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Abstract 
Bacteria-based tumor therapy, which releases therapeutic payloads or remodels the tumor’s immune-suppressive microenvi-
ronment and directly kills tumor cells or initiates an anti-tumor immune response, is recently recognized as a promising strat-
egy. Bacteria could be endowed with the capacities of tumor targeting, tumor cell killing, and anti-tumor immune activating 
by established gene engineering. Furthermore, the integration of synthetic biology and nanomedicine into these engineered 
bacteria could further enhance their efficacy and controllability. This comprehensive review systematically elucidates the 
classification and mechanisms of bacterial gene expression induction systems, as well as strategies for constructing bacterial-
nanomaterial nanobiohybrids. The review concludes by highlighting the challenges associated with quality control and regu-
lation of bacteria-based tumor therapy while also providing insights into the future prospects of this therapeutic technology.

Key points
• A comprehensive overview of the current status of research on bacteria-based tumor therapy.
• The classification and mechanisms of bacterial gene expression induction systems are summarized.
• The challenges and perspectives in clinical translation.
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Introduction

Bacteria-based tumor therapy, with the unique properties of 
bacteria and their excellent potential for modification, has 
emerged as a promising strategy for tumor treatment (Feng 
et al. 2023; Gurbatri et al. 2022; Kwon et al. 2024). The 
tumor’s disordered vascular system, along with its hypoxic, 
acidic, and nutrient-rich microenvironment, facilitates the 
selective colonization of bacteria (Van Mellaert et al. 2006; 
Xie et al. 2022; Yu et al. 2012). Once inside the tumor, the 
immunosuppressive microenvironment enables bacteria to 

accumulate and proliferate (Chandra et al. 2017; Pawelek 
et al. 1997; Sznol et al. 2000). The inward-to-outward anti-
tumor effects induced by bacteria-based tumor therapy can 
effectively address the limitations of traditional tumor treat-
ments such as non-targeted distribution and limited tumor 
penetration (Jain 1998; Minchinton and Tannock 2006; 
Zinger et al. 2019). To enhance the efficacy of local tumor 
treatment while minimizing the risk of systemic toxicity, 
bacteria-based tumor therapy must be controlled. Precise 
regulation of the timing and location of bacterial therapeutic 
effects is critical for optimizing drug accumulation, resource 
utilization, and minimizing damage to normal tissues (Zhou 
et al. 2018).

To date, several techniques have been developed to 
induce bacterial gene expression (Fig. 1). Various prokary-
otic expression regulatory elements have been integrated 
with exogenous genes to enhance the capacity of engi-
neered bacteria to respond to both the internal and exter-
nal signals (Cubillos-Ruiz et al. 2021; Omer et al. 2022). 
Furthermore, the combination of bacteria with nanomedi-
cine offers complementary advantages, as the remarkable 
optical, magnetic, and acoustic properties of nanomaterials 
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significantly enhance the effectiveness and controllability 
of bacteria-based tumor therapy (Lou et al. 2021; Sun et al. 
2023; Zhou et al. 2024). These technologies can be utilized 
to manipulate bacterial targeting and colonization, interact 
with the dynamically changing environment, enable drug 
delivery within the appropriate therapeutic window, and 
facilitate post-treatment self-clearance, thereby achieving a 
balance of specificity, efficacy, and safety in the precision 
treatment of tumors.

This review is to summarize the engineering and modifi-
cation of bacteria based on their tumor-targeting and coloni-
zation properties to enhance their anti-tumor effects through 
advanced genetic engineering and nanomedicine. Applica-
tion of genetically engineered bacteria or bacteria-nanoma-
terial nanobiohybrids in precise tumor therapy are discussed. 
Additionally, the challenges related to quality control and 
regulation of bacterial therapy are summarized to provide 
insights for clinical translation (Fig. 2).

Bacteria target the TME and colonize

Tumors possess a microenvironment that is markedly dif-
ferent from that of most normal tissues (Jin and Jin 2020), 
characterized by hypoxia, acidity, and nutrient-rich condi-
tions, which makes them a natural target for bacteria (Van 
Mellaert et al. 2006; Xie et al. 2022; Yu et al. 2012). The 
targeting of tumor tissue by bacteria is guided by specific 

receptors capable of identifying molecules released by 
dying tumor cells (Kasinskas and Forbes 2007). Bacte-
ria in the bloodstream infiltrate tumor tissue through the 
disordered vascular system of the tumor (Leschner et al. 
2009), where the lower oxygen levels provide an environ-
ment conducive to the proliferation of both obligate and 
facultative anaerobic bacteria (Duong et al. 2019; Lambin 
et al. 1998). Notably, a specific species of Salmonella has 
been shown to accumulate preferentially in tumors at ratios 
exceeding 10,000:1 (Lee et al. 2005). Their robust flagella 
and small size allow them to penetrate deeply into tumors 
(Chen et al. 2021a; Dang et al. 2001; Minamino and Imada 
2015), while the necrotic areas provide ample nutrients for 
bacterial growth. Importantly, the immunosuppressive TME 
facilitates bacterial proliferation within the tumor while 
protecting it from clearance by the host immune system 
(Forbes et al. 2003; Zhang and Forbes 2015). Bacteria, due 
to their inherent immunogenicity, induce a significant influx 
of neutrophils into the tumor, which subsequently releases 
neutrophil extracellular traps composed of chromatin fibers 
and antimicrobial proteins, thereby confining the bacteria 
to the tumor area (Branzk et al. 2014; Leschner et al. 2009; 
Westphal et al. 2008).

Furthermore, a special type of bacteria known as mag-
netotactic bacteria can swim in a directed manner along the 
magnetic field lines (Faivre and Schuler 2008). This abil-
ity is facilitated by their remarkable flagellar propulsion, 
and a unique cellular organelle called the magnetosome, 

Fig. 1   The history of these techniques for regulating bacterial gene expression in bacteria-based tumor therapy
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which contains nanoscale magnetic iron mineral crystals 
that impart magnetic properties to the bacteria and func-
tion as a “biological compass” guiding their movement 
(Uebe and Schuler 2016). Driven by external magnetic 
fields, magnetotactic bacteria can navigate toward tumor 
sites (Kotakadi et al. 2022). Various magnetic field driv-
ing approaches have been developed, including rotating 
magnetic fields (Wu et al. 2022b), gradient magnetic fields, 
and oscillating magnetic fields. Due to the flexibility of 
magnetic fields, appropriate magnetic driving schemes can 
enhance bacterial infiltration within tumors (Gwisai et al. 
2022; Mirkhani et al. 2024).

Internal signals induce bacterial gene 
expression

Based on the characteristics of bacteria that target and colo-
nize the TME, the features of TME can be used to induce 
bacterial gene expression, thereby achieving drug enrich-
ment and minimizing off-target effects. Figure 3 illustrates 
two strategies for bacterial expression of exogenous target 
genes (Boe 1996; Ganusov and Brilkov 2002). Internal 
signals inducing bacterial gene expression are divided into 
expression induced by TME characteristics and bacterial 
self-triggering (Table 1).

Fig. 2   Overview of bacteria-
based tumor therapy. The tumor 
microenvironment (TME) is 
suitable for targeting and colo-
nization by certain bacteria. On 
the other hand, some bacteria 
intrinsically can target the tumor 
region. Moreover, bacteria 
could be engineered with gene 
circuits and other chemical or 
nano-modifications to eradicate 
tumors with more accuracy and 
efficiency (created with BioRen-
der.com)

Fig. 3   Comparison of two strat-
egies for bacteria expressing 
exogenous genes (created with 
BioRender.com)
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TME regulates bacterial gene expression

Hypoxia-inducible bacterial expression systems primarily 
rely on the oxygen transcription factor fumarate and nitrate 
reduction regulatory protein (FNR) naturally present in 
Salmonella (Arrach et al. 2008; Leschner et al. 2012). This 
system functions through the binding and dissociation of 
FNR with [4Fe-4S]2+. In hypoxic environments, FNR binds 
[4Fe-4S]2+ to form a transcriptionally active homodimer that 
binds to specific DNA sequences in promoters, recruiting 
RNA polymerase to transcribe downstream genes (Chien 
et al. 2022; Ryan et al. 2009). Commonly used hypoxia-
inducible promoters include pflE, ansB (Arrach et al. 2008), 
pepT (Strauch et al. 1985), as well as synthetic promoters 
like FF + 20 (Ryan et al. 2009), HIP-1 (Mengesha et al. 
2006), and nirB (Nasr and Akbari Eidgahi 2014). An engi-
neered hypoxia-inducible Salmonella strain placing the cyto-
toxic protein hemolysin E (HlyE) gene under the regulation 
of the hypoxia-inducible promoter FF + 20, can secrete HlyE 
in the hypoxic TME to kill tumor cells (Ryan et al. 2009). 
This strategy can also confine bacterial survival to the tumor, 
reducing systemic toxicity. The asd gene, which encodes a 
crucial enzyme involved in the synthesis of the bacterial cell 
wall, is regulated by a hypoxic promoter. Additionally, the 
asd gene is knocked out of the bacterium, ensuring it cannot 
survive in normal tissues (Yu et al. 2012).

The acidic microenvironment of tumors is another impor-
tant feature. Indeed, due to the Warburg effect, even in an 
aerobic environment, the uptake of glucose by tumor cells 
is increased. High levels of aerobic glycolysis and glu-
taminolysis release large amounts of H+ and lactate into 
the extracellular space, subsequently releasing them into 
the TME, maintaining a pH of 5.8–6.6 (Huber et al. 2017; 
Zhang et al. 2023). Exploiting this, Flentie et al. identified a 
tumor-specific acidic microenvironment inducible promoter 
STM1787 in Salmonella using a bioluminescent transposon 
reporter gene; 8 h after exposure to the tumor acidic micro-
environment, gene expression increased 90-fold (Flentie 
et al. 2012). Additionally, acid-induced promoters adiA and 
Pasr from E. coli responsible for expressing arginine decar-
boxylase and acid shock RNA, respectively, were identified 
(Mallick and Das 2023; Qin et al. 2022; Stirling et al. 2020). 
By linking the cytolysin A (ClyA) with a green fluorescent 
protein (GFP) under the regulation of the acid-sensitive pro-
moter adiA, visual therapeutics can be effectively achieved 
(Qin et al. 2022). Lactate in the TME is also used in gene 
expression systems based on the native lldPRD operon, in 
which the LldR repressor dimer further inhibits gene expres-
sion unless bound to lactate (Aguilera et al. 2008). The tro-
pism of engineered bacteria can be enhanced by integrating 
bacterial growth with genetic circuits that sense oxygen, 
pH, or lactate, thereby regulating the expression of essen-
tial genes. Bacteria engineered with pH or oxygen sensors 

demonstrated preferential growth under physiologically rel-
evant acidic or hypoxic conditions (Chien et al. 2022).

Salmonella enterica subsp. enterica serovar (S. typhimu-
rium) colonizing tumor induces upregulation of inducible 
nitric oxide synthase (iNOS), leading to a 1000-fold increase 
in NO production at micromolar levels within the tumor site 
(Barak et al. 2010; Cinelli et al. 2020; Zheng et al. 2017). 
This enables the use of NO as an internal signal to induce 
bacterial gene expression. The NO-inducible system is based 
on NorR, a σ54-dependent regulatory protein in E. coli, 
which senses and binds NO in the presence of NO, induc-
ing σ54 binding and activating the Pnorv promoter (Tucker 
et al. 2008, 2010). To achieve permanent activation of NO-
induced gene expression, the Pnorv promoter was utilized 
to regulate the expression of the DNA recombinase FimE, 
leading to permanent inversion of fimS and, thus, sustained 
expression of the target gene (Qin et al. 2023).

Self‑triggering

Bacterial gene expression can also be regulated by commu-
nication between bacteria, which relies on quorum-sensing 
molecules (QSMs). QSMs are secreted externally, accumu-
late with increasing community density, and, after reaching 
a certain threshold, bind to receptors to regulate gene expres-
sion (Mukherjee and Bassler 2019). Bacterial QSMs include 
acyl homoserine lactone (AHL or AI-1), auto-inducible 
peptide (AIP), and autoinducer-2 (AI-2) (Zeng et al. 2023). 
The AHL is mainly secreted by Gram-negative bacteria, and 
the LuxI promoter regulates AHL production, followed by 
AHL binding to LuxR to turn on downstream gene expres-
sion (Din et al. 2016). The quorum-sensing phenomenon of 
bacteria can be utilized to design many interesting genetic 
circuits, such as the quorum-sensing lysis circuit, which pro-
vides new ideas for drug delivery (Chowdhury et al. 2019; 
Gurbatri et al. 2020; Raman et al. 2021). By expressing the 
lytic enzyme gene E of phage FX174 under the control of the 
LuxI promoter, when the bacteria are enriched in the tumor, 
and the AHL reaches a certain threshold, bacterial lysis is 
initiated, and therapeutic proteins pre-expressed constitu-
tively in vivo are released (Din et al. 2016). This strategy 
enables the delivery of more nanobodies within the tumor, 
including anti-CD47 nanobodies (Chowdhury et al. 2019), 
anti-PD-L1/PD-1, and anti-CTLA4 nanobodies (Gurbatri 
et al. 2020).

External signals induce bacterial gene 
expression

In addition to TME-induced triggering, synthetic biology 
can also be used to design sophisticated, intelligent gene 
circuits in response to external signals. Compared with 



	 Applied Microbiology and Biotechnology           (2025) 109:2     2   Page 6 of 18

TME-induced triggering, external signal triggering has bet-
ter initiative and controllability. Depending on the external 
signals, they are categorized as follows (Fig. 4). The appli-
cation of external signals to control bacterial expression of 
exogenous genes to achieve anti-tumor effects is summarized 
and displayed in Table 2.

Chemical inducers

Chemical induction was first applied to regulate bacterial 
gene expression, with common chemical inducers includ-
ing isopropyl β-D-thiogalactoside (IPTG) (Danino et al. 
2015; Fan et al. 2019; Harimoto et al. 2022), L-arabinose 
(Dai et al. 2013; Loessner et al. 2007; Nguyen et al. 2010; 
Stritzker et al. 2007; Wen et al. 2018), tetracycline (Jiang 
et al. 2013), and salicylic acid salts (Royo et al. 2007). The 
regulation of bacterial expression by chemical inducers is 
mostly based on the operon model, which is a directed DNA 
sequence that acts as a gene regulator to regulate bacterial 
gene expression (English et al. 2021).

IPTG is used as an inducer to bind the lac repressor pro-
tein in the lactose operon (Fig. 4A1), causing it to dissociate 
from the DNA-binding domain, thus turning on downstream 
gene expression (Lewis et al. 1996; Romanuka et al. 2023). 
Integration of the LuxCDABE gene cassette into an IPTG-
induced expression vector and induction of fluorescent gene 
expression by intravenous injection of IPTG resulted in the 
detection of bacterial fluorescent signals in approximately 
88% of metastases in a mouse colorectal cancer metastasis 
model (Danino et al. 2015). The expression of downstream 
target genes of the operon is closely related to the concen-
tration of chemical inducers. Therefore, a tunable microbial 
surface engineering strategy based on IPTG is utilized to 
dynamically control the synthesis of bacterial capsular pol-
ysaccharides (CAP) to enhance bacterial interactions with 
their surrounding environment (Harimoto et al. 2022).

The L-arabinose-inducible pBAD promoter is derived 
from the arabinose operon. When L-arabinose is present, 
the AraC protein opens the gyratory structure. It acts as an 
activator to activate target gene transcription (Fig. 4A2). 
The induction of instantaneous bacterial bioluminescence 
by L-arabinose was sufficient to localize the bacteria within 
the tumor but freed the bacteria from the burden of continu-
ous expression of luciferase or fluorescent proteins (Loess-
ner et al. 2007). The induction/repression ratio using the 
L-arabinose control system can be up to 1200-fold (Guzman 
et al. 1995). However, recombinant proteins based on the 
pBAD vector system are expressed at lower levels, and some 
strains can catabolize L-arabinose.

The Tet-off and Tet-on, bacterial expression regula-
tion systems, induced by tetracycline work in opposite 
ways. In the Tet-off system, the tTA transcription factor 
cannot bind to the DNA sequence of the promoter region 

in the presence of tetracycline, resulting in gene expres-
sion inhibition. Conversely, in the Tet-on system, the 
rtTA transcription factor binds to the DNA sequence and 
activates downstream gene expression (Fig. 4A3) (Gos-
sen and Bujard 1992; Gossen et al. 1995). Compared to 
L-arabinose and IPTG, the Tet-on system induced by tet-
racycline has a lower baseline expression level of target 
genes while maintaining a higher induction efficiency. By 
constructing a bidirectional gene circuit, co-expression of 
the therapeutic gene and reporter gene can be achieved 
under the induction of doxycycline (or tetracycline) to meet 
therapeutic needs (Jiang et al. 2013).

Salicylate-induced systems are usually cascade regulatory 
circuits that achieve amplified expression of specific genes 
under the control of salicylic acid (Cebolla et al. 2001). The 
Pm promoter in the TOL operon from Pseudomonas putida 
catabolism of toluene and xylene can be activated by the 
xyIS protein, and the transcription of the xyIS gene is con-
trolled by another regulator, XyIR, and the strength of Pm 
increases as more xyIS protein is expressed. The mutant of 
xyIS, xyIS2, can be activated by salicylic acid, thus plac-
ing the expression of xyIS2 under the control of the Psal 
promoter and its cognate regulator NahR, which is activated 
in the presence of salicylic acid to initiate the expression 
and activation of the xyIS2 protein. These two effects act 
together on the Pm promoter. This cascade reaction causes 
a massive amplification of the target gene (Fig. 4A). Placing 
cytosine deaminase (CD) in a regulatory circuit activated by 
acetylsalicylic acid (ASA) led to a 20- to 150-fold ex vivo 
induction and induction with ASA before 5-fluorocytosine 
administration significantly reduced tumor growth (Royo 
et al. 2007).

Light

Optogenetics integrates optics and genetics to control biologi-
cal processes with a high degree of spatiotemporal precision 
using genetically encoded light-responsive proteins in response 
to light stimulus (Emiliani et al. 2022). In recent years, driven 
by synthetic biology, optogenetics has been introduced into 
bacteria to enable rapid, dynamic, and reversible regulation of 
bacterial gene expression (Lindner and Diepold 2022). Intro-
ducing genetically encoded light-responsive proteins into bac-
teria to precisely regulate bacterial expression in tumors by 
using light as an external trigger, the advantages brought by 
light as a signal are incomparable to chemical induction, even 
though changes in photoreceptor intensity induced by altering 
light intensity are similar to those by altering the concentration 
of a chemical inducer. The fact that light is not only controlla-
ble but also reversible and non-invasively transmits signals and 
that it is possible to restrict the activation region to a specific 
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place independent of diffusion greatly improves spatiotemporal 
controllability (Deisseroth 2011).

Optogenetic systems used to regulate gene expression 
in engineered bacteria can usually be categorized into the 
one-component system (OCS) and two-component system 
(TCS) (Lindner and Diepold 2022). OCS and TCS are dis-
tinguished based on the different mediators responding to 
light and inducing transcription. The OCS contains only a 
single protein, which assumes the role of a photoreceptor 
and is an inducer of transcription. The EL222 protein, first 
discovered in the marine bacterium Erythrobacter litoralis, 
is by far the most commonly used blue light-responsive tran-
scription factor in the OCS (Motta-Mena et al. 2014). The 
TCS consists of a light-responsive kinase and a homologous 
transcriptional response regulator, and the YF1/FixJ-based 
pDawn system is one of the most common TCS in use today. 
OCS is simpler because it uses a single light-responsive pro-
tein to induce transcription and does not rely on the fully 
balanced expression of a second component. Its smaller size 
saves space for therapeutic genes, allowing for more person-
alized therapeutic delivery (Hoffman et al. 2022). OCS also 
have limitations; almost all of them rely on poorly penetrat-
ing blue light, but a recently discovered OCS that responds 
to near-infrared light, called iLight, is very promising (Kab-
erniuk et al. 2021).

TCS has a wide spectrum of responses, with the optoge-
netic tools CcaS/CcaR based on CBCRs activating down-
stream gene expression under 535 nm green light stimula-
tion and inhibiting gene expression under 672 nm red light 
(Tabor et al. 2011); UirS/ UirR, enabling gene expression 
initiation in response to ultraviolet light and gene expres-
sion inhibition under 535 nm green light (Ramakrishnan 
and Tabor 2016). BphPs-based optogenetic tools have a 
faster response rate because BphP1 is activated under near-
infrared light and activates the transcription of downstream 
genes by combining with the transcriptional repressor 
PpsR2, which does not require the signaling process of the 
phosphoryl group (Ong et al. 2018). BphS, a mutant of the 
bacterial photosensitive pigment BphG, is triggered by NIR 
light, leading to an elevation of c-di-GMP, thereby enhanc-
ing biofilm formation, preventing bacterial elimination by 
neutrophil-mediated killing effects and increasing the illu-
mination power density of NIR triggering bacterial lysis and 
release of the antitumor toxin HlyE to induce tumor necrosis 
(Fu et al. 2023).

Since TCS is based on the interaction of two proteins, 
this has to take into account the sensitivity and balance of 
the host system to the expression of these two proteins. In 
addition, in non-blue light-activated systems, the hosts often 
do not endogenously express the chromophores required by 
the systems, such as biliverdin, phycocyanin, etc.. So they 

Fig. 4   External signals induce bacterial gene expression. A Four most 
commonly used chemical inducers to induce bacterial gene expres-
sion. B Optogenetic systems for inducing gene expression in bacte-
ria. OCS, one-component systems; TCS, two-component systems. 

C Radiation-induced bacterial gene expression based on promoters 
RecN or RecA. D Induction of bacterial gene expression based on the 
thermal effect of ultrasound
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have to be artificially added or synthesized by the hosts, 
which will undoubtedly complicate the application of TCS. 
Nonetheless, TCS has developed into a relatively mature 
application system, and due to its robustness in regulating 
proteins, flexibility in module selection, and wide range of 
response spectra, TCS has unique advantages in regulating 
bacterial protein expression.

However, it must be recognized that the poor penetration 
of light into deep tissues has hindered the development of 
light-induced expression systems. For tumors located deep 
in the tissue, how to ensure that the light activates enough 
bacteria to produce effective therapeutic effects is an issue 
that has to be considered for light-induced expression sys-
tems. For specific tumors, such as those in the digestive tract, 
light-induced expression systems may be able to unite with 
gastrointestinal endoscope to increase the percentage of acti-
vated bacteria to enhance therapeutic efficacy.

Radiation

The current systems for controlling bacterial expression by 
radiation are all based on the RecA or RecN promoters in the 
SOS repair system of Clostridium difficile. Various physical, 
chemical, and biological effects caused by radiation result 
in DNA breaks and activation of RecA and RecN proteins, 
which play an important role in repairing damaged DNA, 
and it is in this process that the RecA and RecN promoters 
respond to radiation and initiate genes expression (Nuyts 
et al. 2001c). This induced expression is reproducible and 
does not differ between aerobic and anaerobic conditions, 
which is important for using radiation-induced expression 
promoters in anaerobic bacteria.

Radiation can efficiently penetrate tissues with little dif-
fusion effect, and the release of the therapeutic load from 
the radiation-responsive promoters RecA or RecN can be 
precisely controlled in the tumor and avoid systemic toxicity. 
The reporter gene LacZ was placed under a radiation-respon-
sive promoter, and after 2 Gy of irradiation, β-galactosidase 
activity was significantly increased by 20–30%, and expres-
sion could be induced repeatedly by repeated administra-
tion of radiation (Nuyts et al. 2001c). To improve the induc-
tion ratio of the radial expression system, after the addition 
of Cheo cassettes, the RecA promoter induction ratio can 
be increased tenfold (Nuyts et  al. 2001a). Engineering 
of Clostridium difficile to express TNF-α gene under the 
regulation of the radiation-responsive promoter RecA suc-
cessfully expressed TNF-α in situ under 2 Gy of radiation 
and prolonged the expression of TNF-α at the tumor site 
by repeated induction, thus enhancing the anti-tumor effect 
(Nuyts et al. 2001b).

Another radiation-responsive promoter RecN has a much 
lower basal activity than RecA although the induction ratio 
is not as high as RecA, which means that RecN is more Ta
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suitable for expressing proteins with toxicity because it 
hardly causes leakage (Fu et al. 2023). For example, the 
intracellular pro-apoptotic protein sATF6, under the regula-
tion of RecN, can control the killing effect at the radiation-
exposed site of the tumor while avoiding damage to healthy 
tissues (Gao et al. 2020).

In conclusion, bacterial expression systems based on the 
radiation-responsive promoters RecA and RecN show great 
potential for precise in situ delivery of drugs to tumors. 
However, radiation is potentially lethal to tissues, so it is 
important to make an informed choice between the appro-
priate dose of radiation and the best therapeutic effect that 
can be elicited and to select bacteria that are best suited to 
carry the radiation-responsive expression systems to achieve 
greater effects, including sensitization to radiation therapy, 
synergistic therapeutic effects, and protection of normal tis-
sues from radiation damage.

Ultrasound

Ultrasound has a natural advantage as an external signal with 
its non-invasiveness, high penetrability, low attenuation, 
non-ionizing radiation, and excellent spatial accuracy (Peek 
et al. 2015; Qian et al. 2017). Currently, ultrasound regula-
tion of expression in engineered bacteria relies mainly on 
thermal effect and temperature-responsive components, such 
as RNA thermometers (RNATs) (Neupert and Bock 2009), 
the PL&PR promoters, and various temperature-sensitive 
mutants of phage lambda protein “cI” (Valdez-Cruz et al. 
2010). Temperature-sensitive mutants of phage lambda pro-
tein “cI” exist as monomers at low temperatures and block 
the PL and PR promoters, then dimerize when they reach 
their response temperature and release the promoter region, 
restoring transcriptional activity. In contrast, the temper-
ature-controlled expression mediated by RNATs is at the 
translational level, where RNATs form stem-loops at body 
temperature that clamp the ribosome-binding sequences or 
translation initiation codons tightly by base pairing and only 
unclamp them when their response temperature is reached to 
allow ribosome binding, thus facilitating translation (Neu-
pert and Bock 2009; Righetti and Narberhaus 2014).

The system for controlling bacterial expression by the 
thermal effect of ultrasound benefits from the remote tun-
ability of ultrasound, and the selection of appropriate ultra-
sound parameters allows the temperature of the target zone 
to be maintained in the optimal range for initiating gene 
expression. A temperature-controlled gene expression circuit 
carrying interferon-γ (IFN-γ) constructed from the pR-pL 
promoter and cI protein was transferred into an ultrasound-
responsive bacterium (URB), and IFN-γ was linked to the 
N-terminal end of the OmpA secretion signal peptide, and 

the temperature of the target zone was maintained at 45 ℃ 
under pulsed ultrasound irradiation to successfully secrete 
IFN-γ, the percentage of M1-type macrophages, CD4+ T 
cells, CD8+ T cells, and memory T cells increased signifi-
cantly, and the immune response of the mice was success-
fully activated to inhibit tumor growth (Chen et al. 2022). In 
the clinical setting, where tumors are often treated over sev-
eral weeks, a switch that is activated only upon ultrasound 
irradiation is not feasible, necessitating the introduction of 
a sustained expression function. Serine integrase Bxb1 is a 
class of enzymes that target DNA sequences at sites known 
as attP (attachment site of phage) and attB (attachment site 
of bacterial) and utilize these sites to mediate DNA sequence 
inversion (Xu et al. 2013). By placing Bxb1 under the regu-
lation of the pR-pL promoter and the cI protein, Bxb1 was 
expressed when the tissue was heated by focused ultrasound 
and mediated the inversion of the otherwise inverted consti-
tutive promoter, P7, resulting in sustained expression even 
when ultrasound was withdrawn (Abedi et al. 2022). Con-
sidering that 42–45 °C may cause thermal damage to normal 
tissues, an ideal system should be activatable in the range 
of 39–40 °C, with less leakage and a higher induction ratio. 
Recently, an ultrasound-responsive gene expression system 
based on the temperature-sensitive transcriptional repressor 
TlpA39 has been developed, and VNP20009 carrying this 
system can precisely initiate the efficient expression of the 
therapeutic gene at 39 °C during ultrasound-mediated local 
warming. Additionally, the combination of the anticancer 
protein Azurin protein with the immune checkpoint inhibitor 
PD-L1nb has been shown to induce apoptosis in tumor cells 
while activating the host's immune system, leading to a dual 
anticancer effect (Gao et al. 2024).

Bacteria and nanomedicine unite in cancer 
therapy

Relying solely on genetically engineered bacteria has limi-
tations, such as rapid clearance of bacteria by the immune 
system, inadequate drug loading, and difficulty in drug 
release, which may contribute to poor tumor treatment 
effects (Liu et al. 2022). With the development of syn-
thetic biology and nanomedicine, it is possible to use a 
variety of materials such as synthetic polymers (Jackson 
et al. 2017), liposomes (Gao et al. 2014), and biofilms 
(Aryal et al. 2013) to modify bacteria, to realize the com-
plementary advantages, and to further improve the safety, 
precision, and effectiveness of engineered bacteria as well 
as to improve the shortcomings of traditional nanomate-
rials, such as poor targeting and high systemic toxicity 
(Zhou et al. 2024).
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Materials camouflage bacteria for tumor targeting 
and proliferation

Various biological, chemical, and physical strategies have 
been developed to modify bacteria to avoid phagocytosis 
and clearance by the reticuloendothelial system (Fig. 5A) 
(Liu et al. 2022), thus prolonging the duration in the host 
and enabling tumor targeting and proliferation.

Several biofilms, including macrophages (Thamphiwa-
tana et al. 2017), erythrocytes (Liu et al. 2022), platelets (Xu 
et al. 2018), neutrophils (Zhang et al. 2018), and cancer cells 
(Wang et al. 2018) have been used for camouflage. A type of 
cell membrane encapsulated bacteria formed by encapsulat-
ing Porphyromonas gingivalis through erythrocyte mem-
branes had virtually no effect on the intrinsic bioactivities 
of the bacteria. It reduced bacterial-induced inflammatory 
responses and side effects, prolonging the persistence of the 
bacteria in the body (Chen et al. 2021b). Biofilm camouflage 
of ECN (Cao et al. 2019) and Listeria monocytogenes (Liu 
et al. 2022) has also been accomplished for tumor therapy. 
VNP20009 was encapsulated in macrophages by biomodifi-
cation to form a “Trojan horse,” macrophages were rapidly 
enriched at the tumor site due to tumor chemotaxis. Then, 
intracellular bacterial proliferation led to macrophage rup-
ture. This delayed-release strategy avoided premature bac-
terial clearance and completed bacterial enrichment at the 
tumor site (Wu et al. 2022a).

Chemical modifications typically utilize chemical reac-
tions, including dopamine co-deposition, chemical bond-
ing covalent linkage, Michael addition, and intermolecular 
disulfide exchange to couple materials to the bacterial sur-
face (Zhou et al. 2024). Simple co-deposition of EcN with 
dopamine and simultaneous coupling of a variety of func-
tional small molecules and polymers under biocompatible 
conditions results in multifunctional coatings that increase 
the bioavailability of the bacteria by more than 30-fold (Pan 
et al. 2021a). To further enhance the tumor-targeting prop-
erty, the tumor-targeting peptide RGD was coupled to the 
carboxyl group on the surface of Magnetospirillum mag-
neticum AMB-1 by chemical modification to construct the 
tumor-targeting strain AMB-RGD (Wang et al. 2022).

Physical modifications included electrostatic interactions 
(Zhao et al. 2022), electroporation (Zoaby et al. 2017), and 
membrane coating (Wu et al. 2019). Therapeutic agents can 
be transported by bacteria, which may either be affixed to 
the external surface of engineered bacteria or loaded into the 
bacterial body. Electrostatic interactions play a crucial role 
in enhancing the versatility of nanobiohybrid construction. 
This is primarily due to the fact that the surface charges 
of both bacterial cells and various nanomaterials can be 
readily adjusted. A straightforward electrostatic adsorption 
method combines black phosphorus quantum dots (BPQD) 
with E. coli to create a novel hybrid system, referred to 
as BPQD/E coli (BE), designed to enhance photothermal 

Fig. 5   Bacteria and nanomedi-
cine unite in cancer therapy. 
A Integration strategies for 
bacteria and nanomedicine. B 
Nanomedicine-enhanced bacte-
ria exert synergistic anti-tumor 
effects (created with BioRender.
com)
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therapy (PTT) for hypoxic tumors. The BE system effec-
tively targets hypoxic tumors and facilitates the mediation of 
PTT achieving significant radiotherapy efficacy in response 
to lower doses of radiation, effectively and specifically dam-
aging hypoxic tumor tissues to suppress tumor growth (Ji 
et al. 2023). Electroporation is a technique that involves the 
application of short bursts of electrical pulses to bacterial 
membranes, leading to the formation of temporary pores. 
This process effectively enhances the permeability of the 
membrane, allowing substances to enter the bacterial cells 
more easily. Through the use of electroporation, the presence 
of liposomes in 62% of the bacterial samples examined was 
identified (Zoaby et al. 2017). This demonstrates the effec-
tiveness of electroporation in facilitating the introduction of 
liposomes into bacterial cells.

Bacterial loading nanomedicines to improve 
effectiveness and controllability

Bacteria can be greatly enhanced by loading nanomedicines 
for therapeutic effects; in fact, the ease of modification of 
nanomaterials opens up great possibilities for material-
based bacterial therapies. The utilization of materials to 
encapsulate bacteria as drug factories for the production 
of therapeutic agents, along with the integration of nano-
photosensitizers or acoustic sensitizers to achieve synergis-
tic therapies, is a promising area of research. Furthermore, 
nanomaterials, characterized by their exceptional optical, 
magnetic, and acoustic properties, can precisely control the 
timing and location of the anti-tumor effects exerted by the 
material-modified bacteria. (Fig. 5B).

Immobilization of the chemotherapeutic drug Doxoru-
bicin (DOX) onto ECN through the acid-unstable bond of 
cis-aconitic anhydride can respond to the acidic microenvi-
ronment of tumors (Xie et al. 2017). Upconversion nanopar-
ticles (UCN) can respond to penetrating near-infrared (NIR) 
light and emit blue light (Cui et al. 2021), which can help 
to solve the limitation of OCS relying on poorly penetrating 
blue light. OCS-carrying EcN successfully delivered TNF-α 
locally to tumor using UCN to convert near-infrared light to 
blue light and activate the blue light-sensitive EL222 protein 
in tumor, thereby inhibiting tumor growth (Fig. 5B) (Pan 
et al. 2021b).

In treating tumors with PDT, the intratumoral hypoxic 
microenvironment inevitably leads to a significant reduc-
tion in the efficacy of type II photosensitizers, which are 
highly dependent on oxygen. Cyanobacteria can both target 
the tumor site and continuously produce oxygen by laser 
irradiation (Fig. 5B). Hence, a novel cyanobacteria-based 
bioreactor, Cyan@BPNSs, uses inorganic two-dimensional 
black phosphorus nanosheets (BPNSs) to modify cyanobac-
teria, significantly enhancing the killing effect of photody-
namic therapy on tumor cells (Qi et al. 2021). There are 

many similar strategies, including the formation of photo-
thermophilic bacteria PTB@ZIF-90/MB by surface biomin-
eralization of palladium nanoparticles in combination with 
methylene blue (MB)-loaded ZIF-90 (Chen et al. 2020), 
Salmonella typhimurium YB1 in combination with photo-
sensitizing indocyanine green (INPs) nanoparticles (Chen 
et al. 2019), and Bb@QDs formed by the electrostatic inter-
action between Bifidobacterium and Ag2S quantum dots 
(QDs) (Zhao et al. 2022).

Certain magnetic nanomaterials can convert magnetism 
into heat. Biological hybrid microrobots EcN@MNP with 
magnetic field, thermal, and hypoxic environment sensing 
are constructed by coupling nanomaterials with magnetic 
nanoparticles (MNP) prepared by zinc-iron hybridization 
with EcN (Ma et al. 2023). Moreover, the expression of 
mCherry was controlled using a temperature-controlled 
expression circuit as a dual reporter gene for thermal and 
localization signals for tumor treatment. According to the 
fluorescent protein imaging feedback, the microrobot com-
bined with the effects of magnetothermal ablation and ther-
mally expressed NDH-2 enzyme (respiratory streptokinase 
II) efficiently triggered apoptosis of cancer cells under the 
remote triggering of an alternating magnetic field (AMF).

Nanodroplet-transition microbubbles can be used as con-
trast agents to provide echo signals for ultrasound (Wang 
et al. 2012), and the microbubbles swell and collapse under 
continuous intensity ultrasound radiation. Based on this 
principle, phase-change drug-carrying nanoparticles were 
attached to bacteria to achieve precise drug release under 
ultrasound imaging via sonomechanical effects. An ultra-
sound-responsive biohybrid robot, SonoBacteriaBot (Du 
et al. 2023), encapsulated perfluoropentane (PFP) and the 
chemotherapeutic drug DOX in polylactic acid-glycolic acid 
(PLGA) to form DOX-PFP-PLGA nanodroplets, which were 
attached to the surface of Escherichia coli MG1655 called 
DOX-PFP-PLGA@EcM. The SonoBacteriaBot was tracked 
in real-time by the nanodroplet microbubbles, and under the 
continuous intensity of ultrasound radiation, the microbub-
bles expanded and collapsed to release the drug.

Summary and outlook

To date, plenty of intelligent and elegant gene circuits have 
been developed to precisely trigger anti-tumor effects in 
response to induced signals. In synergy with nanomedi-
cine, bacteria-nanomaterial nanobiohybrids exert robust 
and effective multimodal synergistic tumor therapies (Zhou 
et al. 2024). Numerous experimental results have demon-
strated that bacterial therapies under precise control systems 
successfully inhibited tumor growth and prevented systemic 
toxicity (Abedi et al. 2022; Chen et al. 2022; Fu et al. 2023). 
Although recent findings have shown the great potential of 
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bacterial therapies for oncology, there are still some chal-
lenges that need to be solved to improve their therapeutic 
efficacy and safety.

It is important to note that the immune function of 
patients with advanced cancers is low. Although Clostrid-
ium novyi-NT (Janku et al. 2021), Listeria monocytogenes 
(Hassan et al. 2019; Le et al. 2019, 2015), and Salmonella 
monocytogenes (Toso et al. 2002) have been proven to be 
safe in healthy people, the residual presence of bacteria in 
the body as well as the retention of virulence of bacteria 
may be a potential threat to cancer patients. Maintaining 
the stability and orthogonality of intelligent gene circuits 
and nano-biomaterials is very crucial and should be tumor 
specific regarding the varied TME. It is thus necessary to 
emphasize the temporal and spatial controllability of bacte-
rial therapeutics by selecting the most appropriate control 
signals to trigger precise drug synthesis or release.

Anyway, bacterial therapy is a promising strategy in 
tumor treatment. The therapeutic potential of bacteria has 
been further amplified by synthetic biology and nanomedi-
cine, which have endowed bacteria with more diversified 
functions in the complex TME. It is believed that with the 
steady development of synthetic biology and the deeper and 
deeper exploration of cancer, bacterial therapy will eventu-
ally become a powerful weapon for human beings to fight 
against tumors.
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