluding recipient vaccine-associated paralytic polio).

61Cases for Bihar and Western Uttar Pradesh combined.
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