Skip to main content
. 2025 Jan 4;16:392. doi: 10.1038/s41467-024-55620-0

Table 1.

Photophysical and electrochemical data, and yields for intrinsic degradation of the MR-TADF dopants

λem (nm)a,b ΦPL (%)a,c τPF (ns) a,d τDF (μs) a,e krTADF (104 s−1)f krISC (105 s−1)g ET1 (eV)a,h ΔEST (eV)a,i Eox (V vs SCE)j Φdeg (%)k Faradaic
yield (%)l
1 471 96 11 78 5.1 1.8 2.49 0.27 0.98 0.29 37
2 467 98 6 3.8 6.3 6.2 2.64 0.11 0.92 0.92 46
3 461 98 7 28 5.6 4.1 2.57 0.21 0.97 0.68 59
4 459 100 5 111 5.4 1.1 2.54 0.25 0.90 0.22 79
1D 473 94 10 62 5.5 1.5 2.49 0.24 0.95 0.18 30

a2 wt% in PMMA films, 300 K. See Supplementary Fig. 1 for the UV−Vis absorption and photoluminescence spectra recorded in tetrahydrofuran (THF).

bEmission peak wavelength. See Supplementary Fig. 2 for the photoluminescence spectra of the PMMA films.

cPhotoluminescence quantum yield determined absolutely using an integrating sphere.

dLifetime of prompt fluorescence.

eLifetime of delayed fluorescence.

fRadiative rate constant, krTADF = ΦPL/τobs, where τobs is the average fluorescence lifetime.

gRate constant for reverse intersystem crossing, krISC = (Φtotal × kPF × kDF)/krS1.

hEnergy of the triplet state.

iThe energy difference between the singlet and the triplet excited states. Refer to Supplementary Fig. 3 for details.

jOxidation potential determined by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) for Ar-saturated THF containing 1.0 mM dopant and 0.10 M tetrabutylammonium hexafluorophosphate; A glassy carbon disk and a Pt wire for the working and counter electrodes, respectively; an Ag/AgNO3 pseudo-reference electrode; scan rates = 0.1 V s 1 (CV) and 4 mV s −1 (DPV). See Supplementary Fig. 4 for the voltammograms.

kQuantum yield for photolysis.

lFaradaic yield for oxidative bulk electrolysis.