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Hotspots of genetic change in Yersinia pestis

Yarong Wu 1,4, Youquan Xin2,4, Xiaoyan Yang2,4, Kai Song1, Qingwen Zhang2,
Haihong Zhao2, Cunxiang Li2, Yong Jin2, Yan Guo1, Yafang Tan1, Yajun Song1,
Huaiyu Tian 3, Zhizhen Qi 2 , Ruifu Yang 1 & Yujun Cui 1

The relative contributions of mutation rate variation, selection, and recombi-
nation in shaping genomic variation in bacterial populations remain poorly
understood. Here we analyze 3318 Yersinia pestis genomes, spanning nearly a
century and including 2336 newly sequenced strains, to shed light on the
patterns of genetic diversity and variation distribution at the population level.
We identify 45 genomic regions (“hot regions”, HRs) that, although comprising
a minor fraction of the genome, are hotbeds of genetic variation. These HRs
are distributed non-randomly across Y. pestis phylogenetic lineages and are
primarily linked to regulatory genes, underscoring their potential functional
significance. We explore various factors contributing to the shaping and
maintenance of HRs, including genomic context, homologous recombination,
mutation rate variation and natural selection. Our findings suggest that posi-
tive selection is likely the primary driver behind the emergence of HRs, but not
the sole force, as evidenced by the pronounced trend of variation purging
within these regions.

The evolutionary trajectory of bacteria is profoundly shaped by
spontaneous mutations1–3, which are not uniformly scattered across
the bacterial chromosome4. This disparity leads to the emergence of
genomic hot spots and cold spots for mutations, a phenomenon well-
illustrated by contingency loci in pathogenic bacteria5. These regions,
marked by increased mutability, are assumed to be a result of evolu-
tionary adaptations that facilitate rapid phenotypic changes in
response to the unpredictable challenges posed by environmental
pressures.

The proliferation of next-generation sequencing (NGS) technol-
ogy has confirmed the existence of mutation biases within the gen-
omes of a wide array of bacterial species6–9. However, the distribution
patterns and functional units of non-random mutation in large-scale
natural populations are not fully understood, and no single explana-
torymodel hasgaineduniversal acceptance. This gap in understanding
has led to ongoing debates, highlighted by the conflicting conclusions
from studies on Escherichia coli6,10. Martincorena et al. examined the
genomes of 34 E. coli natural isolates and discovered distinct non-

random patterns in synonymous substitutions, with certain regions
exhibiting more than a 20-fold difference in synonymous diversity
(θs)

6. They proposed that these variations might reflect evolutionarily
shaped local mutation rates. Conversely, Maddamsetti et al. who
analyzed data from the long-term evolution experiment (LTEE) with
E. coli, observed an uneven distribution of point substitutions as well
but linked it to the gene length rather than to variations in mutation
rates across genes10. They suggested that observed differences in θs
within natural E. colipopulations could bedue to variations in effective
population size (Ne), influenced by selective pressures, gene flow, or
population structure.

Yersinia pestis, the infamous agent behind the historical plague
pandemics, persists in natural reservoirs, continuing to pose a significant
public health risk11,12. A detailed examination of 133 Y. pestis genomes
revealed a significantly high density of nonsynonymous SNPs in seven
out of 3450 core genes13. In a separate study focusing on 78 Y. pestis
strains collected from a localized natural plague focus more than four
decades, the rpoZ gene stood out as a genetic variation hotspot,
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displaying a variation density that exceeded other genomic regions by
over 2000-fold14. These observations accentuate the non-random dis-
tribution of substitutionwithin the Y. pestis genome. Building upon these
findings, we have scrutinized 3318 Y. pestis genomes that span a historical
period of 97 years and encompass samples from the primary natural
plague foci globally. Our comprehensive study seeks to shed light on the
genetic diversity and substitution distribution patterns at the natural
population level. By using Y. pestis as a model organism, we provide a
detailed view of the hot regions of genetic variations and hypothesize
about the mechanisms that dictate non-random variation distribution.

Results
Global diversity of the current largest dataset of Y. pestis
Our comprehensive collection of 3318 Y. pestis genomic sequences,
including 2336 newly sequenced samples (Supplementary Data 1) and
982 from the NCBI database (Supplementary Data 2), spans 19 countries
across 5 continents from 1922 to 2018 (Fig. 1a). This dataset represents
the most extensive Y. pestis genome collection to date. Utilizing 6552
high-quality SNPs from the core genome, we constructed a maximum-
likelihood (ML) phylogenetic tree (Fig. 1b), which affirmed the geo-
graphical distribution of Y. pestis populations and supported previously
described constraints (Fig. 1c)13,15. The median pairwise genetic distance
among strains is 118 SNPs, reinforcing the genetically monomorphic
nature of the Y. pestis core genome11,16 (Supplementary Fig. 1).

While no major new branches were identified beyond the estab-
lished designations (Branches 0–4)13,17, our data refined the phyloge-
netic structure, revealing multiple novel tip clades (Fig. 1b). We
proposed a three-level hierarchical nomenclature system for Y. pestis
clade assignment, inspired by the dynamic nomenclature used for
SARS-CoV-2 (see Methods)18, resulting in 31 first-order clades, 34
second-order clades, and 23 third-order clades (Supplementary Fig. 2).
Five clades contained genomes exclusively sequenced in this study
(n = 196, Supplementary Data 1), filling previous gaps in our under-
standing of Y. pestis diversity.

Detection of non-randomly distributed variations
In a genome where genetic variations are fixed by chance, their dis-
tribution should conform to a binomial model. Contrary to this
expectation, our analysis of 9370 polymorphic sites—comprising 6552
SNPs and 2818 indels—uncovered 45 variation hot regions (HRs) scat-
tered across the core genome of Y. pestis (Fig. 2a and Supplementary
Data 3). These HRs displayed a level of nucleotide diversity (θ) that
significantly exceeded the binomial distribution’s theoretical forecasts
(Padjusted < 0.05), as determined by a binomial-based sliding window
and random sampling procedures (refer to Methods).

These HRs, labeled HR01-HR45, span 40–4436 bp and contain
6–226 variations (Supplementary Data 3). While they represent only
1.35% of the reference genome’s chromosome length, they include
14.26% of all genome-wide variations (n = 1336/9370) (Fig. 2b and
Supplementary Data 4). Variation density in HRs ranges from 8 to 150
per kbp, far exceeding the genome-wide average of about 2 per kbp
(Fig. 2c). HRs also show significantly higher ratios of nonsense (6.10-
fold increase) and frameshift variations (1.60-fold increase) compared
to other genomic regions (Fig. 2b and Supplementary Data 4, Fisher’s
exact test, P < 2.2 × 10−16 and P = 1.19 × 10−10). Moreover, the
nonsynonymous-to-synonymous substitution ratio per site in HRs is
1.541 × 10−4, substantially higher than the 5.165 × 10−7 ratio for non-HR
regions.

Chromosome and population distribution of hot regions
Among the 45 identified HRs, only five were confined to specific genes
(HR01, HR18, HR20, HR41, and HR42, ranging from 505 to 1382 bp)
(Supplementary Fig. 3a), and sixwere locatedwithin intergenic regions
(HR13, HR21, HR25,HR43,HR44, andHR45, ranging from40 to 429 bp)
(Supplementary Fig. 3b). The preponderance of HRs (75.56%, n = 34)

spanned multigenic domains, covering 1 to 4 genes and extending
from 527 to 4436 bp in length (Supplementary Fig. 3c).

The distribution of HRs across the Y. pestis phylogeny is strikingly
uneven, with a marked preference for certain phylogroups (Fig. 3 and
Supplementary Fig. 4). For example, 68.75% of variations within HR02
were exclusive to the 0.ANT1 population (Supplementary Fig. 4 and
Supplementary Data 5). We quantified the dispersion of variation across
phylogroups perHRby calculating the variance of relative abundance of
variation sites, denoted as VHR (see Methods). This metric revealed that
28.89% of HRs (n = 13/45) had high VHR values (over 400), indicating a
concentration within specific phylogroups (Fig. 3 and Supplementary
Data 6). Conversely, 42.22% of HRs (n = 19/45) showed low VHR (below
101), suggesting variations affecting the species at large, as they are
distributed across 4–44 top-level phylogroups. HRs with intermediate
VHR values (101–400) present a mixed distribution pattern; with varia-
tions predominantly found in one or two phylogroups, yet also spor-
adically present in several others.

To explore potential epistatic interactions among HRs that could
shape the evolutionary path of Y. pestis, we analyzed the phylogroup
proportions of HR variations and discerned a non-random pattern of
associations, grouping the 45 HRs into four distinct clusters (Supple-
mentary Fig. 5). Group 1HR variations are chiefly found in the 1.ORI2.1.1
phylogroup, while Group 3’s are mainly in 2.ANT3.1. Group 2, char-
acterized by HRs with low to intermediate variances, show a broader
phylogroup presence, particularly within 1.ORI2.2.1, 1.ORI2.1.1, and
1.IN2.1.1. Group 4, although more scattered, revealed closely related
HRs, such as HR17, HR30, and HR41, as well as HR02 and HR41, with
denser distributions in the 0.ANT1.2.2 and 0.ANT1.1.2 phylogroups,
respectively. These patterns hint at the possibility of positive epistasis
among these clustered regions.

Functional categorization of genes in HRs
Gene Ontology (GO) term enrichment analysis was conducted on 96
genes associated with identified HRs, including genes within HRs and
those potentially influenced by adjacent intergenic regions. We iden-
tified 12 significantly enriched GO terms in Biological Process, 16 in
Molecular Function, and one in Cellular Component (FDR <0.05,
Fig. 4a).

A notable finding was the prevalence of regulatory proteins
among the HR-associated genes. This was evidenced by 9 of the 12
significantly enrichedGO terms in Biological Process and one enriched
GO term (DNA-binding transcription factor activity) in Molecular
Function being related to regulatory functions (Fig. 4a). To further
support this observation, we utilized the P2RP platform for regulatory
protein prediction, augmented by CO92 annotations19. A pronounced
overrepresentation of 18 regulatory proteins, involving 17 HRs (Fig. 3
and Supplementary Data 6), was found within the 96 HR-associated
genes compared to 358 potential regulators identified across the
entire CO92 chromosome (Hypergeometric test, P =0.0017). HRs
linked to regulatory proteins showed a significantly lower VHR than
those not associated with regulators (Wilcoxon rank sum test,
P =0.0069), suggesting that regulator-related HRs may exert an
influence on the regulatory networks at the species level, potentially
affecting the evolutionary trajectory of Y. pestis as a whole.

To examine protein-protein interactions (PPI) among HR-related
genes, we constructed a PPI network using STRING database
information20. This network revealed five gene clusters with interac-
tion confidence scores exceeding 0.7 (Fig. 4b and Supplementary
Data 7). The predominant cluster comprised 28 genes, including seven
regulatory proteins, and featured three high-confidence sub-clusters
(score ≥0.9). Correlating gene functions with the COG database, we
observed strong connections between genes from different HRs
sharing similar functions. For instance, genes rpsG, rpsL, tufA, and fusA
from HR06, along with rpsI from HR39, fall under the same COG
category and exhibit close connectivity. These genes, which are

Article https://doi.org/10.1038/s41467-024-55581-4

Nature Communications |          (2025) 16:388 2

www.nature.com/naturecommunications


c

a

16

144

784

Phylogroup
1.ORI
1.IN
1.ANT
2.ANT
2.MED
3.ANT

4.ANT
0.ANT
0.PE5
0.PE4
0.PE2
0.PE7

Isolate count

1

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

0 200 400 800 840

Isolate count

Others
Brazil
USA

Russia
Peru

Mongolia
Madagascar

NA

Yunnan
Ningxia
Xinjiang

Tibet
Sichuan
Shaanxi
Qinghai

Liaoning
Jilin

Inner Mongolia
Heilongjiang

Hebei
Guizhou
Guangxi

Gansu
Fujian

1930 1940 1950 1960 1970 1980 1990 2000 2010 NA

Year

O
th

er
 c

ou
nt

rie
s

●

1

● ●

25 50 100 150

C
hi

na

0

100

200

Is
ol

at
e 

co
un

t

Isolate count

PublishedThis work

Type

1925 1950 1975 2000

Tree scale: 0.01

First-order
0.ANT1

0.ANT2

0.ANT3

0.PE2

0.PE4

0.PE5

0.PE7

1.ANT1

1.IN1

1.IN2

1.IN3

1.ORI1

1.ORI2

1.ORI3

2.ANT1

2.ANT2

2.ANT3

2.MED0

2.MED1

2.MED2

2.MED3

3.ANT1

3.ANT2

4.ANT1

1.IN5

Country
China

Russia

Azerbaijan

Georgia

Armenia

Kyrgyzstan

USA

Congo

Madagascar

Japan

Indonesia

Mongolia

Myanmar

Iran

Peru

Zimbabwe

Brazil

Bolivia

Kenya

NA

Public data

b

Bra
nch0

B
ran

B
ran

B
ran

B
ran

B
ran

B
ranch4

ch4
ch4
ch4
ch4

Branch3

Branch2

Branch1

Second-order
x.1

x.2

x.3

x.4

x.5

x.6

x.7

Third-order
x.x.1

x.x.2

x.x.3

x.x.4

x.x.5

x.x.6

1922
1931
1941
1950
1960
1970
1979
1989
1998
2008
2018

Year
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integral to information storage and processing, also associate with
recO and rnc from HR29 and deaD from HR37 (Fig. 4b). Intriguingly,
HRs comprising interacting genes share similar patterns in population
distribution (Fig. 3 and Supplementary Fig. 5). For example, HR06,
HR29, HR37, and HR39 all show a high frequency of variations within
the 1.ORI2.1.1 phylogroup. These observations lend support to the
notion of positive epistasis among these HRs, underscoring the need
for further study to unravel their functional interdependencies and
their collective influence on the evolution of Y. pestis.

Diverse factors that may contribute to the observed
patterns of HRs
Four potential mechanisms are hypothesized to influence the emer-
gence of HRs. Firstly, the distinct genomic context of these regions may
inherently predispose them to greater variability than other genomic
segments, such as known contingency loci5,21. Secondly, homologous
recombination may introduce new genetic material with higher density
of variations than typically seen throughout the genome22,23. Thirdly,
variation in mutation rates could precipitate non-random distributions
of genetic variations across the genome, a pattern that emerges even
without a specific genomic context and is described as an evolutionary
risk management strategy6,24. The final mechanism involves selection

pressure; genome regions under intense positive selection are likely to
show a surge in variation density25,26. Finally, our research scrutinizes
each of these potential influences to infer the most credible explana-
tions for the patterns observed in our dataset.

Genomic context. We assess the impact of local sequence context on
genomic diversity by comparing the GC content and the complexity of
genomic regions between HRs and non-HRs. Our analysis did not
reveal a significant difference in GC content (two-tailed Welch’s t test,
P =0.17) (Supplementary Fig. 6a). Although regions of lower genomic
complexity, such as homopolymers, are generally associated with
higher mutation rates, our comparison of genomic complexity—mea-
sured by linguistic complexity (LC) score and Shannon’s entropy (H)
score27—showed no statistically significant differences between HRs
and non-HRs (two-tailed Welch’s t test, P =0.21 and P =0.24) (Supple-
mentary Fig. 6a). These results suggest that the complexity of the
genome does not predominantly influence the formation of HRs.

Homologous recombination. Y. pestis is typically characterized by a
clonally structure, with scant evidence of recombination events. Our
analysis of homologous recombination in the core genome of 3318 Y.
pestis strains revealed that, although the recombination to mutation
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Fig. 3 | Mutation distribution and composition in 45 HRs across populations.
The heatmap, with columns clustered, illustrates the proportions of variation sites
across different populations for each HR, with dark shades representing higher
values, gray for values between 0 and 10, and white for no variation. HRs labeled in
red on the x-axis highlight regions containing regulator-related genes. The upper

bar chart displays the variance of the proportions; the left bar chart depicts the
strain count for each phylogroup; and the lower stacked bar chart presents the
number of unfixed variations within each HR, with different colors representing
distinct genetic variation types. Source data are provided as a Source Data file.
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ratio (r/m) ranged from 0.17 to 5.09 across different methods and
datasets, the recombination coverage was exceedingly low (<1.6%
overall, median <0.3% per sample). In comparison, its ancestor Y.
pseudotuberculosis exhibited recombination coverage exceeding
64.9% overall, with a median over 16.27% per sample (see Methods,
Supplementary Fig. 7a–d, and Supplementary Data 8). These findings
underscore the minimal contribution of recombination to the genetic

diversity of this species. This finding aligns with previous observations
and reinforces the notion that genetic variations in Y. pestis are pre-
dominantly the result of spontaneous mutations rather than recom-
bination events.

We also examined the overlap between recombination regions and
the HRs, as well as the number of variations in relation to the ancestral
state within each HR for every isolate. Our analysis revealed that
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only HR06 partially overlapped with a single recombination region
identified by twomethods, covering approximately 5% ofHR06’s length.
Additionally, the number of variations within each genome was con-
strained at any given HR (≤4, Supplementary Fig. 7e). After excluding
potential non-single-introduction events (refer to Methods for details),
we identified only 31 clusters of physically linked variations (0.07%,
n=31/42,963) that could be attributed to recombination (Supplemen-
tary Data 9). Of these, 29 clusters involved the concurrent introduction
of two variations, with five clusters where linked variations became fixed
in the population; only two clusters potentially involved three linked
variations introduced simultaneously in two separate isolates (Supple-
mentary Fig. 7f). These data indicate that recombination has a negligible
impact on the development of HRs.

Mutation rate variation. In alignment with the neutral theory of
molecular evolution (θ = 2Neμ), we anticipate that population diversity
(θ) would be a reflection of both themutation rate (μ) and the effective
population size (Ne)

28. Given the low recombination coverage in
Y. pestis, each genomic site’s history is congruent with the history of
the organism itself, suggesting that the effective population size’s
demographic influence on individual sites might be minimal. Our
analysis revealed no substantial codon usage bias impacting synon-
ymous diversity within the population (paired Wilcoxon signed-rank
test, with P-values ranging from 0.57 to 1, see Methods), thereby sup-
porting the use of synonymous diversity (θs) as an indicative measure
of mutation rates.

We observed that the θs within HRs was 2.38-fold higher than in
the remaining genomic landscape, indicating a potential acceleration
of mutation rates within these regions (binomial test, P < 1.19 × 10−6).
While most HRs exhibited synonymous mutation counts and θs values
close to the genome-wide average, five HRs (HR11, HR17, HR27, HR37,
andHR42) displayed significantly elevated θs, ranging from4.65 to 9.12
times higher, suggesting a potential mutation rate bias in these
regions. Moreover, we identified a distinct mutation spectrum
between HRs and non-HRs, as well as between HRs with high θs and
non-HRs (Chi-squared test, P =0.011 and P =0.0031, respectively;
Supplementary Fig. 6b). HRs with high θs showed a greater proportion
of G:C- > T:A (transversion) and a lower proportion of G:C- > A:T
(transition) compared to other HRs and non-HRs. These findings sug-
gest that we cannot exclude the possibility of elevated mutation rates
occurring in several HRs, potentially driven by complex evolutionary
processes, which requires further validation.

Selection pressure. Previous research has shown limited evidence of
natural selection across the whole genome of Y. pestis during its
evolution13. Our study supports this observation, identifying only 47
genes with high dN/dS ratios (dN/dS > 1) and 17 genes that, despite
lacking synonymous SNPs, demonstrated a significantly higher
occurrence of nonsynonymous SNPs (P <0.05). Importantly, a sub-
stantial proportion of genes with selection signatures are located
withinHRs.We identified 18 geneswith highdN/dS ratios and 11with an
excess of nonsynonymous SNPs, suggesting adaptive evolution within
these regions (Supplementary Data 10). This is further supported by
the prevalence of homoplasies, with 62.32% occurring within HRs
(Fig. 2a and Supplementary Data 11). Additionally, the fixation of

variations within the Y. pestis population in 37 out of the 45 HRs points
to the influence of positive selection (Supplementary Data 5). For
instance, in HR31, seven variations, including six within the ail gene
and one upstreamof the ail gene by 50base pairs, were independently
fixed in the main branch and across multiple phylogroups (Supple-
mentary Fig. 8). Collectively, these findings suggest that positive
selection may significantly influence the genetic landscape of HRs.

However, the majority of HR variations (93.11%) had low allele
frequencies, with many observed in only one or two genomes out of
the 3318 analyzed (Supplementary Data 5). For example, in HR36, a
mere 1.4% were fixed across the species. This suggests that while
positive selection appears to be the main driver in shaping HRs, most
variations within HRs are purged over time, contrary to expectation if
positive selection was the sole force at play.

To further investigate whether variations within HRs could confer a
fitness advantage, we focused on HR06, which encompasses the rpsL
gene associated with antibiotic resistance. The K43R mutation in rpsL
gene has been documented to confer resistance to streptomycin, the
first-line antibiotic for Y. pestis infection29,30. Within HR06, we identified
36 variations: nine within rpsL, 25 across the adjacent rpsG, fusA and tuf
genes, and two in the intergenic regions.Despite this, only thepreviously
reported K43R mutation in rpsL29,30 demonstrated a resistance pheno-
type; the other seven variations we tested did not result in drug resis-
tance (Supplementary Fig. 9 and Supplementary Data 12). Notably, a
strain from the same region as the streptomycin-resistant variant, car-
rying the R86S mutation in rpsL, the mutation frequently observed in E.
coli streptomycin resistance study31, remained as sensitive to the anti-
biotic as wild-type strains. This suggest that many of the variations in
HR06 do not offer a selective advantage under antibiotic pressure.

Discussion
The surge in high throughput genome sequencing has exponentially
increased the availability of pathogen genomes, offering unprece-
dented opportunities into the evolutionary intricacies of genetically
monomorphic species like Y. pestis. The previously hidden evolu-
tionary patterns can now be exposed due to whole-genome level
resolution in determining diversity. Nevertheless, this abundance of
genomic information also brings to the fore the challenge of devel-
oping a robust and coherent nomenclature system to classify emer-
ging clades. Drawing inspiration from the comprehensive naming
system employed for SARS-CoV-2, which effectively manages over 10
million genomes18, we propose a similar structured three-tiered hier-
archical naming framework for Y. pestis clades. This proposed system
harmonizes with existing nomenclature practices13,15,32, ensuring con-
tinuity while also being scalable enough to accommodate the antici-
pated influx of genomic data. It promises to streamline
communication within the scientific and public health sectors
regarding evolution, ecology, and epidemiology of Y. pestis.

Echoing the seminal work by Tenaillon et al. on E. coli7, our find-
ings corroborate the notion that selection operates at multiple biolo-
gical scales, from genes to operons and beyond. In Y. pestis, we
observed that the distribution of clustered genetic variations, or HRs,
reflect this multi-level selection. While a minority of HRs are confined
to single genes or intergenic spaces, the majority traverse both, sug-
gesting that evolutionarymechanismsof Y. pestismayact onexpansive

Fig. 4 | Functional enrichment analysis and protein-protein interaction ana-
lysis of HR-associated genes. a Enrichment analysis of Gene Ontology (GO) terms
for 96 HR-related genes against the whole genome background. GO terms are
categorized into three distinct domains, represented as vertical stacked bars and
highlighted in the shaded area. Regulatory function-related GO terms are high-
lighted in bold text. The blue bar chart represents the observed count ofHR-related
genes in corresponding GO terms (noting that each gene can correspond to mul-
tiple GO terms). The false discovery rate (FDR) for significantly enriched GO terms
(FDR<0.05) are labeled in the rightmost. Sourcedata areprovidedasa SourceData

file. b STRING association analysis for 96 HR-related genes. Only node interactions
with a confidence scoregreater than0.7 are displayed,while disconnectednodes in
the network are hidden and nodes connected solely through physical interactions
were removedmanually. Nodes are color-codedaccording to four clustered groups
with possible epistatic signals, while connecting lines are colored based on the
evidence supporting the interaction within the STRING database. Bold gene names
with asterisks indicate regulatory proteins, and the red text in parentheses below
the gene name indicates the HR associated with the corresponding gene.
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genomic segments. This observation expands our understanding of
the units of adaptive evolution in this pathogen.

Our analysis also reveals that HR variations are stratified across the
Y. pestis phylogeny. Some HRs, like the one encompassing the ail gene
linked to phage resistance33–36 are widespread, indicating their pivotal
role in the species’ survival across diverse environmental challenges.
Conversely, other HRs appear more temporally and phylogenetically
localized, such as the one involving the rpoZ gene, hinting at adaptations
to unique environmental pressures faced by certain phylogroups14.

We observed a pronounced overrepresentation of regulatory
proteins within the HRs, with over one-third of HRs implicated. The
widespread distribution of these HRs across different phylogroups
aligns with their potential role in bolstering Y. pestis’ adaptability in
response to environmental fluctuations. Interaction network analysis
via STRING revealed significant protein-protein interactions among
these HRs, suggesting the possibility that hotspots may coalesce into
functional complexes. Furthermore, HRs displaying protein interac-
tions were frequently found to cluster within particular phylogroups,
suggesting a linkage between STRING-defined functional complexes
and HR groupings. This observed patternmay reflect positive epistasis
among HRs, potentially underpinning their synergistic action.
Although correlating HR variations with specific phenotypes remains a
challenging task due to the pleiotropic nature of the associated genes,
our findings identified novel avenues for probing the physiology and
pathogenic mechanisms of Y. pestis.

Despite the increased number of variations observed within hot-
spots, many exhibit low allele frequencies and do not appear to be
adaptive. One hypothesis rationalizes this pattern is transient Darwinian
selection, which echoes findings from a population genomics study on
Salmonella enterica serovar Paratyphi A8. These regions may have
undergone diversifying selection over short timescale. Initially, certain
variants were favored and increased in prevalence, but they were sub-
sequently subject to negative selection, leading to their gradual purging.
Thismaybedue tofitness reductions causedbychangingenvironmental
selection pressures or the absence of compensatory epistaticmutations.
Another hypothesis involves the combined effects of selection and
genetic drift. An estimate of the Ne for Y. pestis, based on the Bayesian
Coalescent Skyline model, was 1 × 103-1 × 104 (95% CI: 1 × 102-1 × 105)37,
indicating a small Ne for Y. pestis. This finding is supported by a com-
parison of Ne across 152 bacterial species and one archaeon using dif-
ferent evaluation methods38. Thus, such a small Ne for Y. pestis could
“purge” alleles in HRs and prevent them from reaching fixation. Realistic
mathematical models for bacterial genome evolution are needed in
future work to quantitatively clarify the impacts of these driver forces.

We observed higher θs in a few HRs compared to other genomic
regions, therefore it cannot fully exclude the potentially accelerated
mutation rate in these regions. An elevated mutation rate in localized
genome regions could provide a greater probability for the emergence
of advantageous mutations, conferring fitness benefits while main-
taining a reduced evolutionary risk in contrast to global mutator
phenotypes6,24. Although several explanations had been inferred rela-
ted with the upsurge of localized mutation rates, including
transcription-induced mutagenesis, replication-repair system bottle-
necks, the chromosomal spatial organization, epigenetic variation, and
targeted error-prone polymerases4,39, the mechanisms need to be
further investigated, possibly through long-term evolutionary experi-
ment and mutation accumulation studies.

Our findings are based on the comprehensive sampling of geneti-
cally monomorphic population with negligible homologous recombina-
tion. Limited sampling could overlook some HRs, particular since many
HR mutations are likely lost over evolutionary timescales. With the
extensive accumulation of bacterial genome sequences in current age,
previously undetectable evolutionary details, such as HR characters
identified in this study, are likely discovered in other bacterial species.
This will provide a more robust foundation for developing quantitative

models for bacterial evolution. Such effortswill not only shed light on the
fate ofmutationswithin populations, including their emergence,fixation,
and potential extinction, but also enrich our comprehension of bacterial
adaptive evolution, with practical implications for understanding phe-
nomena like antibiotic resistance from a novel perspective.

Methods
Data collection
In this study, we analyzed 3318 Y. pestis genome sequences, including
2336 newly sequenced strains (Supplementary Data 1), 982 publicly
available genomes from NCBI databases (Supplementary Data 2). The
new strains were collected from natural plague foci in 14 provinces
across China over the past 60 years (1948–2011), except for two strains
from Myanmar and 13 of unknown origin. Among them, 1661 strains
were isolated from rodents, 424 from vectors, 175 from humans, one
from the environment, 53 from other hosts, and 22 from unknown
hosts. The 982 public NCBI genomes consist of short-read sequencing
data from the SRA database, excluding 78 Guertu strains (Project ID:
PRJNA412676)14 with locally available raw data and the CO92 reference
genome (Accession: GCA_000009065.1). We filtered out lab-passaged
strains, genomeswith less than20X sequencingdepth, and strainswith
duplicate BioSample IDs.

Additionally, we included 164 GenBank assemblies without avail-
able SRA short-read data, and 93 ancient genomes (aDNAs) from the
SRA database (Supplementary Data 2). Together with the 3318 gen-
omes,we analyzed a total of 3575 Y. pestis strains to construct themost
comprehensive phylogenetic tree.

Whole-genome sequencing and assembly
We extracted genomic DNA from 2336 Yersinia pestis strains using the
Qiagen DNeasy Blood Tissue Kit (No. 69506) and performed whole-
genome sequencing on the Illumina Novaseq 6000 platform, gen-
erating paired-end reads with an average length of 150bp and greater
than 300X sequencing depth.

After filtering out adapters and low-quality reads (<Q20) using
Trimmomatic software (v0.38)40, we downsized the data to 100X for
downstream analysis. We employed Shovill software (v1.0.1) for de
novo assembly of newly sequenced strains and SPAdes software
(v3.13.0)41 for NCBI publicly available SRA data (modern genomes),
which includes both paired-end and single-end sequencing data.

Genome annotation and pan-genome analysis
Genome annotationwasperformedusing Prokka (v1.14.6)42 for all 3318
genomes. Genome sizes, including both chromosomes and plasmids,
ranged from 4.15 to 4.93Mb, with amedian of 4.63Mb. The number of
annotated genes per genome varied from 3622 to 4420 coding
sequences (CDS), with amedianof 4075CDS. Pan-genomeanalysiswas
performed using Panaroo (v1.2.8)43 in strict mode with a sequence
identity threshold set to 90%, and Roary (v3.13.0)44 with a minimum
blastp identity threshold of 90%. ThePanaroo analysis identified a total
of 5402 genes, including 3850 core and soft-core genes present in
more than 95% of the strains, 270 shell genes present in 15–95% of the
strains, and 1282 cloud genes present in less than 15% of the strains.
The Roary analysis identified a comparable number of 3667 core and
soft-core genes, 240 shell genes, and a higher number of 3060 cloud
genes, resulting in a total of 6967 genes.

SNP and indel calling
MUMmer software (v3.23)45 was used to align the assemblies with the
CO92 chromosome and extract SNPs from core genomes shared by at
least 95% of strains. Short-read sequencing data was aligned to the
reference using BWA software (v0.7.17)46, and GATK’s HaplotypeCaller
module (v4.2.4.0)47 identified mutation sites for each strain. Joint muta-
tion detection was performed using GATK’s CombineGVCFs and Geno-
typeGVCFsmodules, and SelectVariants module was used to extract SNP
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variations. Only high-quality SNPs supported by both assemblies and
sequencing reads (with ≥10 reads coverage and ≥90% base proportion)
and corresponding genomic sites present in over 95% of all strains were
retained. SNPs located in repeat regions, identified using TandemRepeat
Finder (v4.07b, with a minimum alignment score of 50) and BLAST
software (v2.12.0+, for nucleotide identities ≥95%) were removed from
the final dataset. Pairwise SNP differences among 3318 strains were
computed using snp-dists software (v0.8.2) and visualized through violin
plots in R software (v3.6.2). For the 3575 genomes, due to the low
sequencing quality of aDNA, we reduced the SNP calling threshold for
aDNAs to ≥3 reads and ≥90% base proportion without assembly ver-
ification, and manually corrected some sites as needed

Indels were extracted from the combined GVCF file of 3318 strains
in SNP calling usingGATK’s SelectVariantsmodule. In every strain, indels
supported by ≥10 reads coverage and a base proportion of ≥80% were
retained.We focused on indels within the soft-core genome shared by at
least 95% of genomes and with lengths under 30bp, while removing
indels located in repetitive regions identifiedduring the SNP calling step.

Naming rules of the updated hierarchical nomenclature system
Maximum likelihood (ML) tree was constructed based on con-
catenated SNPs using IQ-TREE software (v1.6.5)48 with the GTR +G
model and ultrafast bootstrapping (bootstrap= 1000), and visualized
using FigTree (v1.4.3) and online tool iTOL (v6.8)49.

The Y. pestis nomenclature systemwas established in 2004 and
has undergone refinements in subsequent studies. However, the
use of different naming rules in various studies, especially those
withmultiple genomes sequencedwithin a specificphylogroup, has
led to difficulties in referring to or designating new classifications.
To overcome this challenge, we utilized the largest dataset avail-
able to date and proposed an updated three-level hierarchical
nomenclature system that provides a more detailed phylogenetic
topology of Y. pestis. Our first-order clade designation references
published literature and EnteroBase13,15,32,50,51, while the second and
third orders follow dynamic naming rules of influenza viruses and
SARS-CoV-218,52–54.

Descendant lineagesmustmeet four criteria tobenamed at a higher
level: (1) it exhibits clade-specific SNP differences that distinguish it from
other clades; (2) it comprises at least three non-redundant genomic
sequences that differ either in SNP variation or have distinct origins, such
as geographical regions or isolation years; (3) the clade-defining nodehas
a bootstrap value >50%; (4) it forms a geographically-clustered branch or
parallel branches that have diverged from the same ancestral node. If all
criteria are met, a higher-level clade is determined; if not, it is classified
into the lowest level that meets inclusion criteria.

For example, we divided 1.ORI2 into two main lineages: 1.ORI2.1
(South American strains) and 1.ORI2.2 (Chinese and Southeast Asian
strains). Within 1.ORI2.1, Brazilian and Peruvian isolates form sub-
lineages 1.ORI2.1.1 and 1.ORI2.1.2, respectively. In 1.ORI2.2, isolates
from China and Southeast Asia form three sub-lineages: 1.ORI2.2.1,
1.ORI2.2.2, and 1.ORI2.2.3. Scattered strains were excluded from sec-
ond and third-level classifications due to limited sampling. To stan-
dardize naming, we assigned 0.PE4A ~ 0.PE4D to the second-level
classification as 0.PE4.1-0.PE4.4, while all other first-level naming sys-
tems remain consistent with existing nomenclature.

In our study, we newly identified five clades, including 3 second-
order clades (1.IN2.5, 1.IN2.7, and 3.ANT1.2), along with an additional 2
third-order clades (1.IN2.1.3 and 2.MED3.1.4). These clades are deli-
neated by genomes exclusively sequenced for this study (n = 196,
Supplementary Data 1).

Hot regions identification and verification
To identify variation hotspots (HRs), we investigated the distribution of
mutations within specific genomic lengths and compared our observa-
tions to theoretical expectations. Under the assumption of neutral

evolution, we posited that mutations are uniformly distributed
throughout the chromosome, following abinomial distributionB ~ (n, v),
where n represents the genomic length and vdenotes themutation rate.
The mutation rate is computed as: v =N/L, with N denoting the total
number of mutations and L signifying the chromosome length.

Employing a 500 bp sliding window approach, we selected
regions that exceeded the 95% confidence interval and contained at
least two mutations. Preliminary HRs were established by merging
overlapping or adjacent regions within a 1000 bp distance, with their
start and end points corresponding to the nearest variant positions.
We then randomly selected an equivalent number of mutations from
the reference genome using sampling without replacement and
repeated this procedure 100,000 times (T). Instances (M) were
recorded when evaluated hotspots had a higher mutation count
within length ranges, allowing us to calculate the occurrence prob-
ability P =M/T for each hotspot. After applying the Benjamini-
Hochberg (BH) method for multiple hypothesis testing correction,
we derived corrected P-values and identified regions with P-
values < 0.05 as final HRs.

To access the robustness of our method, we performed simula-
tions under a model of neutral evolution using fastSimBac software55.
These simulations mirrored our empirical data in terms of genome
count, genomic dimensions, and mutation rate, without the influence
of selective forces. We conducted 100 simulations, each featuring a
mutation rate of 0.0002 per generation per site, a genome length of
5Mb, and 3300 genomes, without recombination. Identifying HRs in
these simulations utilized the same pipeline, but we reduced the ran-
dom sampling to 10,000 times for increased efficiency. Remarkably, a
mere two HRs emerged in only two of the 100 simulation iterations,
underscoring the exceptional nature of such clusters in a neutrally
evolving landscape (Supplementary Data 13).

Ancestral state inference and fixed/unfixed mutations
identification
We identified ancestral mutation states using two Y. pseudotubercu-
losis strains (IP32953 and IP31758, Accession: GCF_000047365.1 and
GCF_000016945.1), 28 Y. pestis prehistoric aDNAs, and two 0.PE7 Y.
pestis strains. Ancestral states were determined by consistency
among prehistoric genomes. In cases of inconsistent alleles or
inadequate sequencing quality in prehistoric genomes, we inferred
the ancestral state from Y. pseudotuberculosis and 0.PE7 strains.
Based on the reconstructed ancestral states, we determined the
mutation base state at corresponding genomic positions. If a muta-
tion base appears in over 80% of the genomes within a specific
phylogroup, considering only top-level phylogroups containing
more than three genomes, it is considered a fixed state; otherwise, it
is a non-fixed state.

HR mutation distribution across phylogroups
To quantify the dispersion of phylogroups within a given HR, we first
compute the weight (wi) of the phylogroup at each mutation site
where it appears as: wi=ci/ti, where ci is the count of mutated strains
(relative to the ancestral state) for the phylogroup at site i and ti is the
totalmutated strain count across all phylogroups at that site. Then, we
sum the weights (wi) and calculate the proportion of a specific phy-
logroup (R) within a given HR using the following formula:

R =
Xn

i = 1

wi=n

 !
*100 ð1Þ

where n is the total number of mutation sites within the HR.
We calculated R for each phylogroup within a given HR and then

determined the variance of the relative abundance of variation sites,
denoted as VHR, as the variance of R for phylogroups where R >0 (i.e.,
those containing strains exhibiting variations within the HR). The
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variance was calculated using the following formula:

VHR = var Rð Þ= 1
m

Xm

j = 1

ðRj � �RÞ2 ð2Þ

where Rj represents the R values for phylogroups with R > 0, �R is the
mean of the Rj values, andm is the number of phylogroups with R >0.

To avoid biases caused by population structures, only unfixed
mutation sites were considered for the analysis. The numpy.var function
from Python’s NumPy library was utilized to calculate variance of phy-
logroup proportions within each HR. The pheatmap (v1.0.12) and
ggplot2 (v3.3.5) packages in R software (v4.3.2) was used to visualize the
results.

Functional analysis of HR-related genes
We utilized the STRING database (v11.0)20 to perform GO term
enrichment analysis and protein-protein interaction analysis on 96HR-
related genes identified in our study, which included genes within HRs
and those potentially regulated by downstreamHR intergenic regions.
Of these genes, 93 were successfully mapped in the STRING database.
For the GO term enrichment analysis, we used the whole genome as a
statistical background and considered terms with an FDR <0.05 as
significantly enriched across the threeGOdomains: Biological Process,
Cellular Component, and Molecular Function. We also randomly
selecting 96 genes from genome-wide reference genes and organizing
them into 45 clusters with 1–4 adjacent genes to mirror the 45 iden-
tified HRs yielded no significant GO term enrichment in the STRING
analysis. In the protein-protein interaction analysis, we displayed node
interactions that exhibited a confidence score greater than 0.7, with
disconnected nodes hidden.

We used the P2RP website19 to identify regulatory proteins in the
CO92 chromosome, resulting in 284 unique proteins after removing
duplicates and missing annotations. Additionally, from the CO92
annotation file, we extracted 74 new genes related to regulation,
resulting in a total of 358 potential regulators in CO92.We conducted a
hypergeometric test to assess the significance of HR-related reg-
ulators, using the whole genome as background.

Genomic sequence complexity and GC content analysis
We utilized the FindingInfo tool (v1.0.0)27 to calculate the genomic
sequence complexity, including the linguistic complexity (LC) score
and the Shannon’s entropy (H) score. This analysis was conducted
using a 21 bp window encompassing 10 bases upstream and down-
stream of each position in the reference genome. The LC and H scores
for each position within a specific region were averaged to obtain the
region’s LC and H score. The GC content was determined by calcu-
lating the ratio of guanine (G) and cytosine (C) nucleotides to the total
count of nucleotides within a specific region of the reference genome.
Values closer to 1 indicate higher sequence complexity and GC con-
tent. Additionally, we randomly selected 45 regions from non-hotspot
regions in the reference genome with the same length tomatch the 45
identified HRs and calculate corresponding GC content, LC and H
scores. This process was repeated 1000 times. Subsequently, we
employed a two-tailed Welch’s t-test to compare the differences in GC
content, LC and H scores between the 45 HRs and the randomly
selected regions.

Detection of homologous recombination
We employed three methods, ClonalFrameML (v1.12)56, Gubbins
(v3.3.1)57, and mcorr (v20180102)58, to evaluate homologous recom-
bination in the Y. pestis and its ancestor Y. pseudotuberculosis across
different dataset sizes. For Y. pestis, we randomly selected 25 strains
(one fromeach first-order phylogroup), 64 strains (one from each top-
level phylogroup), 186 strains (three from each first-order or top-level
phylogroup), 1167 strains (excluding those with fewer than 2 SNP

differences), and the full set of 3318 strains. For Y. pseudotuberculosis,
we expanded the dataset from 23 genomes by Torrance et al.59 to 559
by adding 536 genomes from the NCBI SRA database.

In ClonalFrameML analysis, we used the non-repetitive core gen-
ome aligned to CO92 and theML tree from IQ-TREE as inputs. The tree
wasmadebifurcatingusing ape’s “multi2di” command inR.We applied
the “-ignore_user_sites” parameter to exclude non-core and duplicate
region sites and set “-emsim” to 100 for reliable confidence interval
estimations. The recombination/mutation ratio (r/m) was computed as
r/m =R/θ*δ*ν. Recombination events were visualized using Clonal-
FrameML’s built-in R script.

For Gubbins, we used the same core genome alignments. The
“--tree-builder iqtree” option was used for Y. pseudotuberculosis, while
thedefault “raxml”wasutilized forY. pestis to avoidmissing bipartition
errors. Recombination events were visualized with Phandango
(v1.3.1)60. The overall r/m and R/θ values were calculated as per the
Gubbins manual. For mcorr, the core genome alignments were con-
verted to XMFA format and analyzed using default parameters.

In ClonalFrameML and Gubbins, total recombination coverage was
calculated as the ratio of the total reference-mapped recombination
region length (with overlapping regions merged) to the non-repetitive
core genome length. Sample-related recombination coverage was
determined as themedian ratio of total recombination region length per
strain (including internal branches and strain-specific events) to the
non-repetitive core genome length.

Identification of selection signals
KaKs_Calculator software (v2.0)61 with five distinct models (GLWL,
GMYN, GNG, GLPB, and GYN) was used to calculate dN/dS values of
coding sequences with SNPmutations in the reference genome. Genes
showing dN/dS values greater than 1 in all models were considered
under positive selection.

We employed HomoplasyFinder software62 to identify homo-
plastic sites, with connected SNPs and the IQ-TREE-generated ML tree
as inputs. The detected sites weremapped to their original positions in
the reference genome, and we excluded homoplastic sites shared by
phylogroups with a common ancestor and identical alleles. Due to the
higher occurrence of homplasies in indels, our study concentrated on
SNPs. Among the 6552 single nucleotide polymorphisms (SNPs) ana-
lyzed, 138 homoplasies were identified in 76 genes or intergenic
regions, with 62.32% of them (n = 86/138) found within 25 HRs. Thir-
teen genes and seven intergenic regionswere discovered to havemore
than two homoplastic sites, with 80% of these regions (including 10 in
genes and 6 in intergenic region) located within 14 HRs.

Condon usage bias analysis
To analyze codon usage patterns from the Y. pestis population per-
spective, we employed CodonW software (v1.4.4)63 to calculate
Relative Synonymous Codon Usage (RSCU) values for three distinct
group datasets: (1) the original coding sequences (CDS) obtained
from the reference genome, and the corresponding synonymous
mutation-replaced CDSs; (2) a concatenated codon sequence that
includes all synonymous mutations, and a matching sequence con-
taining the corresponding codons derived from the reference gen-
ome; and (3) a concatenated codon sequence encompassing all
synonymous mutations, and a connected sequence of all CDSs
extracted from the original reference genome. Afterward, we used an
in-house Python script to process the generated output files con-
taining RSCU values. We then employed a paired Wilcoxon signed-
rank test in R software to evaluate the differences in RSCU values
across each group dataset.

Streptomycin susceptibility testing
In light of the reported resistance to streptomycin in Y. pestis strains
with a K43R mutation in the rpsL gene29,30, we assessed streptomycin
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susceptibility in seven Y. pestis strains that have different mutations in
the HR06 hot region (including the rpsL gene) and five strains from
neighboring regions without HR06 mutations (Supplementary
Data 12).We utilized both the disk diffusion and agar dilutionmethods
(Streptomycin 0.5–32 µg/mL) for antimicrobial testing, adhering to
established procedures while identifying streptomycin-resistant
Y. pestis S1996012730, which served as a positive control in our study,
along with the use of E. coli ATCC 25922 as a negative control. We
performeddiskdiffusion tests onfive strainswithHR06mutations and
five strains without such mutations, while using the agar dilution
method to examine all seven HR06-mutated strains and the five non-
mutated strains (Supplementary Data 12 and Supplementary Fig. 9).
The studywasperformed in the Bio-safety Level 3 (BSL-3) laboratory at
the Qinghai Institute for Endemic Disease Control and Prevention to
ensure proper safety precautions.

World map visualization with pie charts
The world map was generated using the ggplot2 and maps (v3.3.0)
packages in R, with country boundaries delineated by the borders()
function in ggplot2. Pie charts were plotted on the map using the
scatterpie package (v0.1.5).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The newly sequenced genomic data generated in this study have been
deposited in the National Center for Biotechnology Information
(NCBI) GenBank database under BioProject PRJNA1177432 and the
China NationalMicrobiology Data Center (NMDC, https://nmdc.cn/en)
under BioProject NMDC10018536. The publicly available data used in
this study are available in the NCBI GenBank and Sequence Read
Archive (SRA) databases, with accession numbers provided in Sup-
plementary Data 2. Source data are provided with this paper.

Code availability
The custom scripts associated with this study have been deposited on
GitHub (https://github.com/WuYarong/YP_Hotspots), and through
https://doi.org/10.5281/zenodo.14219512.
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