Skip to main content
. 2025 Jan 4;15:826. doi: 10.1038/s41598-025-85570-6

Table 4.

Growth curve models predicting the effect of children’s education on IADL and ADL among older adults by hukou, China Health and Retirement Longitudinal Study, 2011 to 2018.

Variable On IADL On ADL
Model 1 (Urban) Model 2 (Rural) Model 3 (Urban) Model 4 (Rural)
Coef. SE Coef. SE Coef. SE Coef. SE
Child schooling years -0.041+ 0.025 -0.073*** 0.013 -0.030+ 0.016 -0.038*** 0.008
Age (centered on the mean) 0.097* 0.040 0.203*** 0.017 0.066* 0.029 0.087*** 0.012
Child schooling*age 0.002 0.003 -0.004* 0.002 -0.001 0.002 -0.003* 0.001
Education -0.077*** 0.019 -0.041*** 0.014 -0.016 0.011 -0.012 0.008
Male (ref., Female) -0.661*** 0.150 -1.056*** 0.089 -0.132 0.088 -0.225*** 0.052
Urban (ref., Rural) / / / / / / / /
Married (ref., widowed/separated) 0.072 0.155 -0.019 0.087 0.059 0.099 -0.007 0.055
Number of living children 0.133* 0.053 0.065* 0.026 0.038 0.033 0.033* 0.016
Logged household expenditure per capital 0.128*** 0.040 0.090*** 0.022 0.055* 0.026 0.084*** 0.014
Random effects-variance component
Level 1: within person 3.042*** 0.097 4.897*** 0.075 1.357*** 0.044 2.153*** 0.033
Level 2: in intercept 3.441*** 0.237 4.820*** 0.163 1.496*** 0.111 1.679*** 0.065
Level 2: in linear growth rate 0.019*** 0.005 0.018*** 0.003 0.016*** 0.002 0.015*** 0.001
Constant 1.740*** 0.512 3.145*** 0.248 0.456*** 0.335 0.516*** 0.159
Residual correlation between intercept and linear growth rate 0.165*** 0.021 0.218*** 0.015 0.133*** 0.012 0.118*** 0.007
AIC 14,578 66,774 11,903 55,059
BIC 14,657 66,872 11,983 55,157
ICC 0.502 0.456 0.504 0.405
n of persons 823 3449 823 3449
n of person-year observations 3292 13,796 3292 13,796

AIC = Akaike information criterion, BIC = Bayesian information criterion, the smaller the better; ref = reference; Coef.=coefficient; S.E.=standard error. p < 0.1 +, p < 0.05 *, p < 0.01 **, p < 0.001 *** (two tailed tests).