Skip to main content
. 2025 Jan 4;15:826. doi: 10.1038/s41598-025-85570-6

Table 1.

Growth curve models predicting the effect of children’s education on IADL among older adults, China Health and Retirement Longitudinal Study, 2011 to 2018.

Variable Model 1 Model 2
Coef. S.E. Coef. S.E.
Child schooling years -0.066*** 0.011 -0.071*** 0.012
Age (centered on the mean) 0.199*** 0.015 0.200*** 0.015
Child schooling*age -0.004** 0.001 -0.004** 0.001
Education -0.052*** 0.012 -0.053*** 0.011
Male (ref., Female) -1.078*** 0.080 -0.971*** 0.077
Urban (ref., Rural) -0.392*** 0.107 -0.305** 0.103
Married (ref., widowed/separated) 0.025 0.076 0.003 0.076
Number of living children 0.076*** 0.024 0.077*** 0.023
Logged household expenditure per capital 0.088*** 0.019 0.095*** 0.019
Random effects-variance component
Level 1: within person 4.553*** 0.063 4.579*** 0.063
Level 2: in intercept 4.121*** 0.129 4.565*** 0.139
Level 2: in linear growth rate 0.022*** 0.002 0.018*** 0.003
Constant 3.011*** 0.222 3.004*** 0.221
Residual correlation between intercept and linear growth rate 0.207*** 0.013
AIC 81910.563 81572.874
BIC 82011.263 81681.320
ICC 0.470 0.470
n of persons 4272 4272
n of person-year observations 17,088 17,088

AIC = Akaike information criterion, BIC = Bayesian information criterion, the smaller the better; ref = reference; Coef.=coefficient; S.E.=standard error. p < 0.1 +, p < 0.05 *, p < 0.01 **, p < 0.001 *** (two tailed tests).