
Open challenges and opportunities 
in federated foundation models 
towards biomedical healthcare
Xingyu Li1, Lu Peng1*, Yu‑Ping Wang2 and Weihua Zhang3 

Introduction
Foundation models (FMs) [1, 2] have risen to prominence as pivotal elements in the 
field of artificial intelligence [3]. These models are distinguished by their deep learning 
architectures and a vast number of parameters, allowing them to excel in tasks rang-
ing from text generation to video analysis-capabilities that surpass those of previous AI 
systems. FMs are developed using advanced training techniques, including unsupervised 
pretraining [4, 5], self-supervised training [6, 7], instructed fine-tuning [8], and rein-
forcement human preference feedback [9]. These methodologies equip them to generate 
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coherent text and realistic images with unprecedented accuracy, showcasing their trans-
formative potential across various domains.

The potential of foundation models extends far beyond mere technical capabilities. 
These models mark a significant paradigm shift from how we utilize artificial intelli-
gence for cutting-edge scientific problem-solving. As versatile tools, they can be rapidly 
adapted and fine-tuned for specific tasks, eliminating the need to develop new mod-
els from the ground up. This adaptability is crucial in fields where processing limited 
datasets to extract meaningful insights is essential. It is particularly transformative in 
biomedical healthcare, where the efficacy of AI must be balanced with stringent data 
privacy considerations [10–12]. In this domain, foundation models not only enhance our 
analytical capabilities but also ensure that sensitive health information is handled with 
the utmost integrity, thereby aligning technological advancement with ethical standards.

Federated Learning (FL) [13, 14], a method for training machine learning models 
across multiple decentralized devices or servers without exchanging local data samples, 
aligns well with the capabilities of foundation models in the biomedical healthcare sec-
tor. In this context, where data privacy and collaborative efforts are essential, FL ena-
bles the utilization of vast and varied datasets characteristic of the medical field while 
protecting sensitive patient information. By applying FL, foundation models can access 
and analyze extensive medical data without breaching privacy [15, 16], thus overcoming 
major obstacles in deploying AI technologies where data confidentiality is crucial. Exist-
ing applications of FL in conjunction with FMs typically involve training strategies that 
range from starting from scratch to prompt fine-tuning. FL enhances the application of 
FMs across both large language models and vision-language models, allowing for com-
prehensive and privacy-conscious analyses.

Integrating the privacy-preserving and decentralization features of FL with the robust, 
generalizable capabilities of FMs enables researchers to perform in-depth analyses using 
insights pooled from local datasets. This approach not only broadens the scope and 
accuracy of medical research but also complies with stringent data protection laws such 
as the General Data Protection Regulation (GDPR) [17] in Europe and the Health Insur-
ance Portability and Accountability Act (HIPAA) [18] in the United States. The poten-
tial for healthcare is profound, facilitating more personalized medicine where treatment 
plans are precisely tailored to individual genetic profiles, lifestyles, and medical histories. 
Additionally, FMs that are pre-trained or fine-tuned via federated learning on diverse 
datasets can reveal new biomarkers and therapeutic targets, thereby significantly push-
ing the boundaries of medical research and improving patient care. The synergy between 
federated learning and foundation models heralds a significant leap forward in the use 
of medical data, driving innovation in medical technologies while rigorously protecting 
patient privacy.

This paper presents a comprehensive survey of the latest advancements in foun-
dation models and federated learning within the biomedical and healthcare sectors, 
highlighting their implementations and addressing the persistent challenges encoun-
tered in these fields. A notable application of these technologies involves the use of 
federated foundation models to train pre-trained vision-language models, such as 
FedClip [19], which enhance both generalization and personalization in image clas-
sification tasks. Additionally, MedCLIP [20] employs vision-text contrastive learning 
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with 20K medical datasets to surpass current benchmarks in medical diagnostics. 
FedMed [21], a tailored federated learning framework, effectively counters perfor-
mance degradation in federated settings, facilitating high-quality collaborative train-
ing. Another groundbreaking model, MedGPT [22], based on the GPT architecture, 
utilizes electronic health records to predict future medical events, offering the poten-
tial to detect early signs of critical illnesses, such as cancer or cardiovascular diseases 
[23], before they are typically diagnosable through conventional methods. Impor-
tantly, the utilization of federated learning ensures that sensitive patient data is pro-
cessed on-site, never leaving the institution’s local environment, thus significantly 
enhancing data security and maintaining strict patient confidentiality.

The integration of federated learning (FL) with foundation models (FMs) offers 
unprecedented potential to transform medical diagnostics and personalize treat-
ments, greatly enhancing the capabilities of healthcare systems to deliver exceptional 
care while adhering to rigorous standards of data privacy and security. This techno-
logical advancement not only improves patient outcomes but also strengthens trust in 
the use of AI within critical sectors such as healthcare. However, deploying federated 
FMs in the biomedical domain comes with significant challenges, including ensuring 
data privacy and security, achieving model generalization across diverse datasets, and 
maintaining bias and fairness. Addressing these issues is essential for harnessing the 
full capabilities of FL FMs in healthcare and biomedical research.

Furthermore, this paper explores future directions and ongoing challenges in 
the field, emphasizing the importance of real-time learning and adaptation, foster-
ing collaborative innovation, and the generation of synthetic data for both academic 
and industrial applications within FL frameworks. By overcoming these challenges, 
researchers and practitioners can fully realize the potential of federated foundation 
models, leading to revolutionary advancements in healthcare. These efforts will not 
only contribute to scientific progress but also to the practical, ethical, and efficient 
implementation of AI technologies in sensitive environments, ultimately benefiting 
global health outcomes.

• We provide a comprehensive review of existing literature on Federated Learning 
(FL) and Foundation Models (FM) within the biomedical and healthcare domains. 
This review meticulously categorizes and discusses various aspects such as bio-
medical and healthcare data sources, foundation models, federated privacy, and 
downstream tasks, offering a thorough synthesis of current knowledge and meth-
odologies.

• We introduce a taxonomy of biomedical healthcare foundation models, classifying 
the existing representative FMs from diverse perspectives including model archi-
tecture, training strategy, and intended application purposes. This taxonomy aids 
in the systematic understanding and comparison of different models.

• We explore the open challenges and outline future research directions for the 
integration of FL with FMs in the biomedical and healthcare sectors, providing 
insights into unresolved issues and potential advancements.

• To the best of our knowledge, this is the first survey paper to extensively cover 
foundation models in federated learning specifically tailored for biomedical and 
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healthcare applications. Our survey uniquely addresses both large-language and 
vision-language models, highlighting their relevance and transformative potential 
in this context.

How do we collect papers? In this survey, we collect over two hundred related papers 
in the field of Federated Learning, Foundation Model, and Biomedical healthcare. We 
consider Google Scholar as our main literature search engine, where the MedPub, Web 
of Science, and IEEE Xplore are also used as essential tools. Moreover, we check most 
of the related top-tier conferences, such as NeurIPS, ICML, ICLR, CVPR, and ECCV, 
and Bioinformatics. The major keywords we use are “Biomedical Federated Learning, 
Medical Pretrained Foundation Model, Healthcare Federated Pretrain Training, etc”. 
The most representative papers like Med-BERT [24], FedClip [19], and MedClip [20] are 
regarded as seed papers for reference check.

Organization The rest of this survey is organized as follows. Background  section 
describes the FM and FL literature relevant to our work. Federated learning and foun-
dation models  section details how to apply FMs with FL. The applications of FM on 
biomedical and healthcare is summarized in Foundation models in biomedical health-
care  section. The challenges and future directions of Federated FMs in the biomedi-
cal and healthcare sectors are discussed in Open challenges and opportunities in fed-
erated foundation biomedical research  section. Finally, we conclude our survey in 
Conclusions section.

Background
Background on foundation models

The latest wave of AI innovation sees the evolution of a new class of AI models often 
referred as foundation models (FMs) - a term popularized by the Stanford Institute for 
Human-Centered AI [25] which can be categorized into two model types: Large-lan-
guage Model (LLM) and Vision-language Model (VLM). For example, LLMs including 
ChatGpt and Gpt-4 [26] from OpenAI demonstrate impressive capabilities to generate 
coherent text. VLMs such as DALL· E 2 [27] shows the ability to create realistic images 
and art from a text description. These models are trained with pretraining, self-super-
vised training, and reinforcement-instructed fine-tuning with broad data at immense 
scale and high resource costs, resulting in models with billions of parameters [25]. In 
this section, we will introduce the backbone of Foundation Models in Backbone net-
works in foundation models section, where the pre-trained large-language models and 
vision-language models are discussed in Foundation on text: large language models and 
Foundation beyond text: vision language models sections, respectively.

Backbone networks in foundation models

The significant advancements in foundation models are largely due to the evolution of 
their underlying architectures, transitioning from Long Short-Term Memory networks 
(LSTM) [28] to Transformers [29]. Initially, LSTMs served as the basic architecture for 
early pre-trained models, where the recurrent structure is computationally intensive 



Page 5 of 54Li et al. BioData Mining            (2025) 18:2  

when scaled to deeper layers. In response to these limitations, the Transformer archi-
tecture was developed and quickly established itself as the standard for modern natu-
ral language processing (NLP) [30]. The superiority of Transformers over LSTMs can be 
attributed to two key factors: (1) Efficiency: Transformers eliminate recurrence, enabling 
parallel computation of tokens.(2) Effectiveness: The attention mechanism facilitates 
dynamic spatial interactions between tokens, contingent on the input itself. This section 
provides a brief overview of the evolution of backbone networks in foundation models, 
highlighting the transition from LSTMs to Transformers, followed by vision language 
model backbones from Convolutional neural networks (CNNs) [31] to Vision Trans-
formers (ViTs) [32].

Backbone Networks in Texts. Transformer has become the backbone of most pre-
trained language models, such as BERT [33], GPT[1], and T5[34], building upon 
self-attention module and feed-forward networks (FFNs). The self-attention module 
facilitates token interaction, while FFN refines token representations using non-linear 
transformations. The Transformer architecture is designed to process tokens efficiently 
in parallel, thanks to the elimination of recurrent units and the use of position embed-
dings. Additionally, the architecture includes residual connections, layer normalization, 
and other features that prevent saturation issues and enhance expressive power with 
large-scale data and deep layers. The input is linearly transformed into query, key, value 
(Q, K, V), and output spaces in the self-attention module: the attention scores between 
the query and key is computed, which are then used to weight the values. The FFN mod-
ule processes the weighted values to generate the output. The Transformer architecture 
has proven to be superior in terms of capacity and scalability, enabling the develop-
ment of increasingly sophisticated language models. Considering an input Xm the linear 
transformation of X into Q, K, V is computed as follows:

where the self-attention module is calculated with a softmax function as follows:

To this end, the FFN provides the non-linear features for the transformer architec-
ture. Besides the self-attention and FFN modules, the transformer architecture also 
includes residual connections [35], layer normalization [36], and positional encoding 
[37] to enhance the model’s performance. The transformer architecture has been widely 
adopted in various pre-trained language models, such as BERT, GPT, and T5, and has 
been instrumental in advancing the field of natural language processing (NLP).

Backbone Networks in Images. Convolutional Neural Networks (CNNs) [31] have long 
been the foundation for many vision-related tasks, characterized by their distinctive 
architecture comprising convolutional, pooling, activation, and fully connected layers. 
These layers work in unison where convolutional layers act as trainable filters identifying 
image patterns like edges and textures, pooling layers reduce data dimensionality, activa-
tion layers introduce non-linearity, and fully connected layers synthesize these features 

(1)Q = XWQ
,K = XWK

,V = XWV
,

(2)Attention(Q,K ,V ) = softmax(
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into predictions. This architecture has been not only pivotal in vision applications but 
also adapted for language understanding tasks.

As the field evolves, there has been a notable shift towards incorporating Transformer 
architectures into vision tasks. This integration is exemplified by the development of 
Vision Transformers (ViT) [32], which apply the Transformer’s self-attention mecha-
nisms to image patches for feature extraction, representing a significant evolution from 
traditional CNN approaches. This concept has similarly impacted computational biol-
ogy, as seen in models like AlphaFold2 [38], which leverages Transformer technology for 
protein structure prediction. These adaptations underscore the versatility and robust-
ness of Transformer models across different scientific domains.

Foundation on text: large language models

In the field of Natural Language Processing (NLP), the evolution of methods to build 
token representations has been marked by significant advancements. Initially, typical 
approaches such as those proposed by [39, 40] focused on creating ’static word embed-
dings,’ where a one-to-one mapping between words and their vector representations is 
established. These embeddings are termed ’static’ because they do not account for the 
context in which a word is used, thus limiting their ability to reflect the diverse meanings 
words can have in different settings.

Recognizing the limitations of static embeddings, there has been a shift towards 
developing ’contextualized word embeddings.’ These representations are dynamic, with 
the vector for a word varying according to its contextual usage. For instance, the word 
’bank’ would have different embeddings in ’river bank’ compared to ’money bank.’ This 
approach, exemplified by models like ELMo [41], GPT [42], and BERT [33], signifi-
cantly enhances the quality of word representations by modeling bi-directional contexts, 
thereby improving performance across various NLP tasks.

Historically, neural language models [43, 44] served as foundational frameworks in 
NLP, utilizing relatively shallow neural architectures for efficient training. These mod-
els were primarily pre-trained on tasks like unidirectional language modeling, which 
involves predicting the next word based on previous words. However, subsequent inno-
vations such as Skip-Gram [39] aimed to enrich word embeddings by predicting sur-
rounding words or using bidirectional context, respectively. GloVe [40] extended this by 
focusing on word co-occurrence probabilities.

The advent of deep learning brought about more sophisticated approaches for learn-
ing word representations. ELMo [41] introduced a bidirectional language modeling task, 
utilizing both forward and backward context in its pre-training. GPT [42] continued 
with unidirectional modeling, while BERT [33] innovated with the Masked Language 
Model. This method involves masking words in a sentence and predicting them based 
on the remaining unmasked context, allowing for deeper bidirectional context modeling.

Further developments like the T5 model [34] introduced an encoder-decoder 
framework for generating text outputs, proving particularly effective in text genera-
tion tasks such as summarization and question-answering. These advancements have 
been integral to the development of versatile language models like OpenAI’s GPT-3, 
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InstructGPT, Codex, and ChatGPT, which not only generate text but also engage in 
conversational exchanges, admit errors, and handle complex user interactions.

Representative Large Language Models Large Language Models (LLMs) have become 
pivotal in the evolution of natural language understanding and generation. The progres-
sion of the GPT series, from GPT-1 [42] to GPT-3 [45], and the subsequent release of 
GPT-4 [26], illustrates a remarkable expansion in model size and versatility. These mod-
els have profoundly impacted AI research and applications, heralding a new era of com-
putational linguistics. Concurrently, BERT [33] revolutionized pre-training approaches 
by emphasizing bidirectional training, which significantly enhances language under-
standing capabilities. PaLM [46], another notable advancement, has achieved state-of-
the-art results across diverse language tasks, highlighting the potential for scalability 
in LLMs. Recent innovations also include Bard [47], which integrates extensive world 
knowledge into a context-aware framework, and LLaMa [2], which prioritizes efficiency 
and practical applicability in language model design. Collectively, these models mark 
crucial developments in the field, each contributing distinctively to the enrichment and 
complexity of machine learning techniques that underpin contemporary AI systems.

Foundation beyond text: vision language models

Deep neural networks have exhibited remarkable success across a variety of vision 
tasks, such as image classification, object detection, and instance segmentation, 
largely attributable to the effectiveness of pre-training. Initially, pre-training in the 
vision domain involved training models on extensive annotated image datasets like 
ImageNet [48]. However, to address issues such as generalization errors and spu-
rious correlations inherent in supervised learning, various self-supervised learning 
methods have been developed.

A significant area of advancement in AI research is the integration of vision and 
language models, which aims to develop systems capable of understanding and 
generating content that spans visual and textual modalities. The introduction of 
the Vision Transformer (ViT) [49] marked a pivotal shift by applying the trans-
former architecture-originally designed for natural language processing-directly to 
sequences of image patches. This approach fundamentally changed the paradigm 
of how models process visual information. Building on this, CLIP (Contrastive 
Language-Image Pre-training) [50] advanced the field by learning visual concepts 
through natural language supervision, enabling the model to adeptly handle various 
vision tasks with minimal task-specific training. Further extending these innova-
tions, Stable Diffusion [51] ventured into generative art, providing tools to create 
intricate images from textual descriptions. The most recent breakthrough, Segment 
Anything [52], tackles image segmentation using deep learning to precisely iden-
tify and delineate multiple objects within images in ways that are contextually rel-
evant. Collectively, these developments not only bridge the gap between visual data 
and language processing but also set the stage for more intuitive and interactive AI 
systems.
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Challenges of foundation models

The paradigm of foundation models (FMs) represents a significant shift from traditional 
task-specific models that have long dominated the AI landscape. These pre-trained models 
are designed for adaptation to a variety of tasks they were not originally trained for [53]. 
Adaptation techniques include user or engineer prompts, continual learning, and fine-
tuning-methods that expand their application to fields where data scarcity impedes the 
development of specialized algorithms. This flexibility introduces exciting possibilities for 
scalable, reusable AI models across diverse domains, including transformative potential in 
healthcare [54]. However, this shift also presents unique challenges, including the risk of 
over-generalization, the difficulty in fine-tuning for highly specialized tasks, and the ethi-
cal implications of deploying such versatile technologies in sensitive areas. These challenges 
necessitate rigorous validation, careful implementation, and ongoing monitoring to ensure 
that the deployment of foundation models aligns with ethical standards and practical 
requirements.

Over‑trusting High Performance & Output Coherence: Ensuring Safe & Reliable 
Use Despite the high accuracy and broad capabilities of larger models, it’s critical to 
address ethical and legal standards to ensure their use remains safe, fair, and privacy-
conscious [53]. In healthcare, the necessity for accurate and reliable data for clinical 
decision-making cannot be overstated. However, verifying the correctness of outputs 
from FMs poses a challenge, as demonstrated by systems like ChatGPT, whose outputs 
can mimic human-like text, potentially leading to automation bias and misuse [55]. The 
complexity of these models often precludes a full understanding of their mechanisms, 
necessitating cautious deployment decisions, especially in sensitive fields like healthcare. 
This includes designing interfaces that clearly articulate the limitations and probabilistic 
nature of AI outputs and developing robust validation processes to ensure safety and 
fairness.

Building AI in a Vacuum: Decontextualized & Centralized AI development frequently 
takes place in isolation, focused on technological accuracy before considering real-world 
user needs [56]. This ’development in a vacuum’ has drawn increasing scrutiny for failing 
to address the actual conditions and requirements of end-users [57]. Foundation models, 
in particular, suffer from this issue as they require significant adaptation to be truly effec-
tive outside of initial testing environments. A greater emphasis on ethnographic studies 
could provide deeper insights into the practical applications and challenges of AI within 
operational settings. Moreover, integrating AI technology into everyday use demands an 
understanding of specific user contexts, necessitating strategies for risk mitigation and 
a move towards more user-centered research directions. Validating the utility of AI in 
real-world settings and ensuring their integration into clinical practice remain a formi-
dable challenge, but one that the human-computer interaction (HCI) community is well-
equipped to tackle by bridging the ’last mile’ of AI in healthcare [58].
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Background of federated learning in foundation models

Background of conventional federated learning and frameworks

Federated Learning (FL) is a machine learning paradigm where multiple clients, such as 
mobile devices or entire organizations, collaboratively train a model under the orches-
tration of a central server, such as a service provider, while keeping the training data 
decentralized. This method not only adheres to the principles of focused collection and 
data minimization but also addresses many systemic privacy risks and costs associated 
with traditional centralized machine learning approaches. The concept of FL, first intro-
duced by McMahan et  al. in 2016 [13], has grown significantly in interest from both 
theoretical and practical perspectives. This approach is defined by challenges including 
unbalanced and non-IID data across numerous unreliable devices, limited communi-
cation bandwidth, and the complexities of model training and implementation across 
diverse and distributed environments.

Since its inception, the focus of federated learning has expanded beyond mobile and 
edge devices to include applications involving a small number of more reliable entities, 
such as multiple organizations collaborating to train a model. This has led to distin-
guishing between “cross-device” and “cross-silo” federated learning, each with unique 
challenges and requirements. In this survey, we delve into the specifics of cross-device 
federated learning, highlighting its practical aspects, challenges, and its potential to train 
and implement foundation models (FMs) in a distributed fashion.

Groundbreaking works of FL including McMahan et  al. [13] laid the foundational 
framework for FL systems. Research in FL has since advanced, focusing on enhancing 
data privacy in applications such as medical image segmentation [59] and addressing 
ongoing challenges related to communication efficiency, scalability, and model robust-
ness [60, 61]. Notable developments in FL include SCAFFOLD [62] and FedProx [61], 
which tackle issues such as client update variance and client drift in non-IID data envi-
ronments. Further contributions from FedGSam [63], FedLGA [14], and LoMar [64] 
have advanced FL by developing generalized strategies and adaptive algorithms that 
enhance learning processes in federated settings.

Moreover, the development of open-source FL frameworks such as TsingTao [65], 
Flower [66], FedML [67], FATE [68], and FederatedScope [69] has significantly advanced 
the accessibility and standardization of FL practices. Designing specialized FL systems 
and benchmarks is imperative to meet the unique needs and challenges of foundation 
models (FM). Although current FL frameworks have made significant strides in both 
academic and industrial settings [66–71], they may not fully satisfy the specific require-
ments for optimizing memory, communication, and computational demands associated 
with FMs. Platforms like FedML [67] and FATE [68] are adapted to better support FMs, 
but extensive research is still needed to thoroughly explore system requirements and 
integration strategies for these models.

Motivations of federated learning for foundation models

Scarcity of Compliant Large‑Scale Data The shortage of large-scale, high-quality, 
legally compliant data has become a critical driver for the adoption of federated learning 
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in the context of foundation models. This scarcity is particularly acute in sectors such as 
technology and social media, where data compliance and privacy issues are increasingly 
foregrounded [72–74].

High Computational Resource Demand Training large-scale foundation models 
demands significant computational resources. For instance, training LLaMa with 65 bil-
lion parameters required 2048 NVIDIA A100 GPUs over 21 days [2], while the smaller 
1.3 billion parameter GPT-3 model needed 64 Tesla V100 GPUs for a week [45]. The 
development of GPT-4 also highlighted these intensive demands, utilizing substantial 
resources over several months at considerable financial costs [26]. Federated learning 
can help alleviate these demands by distributing computational tasks across multiple 
devices, thereby optimizing resource utilization.

Continuous Model Updating Challenges As data continually evolves, particularly from 
sources like IoT sensors and edge devices, keeping foundation models updated becomes 
a significant challenge [75, 76]. Federated learning offers a dynamic solution by ena-
bling ongoing, incremental updates to FMs with new data, which allows these models to 
adapt to emerging data landscapes without the need to reinitiate training processes. This 
approach not only enhances the models’ accuracy and relevance but also ensures their 
adaptability to real-world changes [77].

Reducing Response Delays and Enhancing FM Services One of the foremost benefits 
of applying federated learning to foundation models is the potential to deliver nearly 
instant responses, thus significantly improving user experience. Traditional central 
server deployments often face latency and privacy issues due to the required network 
communications between users and servers [78]. Federated learning addresses these 
concerns by enabling models to operate directly on local devices, minimizing network 
dependencies, reducing latency, and improving privacy protections. This approach not 
only enhances response times but also ensures a seamless, privacy-conscious interac-
tion, maintaining user trust and satisfaction in the services provided by foundation 
models.

Motivations of foundation models for federated learning

Foundation Models can significantly contribute to enhancing the efficacy of Federated 
Learning. This section explores the motivations behind leveraging FM within FL, exam-
ines the challenges posed by this integration, and discusses the potential opportunities it 
offers to the field.

Data Privacy and Shortage Dilemma in FL In federated settings, clients often grapple 
with limited or imbalanced datasets, especially in federated few-shot learning contexts 
[79]. Such data scarcity can result in suboptimal model performance, as it may not fully 
capture the diversity of the data distribution [80]. Moreover, privacy concerns are inten-
sified due to the potential for sensitive information recovery from model updates in FL 
[81, 82]. These issues are particularly acute in sectors like healthcare or finance, where 
data privacy regulations or the inherent sensitivity of the data restrict availability, thus 
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complicating the training process and limiting FL’s effectiveness in these crucial areas. 
One promising solution is the use of synthetic data generated by FMs. Being extensively 
pre-trained on vast datasets and further refined through techniques such as fine-tuning 
and prompt engineering, FMs possess a deep understanding of complex data distribu-
tions, enabling them to produce synthetic data that closely mirrors real-world diversity.

Performance Dilemma in FL FL can mitigate issues related to non-IID and biased data 
by leveraging the advanced capabilities of FMs, thus enhancing performance across vari-
ous tasks and domains [83]. FMs can improve FL’s efficiency in several ways. (1). Starting 
Point Advantage: FMs provide a robust starting point for FL. Clients can begin fine-tun-
ing directly on their local data instead of starting from scratch, leading to faster conver-
gence and enhanced performance while reducing the need for extensive communication 
rounds [84, 85]. (2). Data Diversity Enhancement: FMs act as powerful generators that 
can synthesize diverse data, enriching the training dataset in FL. An example is GPT-FL 
[86], which utilizes generative models to produce synthetic data that improves down-
stream model training on servers. This approach not only boosts test accuracy but also 
enhances communication and client sampling efficiency. (3). Knowledge Distillation: 
FMs can address performance issues in FL by acting as knowledgeable teachers through 
techniques like knowledge distillation [87].

New Sharing Paradigm Empowered by FM Unlike traditional FL, which involves shar-
ing high-dimensional model parameters, FMs use a new paradigm through prompt tun-
ing. PROMPTFL [88] showcases how FM capabilities can be leveraged to efficiently 
combine global aggregation with local training on sparse data. This approach focuses 
on training prompts rather than the entire model, thereby optimizing resource use and 
enhancing performance. Building on this concept, FedPrompt [89] introduces an inno-
vative prompt tuning method specifically designed for FL, while a recent study FedTPG 
[90] explores a scalable prompt generation network that learns across multiple clients, 
aiming to generalize to unseen classes effectively.

Machine learning in biomedical and health care

Biomedical ML: data fusion

Data is the cornerstone of sense-making in artificial intelligence (AI), playing a crucial 
role in various sectors, including healthcare, where they are from diverse sources like 
care providers, insurers, and academic publications [53, 91]. They vary in form (e.g., 
clinical notes, medical images), scale (e.g., patient versus population level), and style 
(professional versus lay language), posing both opportunities and challenges for the 
application and training of AI models. Despite the proficiency of machine learning 
methods in managing and extracting insights from vast, multi-dimensional data [92], 
it is vital to address how societal biases and inequalities are embedded in the data. 
Disparities can manifest in various aspects of healthcare, such as the prioritization of 
certain medical issues and the exclusion or misrepresentation of specific population 
groups. These issues often stem from barriers like limited healthcare access, restric-
tive criteria for clinical trial participation, or the risk of inaccurate data due to doc-
umentation errors and systemic discrimination [93]. For example, in California, the 



Page 12 of 54Li et al. BioData Mining            (2025) 18:2 

mandate to verify citizenship at hospitals has reduced autism diagnosis rates among 
Hispanic children in the context of stringent federal immigration policies.

Healthcare and biomedicine are major sectors within the U.S. economy, account-
ing for about 17% of the Gross Domestic Product (GDP) [94–97]. These fields require 
substantial financial investments and extensive medical knowledge, encompassing 
everything from patient care to scientific exploration of diseases and the development 
of new therapies [54, 98]. We envision machine learning models as central reposito-
ries of medical knowledge, trained on a diverse array of data sources and modalities 
within medicine [99, 100]. These models could serve as dynamic platforms that medi-
cal professionals and researchers use to access and contribute to the latest findings, 
enhancing their ability to make informed decisions [101].

Biomedical Data Fusion In the field of biomedical research, a significant challenge lies 
in deciphering the complex interactions within and between the cellular and organismal 
levels, characterized by diverse components that exhibit emergent behaviors [102]. The 
data collected through various sensors, while rich, often provide limited insights when 
examined in isolation due to the specificity of each measurement modality [103]. Data 
fusion, the process of integrating data from multiple views, aims to provide a holistic 
view of biological phenomena by combining disparate data sources that offer unique 
perspectives on the same subject [104]. This approach is generally advantageous in sev-
eral ways, categorized into complementary, redundant, and cooperative features of the 
data [105]. These features are not mutually exclusive but interact synergistically, enhanc-
ing the robustness and accuracy of the insights gained.

Data fusion requires the use of sophisticated machine learning (ML) methods capable 
of integrating both structured and unstructured data while accommodating their varied 
statistical properties, sources of non-biological variation, high dimensionality, and dis-
tinct patterns of missing values [103, 106]. A comprehensive examination of these strat-
egies is presented in a review of multimodal deep learning approaches with potential 
advancements and methodologies in the medical field [107].

Categories Summary of Data Fusion The categories of data fusion techniques can 
be broadly summarized into three main approaches: easy fusion, intermediate fusion, 
and late fusion. Easy fusion typically involves direct modeling techniques where differ-
ent types of neural networks are used to process the input data. This includes fully con-
nected networks for a straightforward integration of features across modalities [108], 
convolutional networks that are effective in handling spatial data [109], and recurrent 
networks suited for sequential data integration [110]. Autoencoders also play a signifi-
cant role in easy fusion, with variations such as regular [111], denoising [112], stacked 
[113], and variational autoencoders [114] being employed to refine the fusion process.

Intermediate fusion, on the other hand, involves branching strategies that can be 
homogeneous, focusing on either marginal [115] or joint representations [116], or het-
erogeneous, which also targets both marginal [117] and joint data representations [118]. 
These strategies optimize the integration by selectively focusing on how data from the 
same or different modalities are fused.
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Late fusion utilizes aggregation methods to combine features at a higher level, often 
after initial independent processing. Techniques in this category include simple averag-
ing [119] and weighted averaging [120], where weights might be assigned based on the 
reliability or importance of each modality. Furthermore, meta-learning approaches are 
utilized to dynamically adjust these weights for optimal performance [121], thus enhanc-
ing the fusion’s effectiveness by incorporating learning-based adjustments. These meth-
ods ensure that the final model output maximally benefits from the diverse characteris-
tics of all data modalities involved.

FM in biomedical healthcare

Motivations Foundation models hold transformative potential for biomedical research, 
particularly in the realms of drug discovery and disease understanding, thereby enhanc-
ing healthcare solutions [122]. Biomedical discovery processes are currently character-
ized by intensive demands on human resources, lengthy experimental timelines, and 
substantial financial outlays. For example, the drug development journey includes stages 
from basic research, such as protein target identification and potent molecule discov-
ery, through clinical development involving clinical trials, to the final drug approval 
stage. This extensive process typically spans more than a decade and incurs costs often 
exceeding one billion dollars [123]. Thus, the ability to expedite biomedical discovery 
by harnessing existing data and published findings becomes crucial, especially during 
critical times like the COVID-19 outbreak, which resulted in significant loss of life and 
economic damage [124].

Foundation models contribute to biomedical advancements in two primary ways. 
Firstly, these models exhibit strong generative capabilities, as seen with coherent text 
generation in models such as GPT-3. These capabilities can be utilized for generating 
experimental protocols in clinical trials and in designing novel molecules for drug dis-
covery [125, 126]. Secondly, foundation models excel at integrating diverse data modali-
ties in medicine, facilitating the exploration of biomedical concepts across various 
scales-from molecular to patient and population levels-and integrating multiple knowl-
edge sources, including imaging, textual, and chemical data [127–132]. This integrated 
approach enables discoveries that might be challenging with single-modality data alone.

Additionally, foundation models are adept at transferring knowledge across dif-
ferent data modalities. For instance, research by Lu et  al. [133] demonstrated how a 
transformer model, initially trained on natural language, a data-rich modality, could 
be adapted for other sequence-based tasks, such as protein folding predictions, a long-
standing challenge in biomedicine. These capabilities highlight the potential applications 
of foundation models in addressing complex biomedical tasks.

Applications Foundation models (FMs) hold significant potential for revolutionizing 
healthcare applications through their adaptability and efficiency in performing spe-
cific healthcare and biomedical tasks. They have been proposed for use in a variety of 
areas including disease prediction [24], triage or discharge recommendations [98], and 
health administration tasks such as clinical notes summarization [134] and medical text 
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simplification [1]. These applications leverage the unique capabilities of FMs, such as 
fine-tuning and prompting [45], to tailor solutions to specific needs, enhancing both the 
accuracy and efficiency of medical services.

FMs are particularly effective in patient-facing roles, such as question-answering sys-
tems and clinical trial matching applications, benefiting both researchers and patients 
by simplifying access to information and streamlining patient recruitment processes 
[126, 135–137]. As central interfaces, FMs facilitate interactions among data, tasks, and 
individuals, improving the operational efficiency of healthcare services. This is further 
explored in subsequent sections focusing on specific healthcare and biomedical tasks.

Additionally, FMs serve as repositories of extensive medical knowledge, accessible by 
healthcare professionals and the public for purposes like medical question-answering 
and interactive chatbot applications. Innovations such as ChatGPT [86] and Bard [138] 
provide conversational user interfaces that assist users in navigating complex health 
information and obtaining relevant health advice.

The implementation of FMs also promises to accelerate healthcare application devel-
opment and research. These models can automate processes such as structured data-
set generation, data labeling, and synthetic data creation [139]. Looking forward, there 
is considerable scope for developing new FM-enabled capabilities, particularly through 
the use of multimodal data, a feature characteristic of the healthcare domain. Beyond 
natural language processing, breakthroughs are already evident in areas like biomedical 
research, where tools like AlphaFold [140] have made significant advances in predict-
ing human protein structures to aid drug development. Similarly, innovations in genome 
sequencing are hastening the detection of disease-causing genetic variants [141], and 
new methods are being developed for optimized clinical trial design [142]. This multi-
disciplinary integration highlights the transformative potential of FMs in enhancing and 
expanding the capabilities of the healthcare sector.

Federated learning and foundation models
Federated learning (FL) and foundation models represent two cutting-edge approaches 
in the field of machine learning. Federated learning offers a decentralized approach to 
training models across multiple nodes or devices, ensuring privacy and maintaining 
data locality. In contrast, foundation models, due to their vast size and generalized pre-
training, provide significant adaptability and scalability for a variety of tasks. Integrating 
these technologies poses unique challenges but also opens up exciting opportunities for 
innovation in AI training and application. This section explores the relationship between 
federated learning and foundation models, highlighting key research directions and 
recent advancements in this domain. Depending on the training paradigm, foundation 
models can either be trained from scratch or fine-tuned on top of pre-trained models 
within a federated learning framework. Additionally, the application of foundation mod-
els in federated learning can extend to large language models or vision language models.

Related surveys further enrich our understanding of this integration. A recent sur-
vey by Yu et  al. [83] discusses the intersection of foundation models with federated 
learning, exploring the motivations behind their integration, the challenges faced, and 
future directions for research in this domain. This survey serves as a crucial resource for 
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comprehending the current landscape and the potential of combining federated learn-
ing strategies with the robust capabilities of foundation models. Another pivotal work 
by Zhuang et  al. [143] provides an in-depth analysis of how foundational models can 
be effectively adapted and optimized within a federated learning framework, discussing 
both the technical hurdles and the potential breakthroughs. Additionally, Kairouz et al. 
[60] offers a comprehensive overview of the advancements and persistent challenges in 
federated learning, highlighting issues such as algorithm efficiency, data heterogeneity, 
and security concerns. These surveys collectively offer a rich tapestry of insights into the 
evolving field of federated learning and foundation models, emphasizing their complexi-
ties and transformative potential.

Federated learning and foundation models

The integration of pre-training techniques within federated learning (FL) setups, espe-
cially for large-scale models, is increasingly viewed as essential for boosting model 
performance and broadening their applicability. Extensive research underscores the 
importance of pre-training in preparing large models to face the unique challenges pre-
sented by the decentralized nature of federated datasets. Chen et al. highlight the vital 
role of pre-training in readying large models for these challenges, emphasizing its neces-
sity for effective performance within federated learning frameworks [84]. In a similar 
vein, Nguyen et al. investigate how the initial conditions of model training, such as the 
starting points of pre-training and model initialization, critically influence the effective-
ness and convergence of FL models [144]. These studies stress the importance of meticu-
lous pre-training phases to ensure that large models are fully equipped to navigate the 
complexities of federated learning, thereby maximizing their performance and utility 
in diverse applications. The application of federated learning to foundation models not 
only addresses these preparatory needs but also leverages the inherent strengths of both 
paradigms to offer several key advantages: (1). Efficient Distributed Learning: Federated 
learning enables models to learn from data distributed across multiple devices or serv-
ers without needing to centralize the data, thus preserving privacy and reducing data 
movement costs. (2). Parameter-efficient Training: By utilizing techniques such as model 
compression and prompt tuning within a federated framework, the training process 
becomes more parameter-efficient. This is particularly beneficial in environments where 
computational resources are limited. (3). Prompt Tuning: This method involves fine-tun-
ing a model on a specific task by adjusting a small set of parameters, and when com-
bined with federated learning, it allows for personalized model tuning on decentralized 
data. (4). Model Compression: Techniques like quantization and pruning that reduce the 
model size can be effectively applied in federated settings, enhancing the feasibility of 
deploying large models on edge devices with limited storage and processing capabilities.

Efficient Distributed Learning Algorithms Efficient distributed learning algorithms are 
critical for optimizing foundation models within the constraints of limited resources 
[89, 145]. These algorithms are specifically engineered to address the twin challenges of 
enhancing communication and computation efficiency during the training and deploy-
ment of large FMs across a network of devices, which may vary in capabilities and 
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network conditions. Two pivotal techniques in this regard are model parallelism and 
pipeline parallelism.

Model parallelism [146] involves dividing the model into different segments and dis-
tributing these segments across multiple devices. This allows for simultaneous process-
ing and can significantly expedite the computation process by leveraging the combined 
power of multiple devices. On the other hand, pipeline parallelism [147] focuses on 
enhancing the overall system’s efficiency and scalability by organizing the computation 
process in stages. Each stage can be processed on different devices in a pipeline manner, 
thus optimizing the workflow and reducing idle times.

An illustrative example of these parallelism strategies in federated learning (FL) for 
FMs is demonstrated in Fig. 1, where participants train distinct layers of a model using 
their own private, local data. Note that Fig.  1a is the illustration of model parallelism 
and Fig. 1b demonstrates the pipeline parallelism. This approach not only maintains the 
privacy of the data but also contributes to the efficiency of the learning process. Recent 
studies, such as the research conducted by Yuan et  al., validate the practicality of uti-
lizing pipeline parallelism for decentralized FM training across heterogeneous devices 
[148].

Parameter‑efficient Training Methods Parameter-efficient training methods are 
increasingly critical in optimizing foundation models for specific domains or tasks. 
These methods typically involve integrating adapters-a technique where the core 
parameters of the FM are frozen, and only a small, task-specific section of the model 
is fine-tuned. This approach is illustrated in Fig. 1c, which shows how adapters can be 
effectively incorporated into the federated learning framework for FMs. Recent imple-
mentations such as FedCLIP [50] and FFM [83] utilize this method to fine-tune FMs, 
achieving substantial performance improvements.

By focusing adjustments on small adapters rather than the entire model, these train-
ing methods greatly reduce the computational and communication demands typically 
required [149, 150]. This is particularly beneficial in FL environments where conserving 
bandwidth and processing power is crucial due to the distributed nature of the data and 

Fig. 1 Efficient distributed learning and parameter efficient strategies for foundation models in federated 
learning
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the varying capacities of participating devices. However, despite these efficiencies, the 
underlying requirement for substantial computational resources to manage the FM and 
execute the fine-tuning process remains significant.

Prompt Tuning Prompt tuning has rapidly gained traction as a communication-effi-
cient alternative to full model tuning, demonstrating effectiveness comparable to more 
resource-intensive methods [151]. This technique involves fine-tuning lightweight, addi-
tional tokens while keeping the foundational model’s main parameters frozen, which 
avoids the necessity of sharing large model parameters across the network. In federated 
learning scenarios, this approach enables leveraging the collective knowledge from mul-
tiple participants to refine the prompts used in FM training, potentially enhancing the 
performance of the FM.

The integration of prompt tuning in FL, similar to the parameter efficient approach 
depicted in Fig.  1c, has been explored in recent research. Studies such as FedPrompt 
[152] and PROMPTFL [88] have shown promising results by improving the quality and 
effectiveness of prompt-based training methods through FL frameworks. These methods 
enable efficient and targeted tuning of model behaviors without requiring extensive data 
transfer or the deployment of large-scale models on each participant’s device, thereby 
conserving bandwidth and computational resources.

Moreover, a recent study, FedTPG [90], investigates a scalable prompt generation 
network that learns across multiple clients, aiming to generalize effectively to unseen 
classes. This approach demonstrates the potential of FL to enhance the sophistication of 
prompt tuning methodologies by distributing the learning process across a wide array of 
devices and data sources.

However, the implementation of prompt tuning in FL is not without challenges. Con-
cerns include the assumptions that large FMs are readily available on user devices, which 
may not always be feasible in resource-constrained environments. Additionally, there are 
potential privacy risks associated with utilizing cloud-based FM APIs, which could com-
promise the security of sensitive data.

Model Compression Model compression has emerged as a vital strategy to mitigate the 
substantial memory, communication, and computational demands of large foundation 
models. By minimizing the size of these models, model compression enables more prac-
tical deployments within federated learning frameworks without significantly compro-
mising performance. Prominent compression techniques include knowledge distillation, 
where a smaller model is trained to emulate the performance of a larger one [153], and 
quantization, which reduces the numerical precision of model parameters to decrease 
both size and computational complexity [154]. Additionally, pruning eliminates super-
fluous or redundant model parameters, significantly lowering the resource requirements 
of the model [155].

Implementing these compression techniques effectively requires striking a balance 
between reducing model size and preserving essential capabilities. This balance ensures 
that the compressed model performs robustly in real-world applications, maintaining 
the functionality of the foundation model while reducing operational demands. There-
fore, research and development in model compression focus not only on shrinking 
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model dimensions but also on enhancing efficiency and intelligence, tailored for spe-
cific deployment scenarios. [156] introduces ResFed, a framework that leverages model 
compression in federated learning to significantly cut down on bandwidth and storage 
needs while maintaining high model accuracy. [153] presents the concept of knowledge 
distillation, which allows a compact “student” model to learn effectively from a larger 
“teacher” model, thus enabling the student to achieve similar performance with much 
lower computational costs. [154] explores quantization techniques for training neural 
networks that perform inference using only integer arithmetic, substantially lighten-
ing model load without sacrificing accuracy. [155] provides a thorough review of neural 
network pruning techniques, showing their potential to significantly reduce model size 
while maintaining or improving performance. [61] discusses the integration of model 
compression into federated learning, tackling challenges related to efficiency and scal-
ability in privacy-preserving, decentralized machine learning.

FL on large language models and vision language models

In this section, we delve into the integration of federated learning with foundation mod-
els on the two main model applications: large language models and vision language 
models, exploring the unique challenges and opportunities presented by these advanced 
AI systems.

FL on large language models

Federated learning applied to large language models (LLMs) represents a transforma-
tive approach to harnessing decentralized datasets for model training, while prioritizing 
data privacy and security [21, 157]. This method is especially crucial for LLMs because 
of their inherent requirement for vast and varied data inputs to accurately capture and 
interpret the complexities of human language.

This nature of FL effectively addresses privacy concerns by ensuring that sensitive 
or proprietary data does not leave its original location, thereby reducing the risk of 
data breaches. Additionally, this decentralized approach allows LLMs to learn from a 
wider array of linguistic inputs, reflecting regional dialects, colloquialisms, and cultural 
nuances that might not be present in a centralized dataset [158].

Moreover, the application of FL to LLMs facilitates the development of models that are 
not only linguistically comprehensive but also more personalized and responsive to local 
contexts. By training on diverse datasets that are geographically dispersed, LLMs can 
develop a deeper understanding of language variations and user-specific preferences, 
leading to improved performance in tasks such as language translation, sentiment analy-
sis [159], and contextual understanding.

This method also helps in mitigating biases that are often present in centralized train-
ing datasets. Since FL involves multiple datasets that are not centrally collected, the 
resulting model is trained on a broader spectrum of data sources, which can contribute 
to more balanced and fair outputs. Thus, federated learning not only enhances the pri-
vacy and security of data used in training LLMs but also boosts the models’ ability to 
decipher and utilize the full richness of human language, making them more accurate 
and effective in real-world applications.
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Practical Applications of FL on LLMs The integration of federated learning with large 
language models is yielding groundbreaking frameworks and methodologies that signifi-
cantly enhance language model training while adhering to data privacy and security pro-
tocols. In this survey, we highlight several notable applications and advancements in this 
domain, including:

• Privacy-preserving Federated Learning and its application to natural language pro-
cessing: [157] explores privacy-preserving techniques in federated learning for 
training large language models. It particularly focuses on models such as BERT and 
GPT-3, providing insights into how federated learning can be leveraged to maintain 
privacy without sacrificing the performance of language models in NLP applications.

• FedMed: A federated learning framework for language modeling: [21] introduces 
“FedMed”, a novel federated learning framework designed specifically for enhancing 
language modeling. The framework addresses the challenge of performance degrada-
tion commonly encountered in federated settings and showcases effective strategies 
for collaborative training without compromising on model quality.

• Efficient Federated Learning with Pre-Trained Large Language Model Using Several 
Adapter Mechanisms: [160] highlights a method to enhance federated learning effi-
ciency by integrating adapter mechanisms into pre-trained large language models. 
The study emphasizes the benefits of using smaller transformer-based models to alle-
viate the extensive computational demands typically associated with training large 
models in a federated setting. The approach not only preserves data privacy but also 
improves learning efficiency and adaptation to new tasks.

• OpenFedLLM: This contribution is a seminal effort in federated learning specifically 
designed for large language models. The “OpenFedLLM” framework facilitates the 
federated training of language models across diverse and geographically distributed 
datasets. A standout feature of this framework is its capability to ensure data privacy 
during collaborative model training. It also incorporates federated value alignment, 
a novel approach that promotes the alignment of model outputs with human ethi-
cal standards, ensuring that the trained models adhere to desirable ethical behaviors 
[161]. Moreover, OpenFedLLM is open-source1 , making it accessible to the broader 
research community and fostering collaboration in the development of federated lan-
guage models.

• Pretrained Models for Multilingual Federated Learning: This study addresses the 
complex challenges of utilizing pretrained language models within a federated learn-
ing context across multiple languages. Weller et al.’s work is crucial for understand-
ing how multilingualism impacts federated learning algorithms, particularly explor-
ing the effects of non-IID (independently and identically distributed) data inherent in 
natural language processing tasks across different languages. The research explores 
three main tasks: language modeling, machine translation, and text classification, 
providing valuable insights into the adaptability of federated learning to diverse lin-
guistic datasets [162].

1 https://github.com/rui-ye/OpenFedLLM
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• GPT-fl: This innovative approach integrates federated learning with prompt-based 
techniques to train large language models. “GPT-fl” employs prompt learning within 
a federated framework, which allows for efficient learning from decentralized data 
sources while maintaining data privacy. This method enhances model adaptability 
and performance across various linguistic tasks, making it a promising solution for 
applications requiring high levels of customization and responsiveness to user-spe-
cific contexts [86].

In summary, LLMs in FL focus on balancing privacy preservation with maintaining high 
performance in NLP applications. Models like Privacy-preserving Federated Learning, 
e.g., FedMed, explore strategies to mitigate performance degradation in federated set-
tings and enhance training efficiency using techniques such as adapter mechanisms. 
These approaches are particularly adept at managing the significant computational over-
head associated with LLMs while ensuring that sensitive data remains secure within 
its local environment in FL. OpenFedLLM introduces an open-source framework that 
emphasizes ethical alignment in model outputs, advocating for responsible AI practices 
that adhere to human ethical standards, which can be crucial as it addresses the grow-
ing concern over AI alignment with societal values. Meanwhile, research on Pretrained 
Models for Multilingual Federated Learning tackles the challenges of multilingual-
ism and non-IID data in federated learning, offering insights into effectively managing 
diverse linguistic data and enhancing the robustness of language models across different 
languages. GPT-fl combines prompt-based techniques within a federated framework, 
improving model adaptability and customization across linguistic tasks, which allows 
for personalized and contextually relevant responses that are essential in dynamic real-
world applications.

FL on vision language models

The integration of federated learning with vision language models (VLMs) marks a sig-
nificant advancement in multimodal learning where both visual and textual data are 
processed in a privacy-preserving, distributed learning environment. These models are 
crucial for tasks that necessitate a deep understanding and generation of information 
from visual cues and textual descriptions. Federated learning enhances the capability of 
VLMs by enabling them to learn from a diverse set of decentralized data sources, includ-
ing images and associated annotations from various geographic and demographic distri-
butions without the need to centralize sensitive data.

VLMs integrated with FL are particularly beneficial in scenarios where data privacy 
is paramount, such as in healthcare for patient image data or in surveillance where 
personal data protection is critical. By processing data locally and only sharing model 
updates, FL preserves the privacy and security of the underlying data, while still benefit-
ing from the diverse data attributes necessary for robust model training.

This approach also allows for the training of more personalized and region-specific 
models, capturing a wide array of cultural and contextual nuances in visual-textual 
datasets. For example, a VLM trained via federated learning can better understand and 
generate language descriptions for regional landmarks or culturally specific events, 
enhancing its applicability across different global contexts.
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Moreover, the decentralized nature of FL helps in mitigating dataset bias, a common 
issue in centralized training datasets. Since the training data in FL comes from a wide 
range of sources, the models are less likely to overfit to the biases present in a single 
dataset, leading to more generalizable and fair VLMs.

This section underscores the crucial role of prompt learning in expanding the capabili-
ties of both language and vision models trained in federated environments. By facilitat-
ing efficient task adaptation and maintaining data privacy, prompt learning represents 
a significant step forward in the development of AI systems that can operate across 
diverse and distributed data landscapes.

Practical Applications of FL on VLMs  

• FedCLIP: Pioneering the field of federated vision-language models, FedCLIP [19] 
adapts the powerful CLIP (Contrastive Language-Image Pre-training) architecture 
[50] to operate in a federated setting. Unlike traditional learning models that central-
ize data, FedCLIP enables collaborative learning across decentralized image datasets 
with accompanying text descriptions. Crucially, this approach safeguards data pri-
vacy by eliminating the need for sensitive user data to leave local devices.

• PromptFL: [88] demonstrates the power of combining federated learning with 
prompt learning techniques for training models on distributed visual and textual 
data. Prompt learning injects flexibility into model training. In PromptFL, federated 
learning preserves privacy while prompt learning improves training effectiveness and 
efficiency across diverse datasets.

• FedPrompt: Communication-Efficient and Privacy-Preserving Prompt Tuning in 
Federated Learning [152] addresses two critical aspects of federated learning for 
vision-language models: efficiency and privacy. Prompt tuning offers adaptability but 
can be communication-intensive. FedPrompt explores methods to reduce communi-
cation overhead while still reaping the benefits of prompt tuning, all while ensuring 
that sensitive data remains protected.

• pFedPrompt: [163] addresses personalization challenges in federated vision-language 
models. “Personalized Prompt for Vision-Language Models in Federated Learning” 
investigates how to learn personalized prompts. These prompts are tailored to indi-
vidual clients or datasets within the federated system. The aim is to unlock perfor-
mance gains by having the model adapt its behavior for specific local data distribu-
tions.

• FedTPG: (Text-driven Prompt Generation for Vision-Language Models in Federated 
Learning) [90] aims to enhance prompt generation techniques in a federated context. 
It introduces the idea of learning a prompt generator network which can produce 
context-aware prompts that guide vision-language models to tackle a variety of tasks. 
This has potential benefits for scenarios where a model must adapt to new classes or 
data it hasn’t encountered previously, aligning well with the distributed nature of fed-
erated learning.

• FedMM: In computational pathology, fusing information from multiple modali-
ties can significantly improve diagnostic accuracy. However, centralized training 
approaches raise privacy concerns due to the sensitive nature of medical images. 
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FedMM introduces a federated framework designed specifically to handle multi-
modal data in this context. The key idea of [164] is to train individual feature extrac-
tors for each modality in a federated manner. Because only these learned feature 
extractors are shared, raw image data remains protected within each institution. 
FedMM can accommodate the situation where different institutions or hospitals may 
have different sets of available modalities. It enables collaborative learning even with 
this data heterogeneity. Subsequent tasks like classification can be performed locally 
using the features extracted by the federated models.

• FedDAT: Foundation models offer impressive performance across many tasks but 
often require substantial amounts of data for finetuning. FedDAT [165] addresses 
the challenge of finetuning these models in a federated context where the goal is to 
protect data privacy. To handle heterogeneity, FedDAT leverages a Dual-Adapter 
Teacher technique to regularize how model updates are made on each client. Fur-
thermore, it employs Mutual Knowledge Distillation to facilitate efficient knowledge 
transfer across clients in the federated system.

• CLIP2FL: Real-world data is often messy, and client devices in a federated system 
might have data with different characteristics or class imbalances. CLIP2FL [166] 
tackles this by using a pre-trained CLIP model as guidance. On the client-side, CLIP 
is used for knowledge distillation to improve the local feature representations. On 
the server-side, CLIP is employed to generate features which help retrain the server’s 
classifier, mitigating the negative impact of the long-tailed data problem.

• FedAPT: [167] introduces FedAPT, a novel method for collaborative learning in fed-
erated settings where data resides on multiple clients with varying domains (e.g., 
different image styles or categories). FedAPT aims to improve model generaliza-
tion across these domains while maintaining data privacy. The key innovation lies in 
adaptive prompt tuning within the federated learning framework. Instead of directly 
sharing raw data, FedAPT trains a meta-prompt and adaptive network to personalize 
text prompts for each specific test sample. This allows the model to better adjust to 
domain-specific characteristics.

• General Commerce Intelligence: [168] discusses the development of a novel NLP-
based engine designed for commerce applications. This engine leverages federated 
learning to provide personalized services while ensuring privacy preservation across 
multiple merchants. The authors focus on creating a “glocally” (globally and locally) 
optimized system that balances global optimization needs with local data privacy 
requirements.

In summary, federated learning models for vision-language tasks have demonstrated 
significant innovation in enhancing privacy and efficiency while leveraging the synergy 
between textual and visual data. Models like FedCLIP, PromptFL, and FedPrompt focus 
on privacy and decentralization, with trade-offs in model accuracy and communication 
overhead. Personalization and adaptability are key in pFedPrompt and FedAPT, which 
aim to tailor learning to local datasets but introduce complexity in managing local and 
global optimization. FedTPG and CLIP2FL enhance adaptability to new tasks and data 
variability, although at the cost of increased computational demands. FedMM and Fed-
DAT tackle challenges in multi-modal and heterogeneous data integration, crucial for 
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applications like medical diagnostics. Lastly, General Commerce Intelligence optimizes 
federated learning for commercial applications, balancing local privacy with global opti-
mization needs.

Framework for federated foundation models in biomedical

Conceptual framework

We simulate a hierarchical multi-tier architecture for the integration of FL and FMs to 
handle biomedical challenges:

• Data Centers: Each compute node in FL hosts its private biomedical datasets, which 
is stored locally and only communicated with the server to ensure privacy.

• Model Host: Foundation Models, pretrained on large-scale, public datasets, serve as 
the backbone on the server, which can be fine-tuned with the distributed data for 
the targeted biomedical challenges. Note that the large-scale model can be trained 
or transferred with model distillation or finetuning methods like Parameter-Efficient 
Fine-Tuning [169].

• Aggregation: FL algorithms like FedAvg [13], FedProx [61] are performed to aggre-
gate updates from the nodes while addressing data heterogeneity and fairness con-
cerns.

• Feedback: Explainable metrics and evaluation pipelines will be introduced post-
aggregation to make the system robust and trustworthy.

Algorithm

In the following algorithm, we introduce the algorithm of Federated Foundation Model 
in biomedical:

Algorithm 1 Federated Foundation Model in Biomedical

Practical applications

Training foundation models within a federated learning framework presents distinct 
challenges, particularly due to the disparate nature of data sources and the varied 
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computational resources across participating devices. The overarching goal is to cul-
tivate effective and inclusive training strategies that can efficiently manage device het-
erogeneity and ensure data privacy, all while maintaining high model performance.

Training foundation models from scratch within a federated learning context is an 
ambitious endeavor that involves complex coordination and robust algorithmic strat-
egies. Unlike traditional centralized training environments, federated learning neces-
sitates handling data that remains on local devices, preventing the direct sharing of 
raw data. This scenario demands sophisticated techniques to efficiently aggregate 
learning from disparate data sources, which are often uneven in size and diversity. 
The primary challenge lies in ensuring that the model learns effectively from each 
node without requiring extensive computational resources or compromising the 
integrity and privacy of the data. To overcome these hurdles, training strategies must 
be carefully designed to optimize the learning process across the network, allowing 
for both model convergence and performance retention. Such strategies often involve 
advanced algorithms for secure multi-party computation, differential privacy, or 
decentralized optimization methods. By training foundation models from scratch in 
this way, the federated approach not only safeguards data privacy but also harnesses 
the unique insights embedded in local data distributions, leading to more robust and 
generalizable models.

Prompt learning is emerging as a pivotal approach in both natural language pro-
cessing and computer vision fields, enabling models to adapt to new tasks with mini-
mal changes to their architecture or weights. This section explores the integration of 
prompt learning with federated learning (FL) across different domains, highlighting 
recent advancements and unique applications.

Furthermore, beyond merely fostering participation, it is crucial to consider how 
profits and costs associated with deploying FMs via APIs are distributed. Ensuring 
a fair allocation of rewards and benefits is imperative to maintain trust and promote 
sustained cooperation among stakeholders. Mechanisms need to be established to 
define the distribution of profits derived from the use of FMs, guaranteeing a fair 
share of economic benefits. This equitable distribution is essential not only for foster-
ing a sense of fairness but also for encouraging continued participation and invest-
ment in the FL ecosystem for FMs.

The concept of Federated Foundation Models is at the forefront of federated learn-
ing, enabling the training of large-scale models across distributed networks. This 
methodology is particularly effective in dealing with the challenges related to syn-
chronizing and updating model parameters in environments where data quality and 
quantity are inconsistent across nodes. It ensures that learning is continuous and 
effective, even when network conditions and data availability vary significantly [83].

Additionally, the work titled “Heterogeneous Ensemble Knowledge Transfer for 
Training Large Models in Federated Learning” by Cho et al. [170] explores innovative 
techniques for transferring knowledge in federated settings. This study is crucial for 
the development of robust models capable of performing well across diverse network 
conditions. By facilitating knowledge transfer, this approach allows for the aggre-
gation of insights from different data distributions and device capabilities, which is 
essential for building comprehensive and resilient models.
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Furthermore, “No One Left Behind: Inclusive Federated Learning over Heterogene-
ous Devices” by Liu et al. [171] focuses on creating federated learning algorithms that 
integrate every participating device, regardless of its computational capabilities or the 
quality of the data it holds. This inclusivity ensures that every device contributes to 
and benefits from the collaborative learning process, thus maximizing the utilization 
of available data and enhancing the overall performance of the model. This approach is 
fundamental to achieving equity in model training and ensuring that the advantages of 
sophisticated model learning are universally accessible.

These studies provide a foundation for further research into strategies that enhance 
the combination of foundation models in federated learning frameworks, prioritizing 
inclusivity and efficiency.

Read‑world applications of federated fm in healthcare

Recently, the integration of Federated Learning with Foundation Models has begun to 
demonstrate transformative potential in real-world healthcare applications. In this part, 
we highlight specific case studies and practical examples where these technologies have 
been successfully deployed.

• Predicting Parkinson’s Disease Progression: [172] applies FL to train explainable AI 
(XAI) [173] models for predicting the progression of Parkinson’s disease. By collabo-
rating across multiple medical centers without sharing raw patient data, they devel-
oped models that maintained patient privacy while achieving high predictive accu-
racy.

• Mammography Analysis: [174] focuses on using FL for mammography analysis, ena-
bling different healthcare providers to collaboratively train deep learning models 
without centralizing sensitive patient data.

• Intensive Care Unit (ICU) Mortality Prediction: FLICU [175] framework utilizes FL 
to predict ICU mortality rates. By training models on decentralized data from multi-
ple ICUs, the study demonstrated that FL could achieve performance comparable to 
centralized models.

Foundation models in biomedical healthcare
This section is dedicated to a comprehensive exploration of the application of founda-
tion models within the biomedical healthcare domain, focusing on both language and 
vision-language models. It will delve into the benchmarks and setups employed to evalu-
ate these models, highlighting the specialized frameworks and metrics used to assess 
their performance in healthcare-specific downstream tasks in foundation models.

Biomedical foundation models

The application of foundation models has revolutionized numerous fields, particularly 
in natural language processing (NLP) and vision-language multimodal tasks. This trans-
formation is largely attributed to several pivotal factors. Firstly, extensive pre-training 
on large text corpora allows these models to develop comprehensive universal language 
representations, which significantly enhance performance on various downstream tasks 
[176]. Secondly, such pre-training provides an improved initialization for models, which 
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not only boosts generalization capabilities but also speeds up convergence on specific 
target tasks. Thirdly, this method acts as a powerful form of regularization, crucial for 
preventing overfitting, particularly when training data is scarce.

Meanwhile, Vision-language multimodal models [50, 177, 178] are emerging as a pow-
erful subset of foundation models, particularly in the field of image classification tasks in 
biomedical healthcare. These models synergistically combine the capabilities of image 
processing and language understanding to tackle complex tasks that require the inte-
gration of visual and textual data. In the healthcare sector, this ability is invaluable, as 
it enables the models to interpret medical imagery, such as scans and X-rays, alongside 
associated clinical notes or diagnostic information [179]. For example, a vision-language 
model might analyze an MRI scan while simultaneously considering a patient’s written 
medical history to provide a more accurate diagnosis. This dual capability enhances the 
model’s precision in identifying disease markers, understanding patient symptoms, and 
suggesting appropriate medical interventions. The integration of these two modalities in 
a single model not only streamlines the diagnostic process but also improves the accu-
racy of treatment recommendations, paving the way for more personalized and effec-
tive healthcare solutions. By leveraging these advanced models, medical professionals 
can gain deeper insights into patient conditions, leading to better outcomes and more 
efficient management of healthcare resources.

The training of foundation models (FMs) in the biomedical domain involves several 
crucial phases that enhance their applicability and effectiveness. Initially, unsupervised 
pretraining [5] plays a pivotal role, where models learn from large corpora without 
labeled data. This phase emphasizes the discovery of inherent structures and abstract 
relationships within the data, without the need for specific predictive tasks, making it 
invaluable for identifying complex patterns. Subsequently, self-supervised learning 
forms the backbone of foundation models, traditionally utilizing unstructured text from 
general-domain sources such as Wikipedia or web-crawled pages. Recent advancements, 
however, have steered the customization of pre-trained FMs towards specific fields to 
better meet domain-specific requirements. For instance, CodeBERT [180] is meticu-
lously trained on programming languages to proficiently comprehend and generate 
code, whereas SciBERT [58] is tailored for parsing scientific publications and biological 
sequences, addressing the unique challenges of academic and medical research. Follow-
ing this, reinforcement learning from human feedback (RLHF) [9] introduces a novel 
fine-tuning approach where models are adjusted based on rewards derived from human 
feedback rather than traditional labels. This method significantly aligns model outputs 
with human values and preferences, essential for applications demanding high engage-
ment and accuracy in user interactions. Lastly, in-context learning [181], especially 
effective in models like GPT, leverages the model’s capacity to generalize from a few 
examples. By presenting models with specific examples of the desired task at inference 
time, they dynamically adapt their responses to the context, enhancing their flexibility 
and utility without the need for additional training. This sequence of training methods 
collectively enhances the adaptability and performance of FMs, making them highly 
suitable for sophisticated tasks in the biomedical domain.

Foundation models can greatly benefit from training on expanded, domain-specific 
corpora [182]. For achieving peak performance in specialized downstream tasks, it is 
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increasingly recognized that integrating in-domain data during the training phase is 
imperative. This targeted approach not only refines the model’s understanding of com-
plex biomedical terminologies but also significantly enhances its practical applications 
in healthcare. By tailoring the training process to incorporate specific biomedical vocab-
ulary and contextual nuances, FMs can be transformed into more effective tools, offer-
ing substantial improvements in processing and understanding medical texts, which is 
vital for advancing innovations and solutions within the healthcare industry.

Biomedical healthcare ML applications and benchmarks

Applications The application of FMs in the biomedical domain is propelled by a range 
of compelling reasons, each underscoring the unique challenges and opportunities this 
field presents.

• Complexity of Sequential Biomedical Data: Biomedical information, including elec-
tronic health records and biomedical texts, often comes in the form of sequential 
tokens lacking annotations. Historically, this complexity posed significant hurdles for 
effective data modeling. However, advancements in FMs have enabled effective train-
ing on such data in a self-supervised manner, significantly expanding the possibilities 
for processing and understanding biomedical information using these sophisticated 
models.

• Scarcity of Annotated Data: In the biomedical field, annotated data is typically scarce 
and expensive to produce, often leading to “zero-shot” or “few-shot” learning scenar-
ios. Recent developments in language models, notably GPT-3 [45], have showcased 
remarkable capabilities in few-shot and even zero-shot learning. This evolution 
means that a well-trained FM can act as a powerful feature extractor in the biomedi-
cal domain, reducing the dependency on large volumes of annotated data and easing 
the barriers to entry for complex biomedical analysis.

• Knowledge Intensity: The biomedical sector is densely packed with specialized knowl-
edge, much more so than general domains, often necessitating expert-level under-
standing. FMs serve as an accessible, soft knowledge base [183], which can assimi-
late and replicate expert knowledge from vast biomedical texts without direct human 
annotation. For example, GPT-3 has shown an impressive ability to recall and apply 
extensive, intricate common knowledge in practical applications [45], demonstrating 
its utility as a tool for knowledge dissemination and decision support in healthcare.

• Diversity of Biological Data: The scope of biomedical data extends beyond textual 
information to include diverse biological sequences, such as proteins and DNA. The 
application of FMs to these types of data has been notably successful, particularly in 
tasks like protein structure prediction. This success underlines the potential of FM to 
tackle a broader array of biological challenges, suggesting a promising future where 
FMs contribute substantially to critical tasks in genomics, proteomics, and other 
areas of biological research.

• Speed of Knowledge Synthesis [184]: The rapid pace at which biomedical knowl-
edge evolves makes it challenging to keep up with the latest research and clini-
cal practices manually. FMs, trained on the latest corpus of literature and clinical 
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guidelines, can quickly synthesize new information, making them invaluable tools 
for healthcare professionals who need to stay informed about the latest develop-
ments in real-time.

• Enhanced Predictive Analytics [185]: FMs have the potential to revolutionize predic-
tive analytics in healthcare by integrating diverse data types-from patient records to 
research articles-to predict disease outbreaks, patient outcomes, and treatment effi-
cacy. This capability can lead to more personalized medicine, where treatments are 
tailored to individual patients based on predictions made by these models.

• Automated Reasoning and Decision Support: FMs can be employed to automate rea-
soning processes and support decision-making in clinical environments. By process-
ing and analyzing large volumes of medical data, these models can suggest diagnostic 
options, propose treatment plans, and even predict possible complications, thereby 
assisting medical professionals in making better-informed decisions.

• Reduction in Diagnostic Errors [186]: By providing comprehensive, data-driven 
insights, FMs can help reduce diagnostic errors, one of the significant challenges 
in healthcare. Their ability to learn from vast datasets and identify patterns that 
may be overlooked by human experts can contribute to more accurate diagnoses 
and, consequently, more effective treatments.

These factors collectively motivate the integration of foundation model into biomedi-
cal research and healthcare operations, indicating a robust pathway for leveraging AI 
to manage and utilize complex biomedical data more effectively.
Benchmarks The application of pre-trained FMs in the biomedical field exploits a 
diverse array of unstructured data sources, including electronic health records, scien-
tific publications, social media texts, biomedical image-text pairs, and various biologi-
cal sequences such as proteins. For a comprehensive review of mining electronic health 
records (EHR), please refer to the previous survey [187]. Discussions on the integration 
of health records and social media texts are explored in [188], while a systematic over-
view of biomedical textual corpora is presented in [189].

Key Benchmarks in Biomedical Research:

• Electronic Health Records (EHR): EHRs encapsulate a comprehensive digital record of 
patient information, including demographics, medical history, medications, labora-
tory test results, and billing details. They are pivotal for longitudinal studies, allowing 
researchers to track patient outcomes over time and identify patterns and predictors 
of diseases. The vast amount of data contained within EHRs makes them invaluable 
for training FMs to recognize and predict medical conditions accurately, although 
access is tightly regulated to protect patient privacy [190, 191].

• MIMIC-III (Medical Information Mart for Intensive Care III): This critical care 
database contains detailed information from over 58,976 ICU admissions, includ-
ing 2,083,180 vital signs, medications, laboratory measurements, observations, 
and notes. This richness makes MIMIC-III ideal for developing models that pre-
dict patient outcomes, tailor treatments, and conduct epidemiological studies in 
critical care settings [192].
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• CPRD (Clinical Practice Research Datalink): A comprehensive dataset that pro-
vides a complete medical record from GP practices in the UK. It includes diagno-
ses, prescriptions, and clinical events, making it highly suitable for observational 
studies and clinical trials. The linkage to secondary care data enhances its utility in 
comprehensive healthcare research [193].

• Reddit and Tweets: These datasets are increasingly used for public health monitor-
ing and sentiment analysis. Reddit’s COMETA corpus and Twitter’s COVID-twit-
ter-BERT provide real-time data on public health trends, misinformation patterns, 
and community response to health crises, which are crucial for understanding 
public health behavior and improving communication strategies [194, 195].

• MIMIC-CXR: This dataset of chest x-rays and accompanying radiological reports 
is crucial for developing automated diagnostic tools that assist radiologists in 
detecting and diagnosing pathologies from imaging studies. The textual descrip-
tions help train models to correlate visual signs with diagnostic language [196].

• DNA Dataset: This genomic dataset facilitates the training of models on genetic 
sequences to predict gene functions, understand genetic variations, and assist in 
personalized medicine strategies. It is essential for advancing genomics research 
and integrating genetic information with clinical data [197].

• FMRI datasets: These datasets comprise data from functional magnetic resonance 
imaging (fMRI) studies, which are invaluable in providing detailed insights into 
brain activity. Utilized extensively in neuroscience, fMRI data helps researchers 
understand brain functions, diagnose neurological disorders, and predict out-
comes of therapeutic interventions. Notable datasets like the Philadelphia Neu-
rodevelopmental Cohort (PNC) [198], Autism Brain Imaging Data Exchange 
(ABIDE) [199], and UK Biobank [200] include both functional and structural brain 
imaging data. These resources are critical for advancing our understanding of the 
brain, enhancing the accuracy of neurological diagnoses, and improving the effi-
cacy of treatments by enabling a deeper analysis of the brain’s response to various 
stimuli and conditions.

• The Human Protein Atlas: Contains high-resolution images detailing the spatial 
distribution of proteins in human tissues and cells [201]. This atlas is used for bio-
informatics studies that integrate protein expression with gene expression data to 
elucidate cellular functions and disease mechanisms.

• GEUVADIS RNA sequencing dataset [202]: Provides RNA sequencing data from 
multiple populations, which is crucial for understanding how genetic variation 
affects gene expression across different human populations. This dataset is instru-
mental in studying population genetics, evolutionary biology, and disease suscep-
tibility.

• ImageCLEFmed [203]: A benchmark dataset for multimodal biomedical informa-
tion retrieval that includes medical images, captions, and text descriptions. It sup-
ports tasks such as medical image classification, annotation, and retrieval, which 
are crucial for medical informatics applications.

These datasets exemplify the diverse types of biomedical data available for research, 
each offering unique insights and challenges that can be leveraged to train more 
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effective and nuanced FMs for varied applications in healthcare and medical research. 
Note that the numerical details of the datasets are demonstrated in Table 1.

Biomedical healthcare on large language models

As introduced in Backbone networks in foundation models  section, the backbone of 
most pre-trained foundation models, including prominent ones like BERT, GPT, T5, and 
their variants, is founded on the Transformer architecture, which framework is charac-
terized by its reliance on self-attention networks and feed-forward networks (FFNs). The 
benign enables dynamic interactions between tokens, enhancing the model’s ability to 
handle complex input relationships, while FFNs perform non-linear transformations to 
deepen token representations, bolstering feature extraction capabilities.

In parallel, the evolution of text representation through FMs has significantly 
advanced from initial static word embedding methods to sophisticated models capable 
of understanding contextual nuances [204, 205]. Historical neural language models laid 
the groundwork by predicting word contexts in a unidirectional manner, but modern 
approaches like ELMO [41], GPT [206], and BERT [207] have transformed the land-
scape with bi-directional and context-aware strategies. These models, through method-
ologies such as bidirectional language modeling and masked language model tasks, offer 
dynamic, context-sensitive word representations that vastly enhance performance across 
diverse NLP applications, making them fundamental to contemporary language process-
ing tasks.

How to tailor LLMs to the biomedical domain

The adaptation of large language models to the biomedical domain involves special-
ized methodologies tailored to enhance their functionality for this sector’s unique 
tasks. Initially crafted for general natural language processing (NLP) tasks, mod-
els like BERT [207] typically undergo a two-stage training process: initial training 
through a self-supervised meta-task (such as a masked language model or causal 
language model) on a broad, task-agnostic corpus, followed by fine-tuning on more 

Table 1 Overview of key biomedical healthcare benchmarks

Dataset Size Types

MIMIC‑III 58,976 admissions Text, Numeric, Categorical

CPRD 11.3 million patients Text, Numeric, Categorical

Reddit and Tweets 800K reddit posts and up‑to‑date 
tweets

Text

MIMIC‑CXR 77,110 images Images, Text

DNA Dataset 106 DNA sequences Genetic Sequences

PNC 9,500 participants Imaging (Functional, Structural)

ABIDE Over 1,100 individuals Imaging (Functional, Structural)

UK Biobank Over 500,000 participants Imaging (Functional, Struc‑
tural), Genetic, Text

Human Protein Atlas 12,003 proteins Images, Text

GEUVADIS RNA sequencing 462 individuals Genetic Sequences
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specialized, often smaller-scale, downstream tasks relevant to specific fields. The two 
strategies have been developed to better integrate LLMs into the biomedical field are 
as follows:

• Continual Pre-training: This method involves taking general LLMs such as BERT, 
initially pre-trained on extensive general corpora like Wikipedia or BookCorpus, 
and continuing their training on domain-specific corpora, such as PubMed texts 
and MIMIC-III data. For instance, BioBERT [208] extends BERT’s training to 
include PubMed abstracts and articles, while BlueBERT [209] is further trained 
on both PubMed and MIMIC-III texts. These adaptations often retain the original 
model’s vocabulary, which may not fully capture the specialized terminology of 
biomedical texts [182].

• Pre-training from Scratch: Some research advocates starting anew with domain-spe-
cific corpora to tailor PLMs more closely to biomedical needs [182, 210]. SciBERT 
[210] is an example of this approach, where a novel vocabulary of 30,000 terms spe-
cific to the domain was developed, and the model was trained on a corpus compris-
ing both computer science (18%) and biomedical (82%) texts. However, recent find-
ings suggest that mixed-domain pre-training might not be optimal for applications 
requiring high domain specificity. Instead, exclusive pre-training on biomedical cor-
pora is recommended to ensure maximum relevance and efficacy.

Related Literatures Before exploring the applications of Large Language Models in the 
biomedical healthcare domain, it is essential to recognize several representative surveys 
and peer-reviewed publications that have thoroughly reviewed the landscape of bio-
medical language models. These resources provide invaluable insights into the develop-
ment, applications, and future prospects of LLMs within this specialized field, laying a 
foundational understanding for ongoing and future research. Several key surveys and 
publications have extensively discussed the current state and potential advancements of 
transformer-based biomedical models and general prompting methods in natural lan-
guage processing:

• AMMU: A Survey of Transformer-Based Biomedical Pretrained Language Models 
[211]: This comprehensive survey examines the evolution and impact of transformer-
based models that have been specifically developed for the biomedical field. The sur-
vey details various approaches to adapting general language models to address the 
unique challenges posed by biomedical texts, such as the high specificity of vocabu-
lary and the critical nature of the accuracy needed in medical contexts. The authors 
discuss multiple models that have been successfully implemented, highlighting their 
methodologies, the datasets they were trained on, and their performance on different 
biomedical NLP tasks. It provides a critical analysis of the strengths and limitations 
of these models, offering insights into how the field might evolve and suggesting 
directions for future research to enhance model accuracy and applicability.

• Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in 
Natural Language Processing [212]: by Liu et  al. [212]: This survey explores the 



Page 32 of 54Li et al. BioData Mining            (2025) 18:2 

relatively new technique of prompting, which adapts pre-trained models to spe-
cific tasks using minimal task-specific data. Prompting involves modifying the 
input to pre-trained models in such a way that the task is reformulated to lever-
age the model’s existing knowledge. The survey systematically categorizes different 
types of prompts, discusses their applications in various NLP tasks, and evaluates 
their effectiveness across several benchmarks. It provides a detailed look at how 
prompting can reduce the need for large annotated datasets, which is particularly 
beneficial in domains like biomedicine where acquiring such data can be costly 
and time-consuming. The paper also considers the future of prompting in NLP, 
suggesting that further refinement of prompting strategies could lead to more 
generalizable and efficient NLP systems.

• Foundation Models in Healthcare: Opportunities, Risks & Strategies Forward [213]: 
This survey delves into the dual-edged nature of applying foundation models within 
the healthcare sector. It discusses the substantial opportunities these models present, 
such as enhancing diagnostic accuracy, predicting patient outcomes, and personal-
izing treatment plans. However, it also addresses the significant risks involved, par-
ticularly concerning data privacy, model bias, and the ethical implications of auto-
mated decision-making in healthcare. The authors propose a framework of strategies 
to mitigate these risks while capitalizing on the potential benefits. These strategies 
include developing robust governance frameworks, ensuring transparency in model 
workings, and engaging with a broad range of stakeholders to ensure that the deploy-
ment of these models in healthcare settings is both ethical and effective.

• On the Opportunities and Risks of Foundation Models [25]: This broad survey pro-
vides an extensive overview of the application of foundation models across various 
domains, with a particular focus on their transformative potential and the risks they 
pose. In the context of healthcare, the survey highlights how these models can revo-
lutionize medical research and practice by providing new insights into disease pat-
terns and patient care strategies. However, it also raises critical concerns about the 
reliability, fairness, and transparency of these models, especially given their potential 
to impact patient outcomes directly. The paper calls for a balanced approach to har-
nessing the power of foundation models, advocating for rigorous testing, ethical con-
siderations, and regulatory oversight to ensure they benefit society as a whole.

Practical LLMs in biomedical healthcare

Since the introduction of BERT, a variety of biomedical pre-trained language models 
have been developed, enhancing the capabilities of NLP applications within the bio-
medical field. These models have been adapted either by further training on specialized 
in-domain corpora or by being built from scratch to cater specifically to the needs of 
medical and scientific communication. Below is a detailed summary of several exist-
ing pre-trained language models, where the specialized corpora, LLM backbone and 
released date are highlighted in Table 2.

• BioBert [208]: A pioneering work represents a significant advance in the application 
of language models to the biomedical domain. By adapting the BERT architecture, 
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originally designed for general language understanding, BioBert is fine-tuned with 
biomedical texts sourced from extensive databases such as PubMed abstracts and 
PMC full-text articles. This adaptation is not merely a continuation of training but 
a targeted effort to align the model’s learning with the intricacies and terminologies 
unique to biomedical literature. As a result, BioBert excels in several biomedical text 
mining tasks including named entity recognition, relation extraction, and question 
answering over biomedical knowledge bases. The strength of BioBert lies in its abil-
ity to capture deep semantic connections between biomedical concepts, significantly 
improving the model’s utility for researchers and healthcare professionals who rely 
on swift and accurate interpretations of medical texts.

• MedBert [24]: MedBert is an innovative approach to creating a language model that 
is steeped from the outset in the medical context. Unlike models that are adapted 
from general-purpose architectures, MedBert is pre-trained from scratch on a large 
and diverse corpus of medical texts, including electronic health records and other 
clinical documents. This ground-up approach allows MedBert to develop a nuanced 
understanding of medical language, including jargon, abbreviations, and the complex 
relationships between medical concepts. The model has shown significant improve-
ments in tasks such as patient phenotyping and diagnostic prediction, making it a 
vital tool for healthcare analytics. MedBert’s design addresses the challenges of 
applying general language models to medical data, ensuring that the nuances and 
critical details of medical communication are not lost in translation.

• ClinicalBERT [216]: Tailored for understanding and processing clinical notes, Clini-
calBERT was trained exclusively on data from the MIMIC-III database [192],, which 
includes around 2 million clinical notes. This specialized training prepares Clinical-
BERT to handle a variety of clinical documentation styles and medical shorthand, 
making it an invaluable tool for applications like patient outcome prediction and 
automated documentation review, which require a deep understanding of clinical 
narratives.

• SciBERT [210]: Developed from scratch, SciBERT focuses on scientific text, primar-
ily from the biomedical field, leveraging a corpus of papers available through the 

Table 2 Overview of pre‑trained language models in biomedicine with release dates

Model Name Corpora LLM Backbone Release Date

BioBert PubMed abstracts, PMC articles BERT 2020

MedBert Medical texts, EHRs BERT 2021

ClinicalBERT MIMIC‑III clinical notes BERT 2019

SciBERT Scientific papers (82% biomedical) BERT 2019

COVID‑twitter‑BERT Tweets about COVID‑19 BERT 2023

MedGPT Electronic health records (EHRs) GPT 2021

SCIFIVE Biomedical corpora T5 2021

LLMBiomedicine Biomedical texts (NER [214] tasks) GPT‑4 2024

ClinicalGPT Diverse medical data GPT 2023

MultiMedQA Medical QA datasets PaLM [46] 2023

Chatdoctor Patient‑physician conversations LLaMa 2023

Taiyi Biomedical texts, multilingual Qwen [215] 2024
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Semantic Scholar database. With 82% of its training corpus composed of biomedi-
cal research articles, SciBERT is adept at deciphering complex scientific terminol-
ogy and extracting relevant information from scholarly articles, thereby facilitating 
advanced text mining and information retrieval tasks in scientific research.

• COVID-twitter-BERT [195]: This model was specifically developed to analyze and 
understand discourse about COVID-19 on Twitter. It was trained during the initial 
stages of the pandemic on a dataset comprising approximately 160 million tweets 
related to the virus. The model is designed to capture the nuances of public senti-
ment, misinformation, and evolving topics related to COVID-19, providing valuable 
insights for public health officials and researchers studying communication patterns 
during health crises.

• MedGPT [22]: Inspired by the GPT architecture, MedGPT was trained on electronic 
health records (EHRs) and is designed to predict future medical events based on 
patients’ medical histories. Its training allows it to model and predict various out-
comes, such as diagnoses and complications, making it a potential tool for prognos-
tic assessments in clinical settings.

• SCIFIVE [217]: This model is a domain-specific adaptation of the T5 model, trained 
under the Seq2seq framework on extensive biomedical corpora. SCIFIVE is engi-
neered to transform complex biomedical queries into concise answers, facilitating 
tasks such as summarizing scientific texts and generating explanatory notes from 
dense medical data.

• LLMBiomedicine [218]: This research highlights the effectiveness of meticulously 
designed prompts and the strategic selection of in-context examples to enhance the 
performance of LLMs on biomedical NER tasks. By adjusting prompts and exam-
ples to better fit the context of biomedical data, the study demonstrates significant 
improvements in model performance, making LLMs more adept at identifying and 
classifying medical entities in text.

• ClinicalGPT [219]: ClinicalGPT, a model that has been fine-tuned with a diverse set 
of medical data to enhance its performance and reliability in clinical scenarios. The 
model undergoes rigorous evaluations to ensure it meets the high standards required 
for medical applications, focusing particularly on its ability to maintain factual accu-
racy and provide contextually appropriate responses in simulated clinical interac-
tions. ClinicalGPT represents a significant advancement in the use of LLMs in medi-
cine, offering potential improvements in automated patient interaction, diagnostic 
support, and personalized treatment planning. By leveraging a vast corpus of medi-
cal texts for fine-tuning, the model is better equipped to handle the nuanced and 
highly specialized language found in clinical notes and patient interactions.

• MultiMedQA [220]: MultiMedQA is a comprehensive benchmark combining six 
existing medical question answering datasets, which span a variety of contexts from 
professional medicine to consumer health inquiries. The benchmark is enhanced by 
a newly developed dataset, HealthSearchQA, which consists of medical questions 
frequently searched online. This diverse collection of datasets is utilized to test the 
LLMs’ ability to understand and process complex medical information across dif-
ferent facets of healthcare and patient inquiries. The authors discuss the significant 
challenge of assessing LLMs in clinical settings, where the accuracy of information 
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and the models’ understanding of nuanced medical language are crucial. By employ-
ing MultiMedQA, the authors aim to provide a more nuanced and thorough evalua-
tion of LLMs than previous benchmarks allowed.

• Chatdoctor [221]: Chatdoctor improves the performance and relevance of responses 
in medical conversational systems. To achieve this, the model was fine-tuned using 
a substantial dataset of 100,000 real-world patient-physician conversations sourced 
from online medical consultations. This approach ensures that the model not only 
understands medical terminology and procedures but also grasps the nuances of 
patient interactions and inquiries.

• Taiyi [222]: Taiyi highlights the limitations of existing fine-tuned biomedical LLMs, 
which are predominantly monolingual and focused on question answering and con-
versation tasks within the biomedical field. Taiyi, by contrast, is designed to enhance 
performance across a broader spectrum of NLP applications, including entity extrac-
tion, relation extraction, and information retrieval, catering to both English and non-
English texts. The development and evaluation of Taiyi involve rigorous fine-tuning 
processes that adjust the model to grasp the nuances and specific terminology used 
in various biomedical contexts, significantly improving its utility and applicability 
in a global healthcare context. This model represents a substantial advancement in 
the field of biomedical NLP by supporting multilingual capabilities and addressing 
the critical need for diverse language processing in medical research and healthcare 
delivery.

Biomedical LLMs like BioBert, MedBert, and ClinicalBERT have been developed to 
enhance tasks such as named entity recognition, relation extraction, and patient out-
come prediction by training on specialized datasets like PubMed and MIMIC-III. While 
these models excel in capturing deep semantic relationships within specific domains, 
they often struggle with generalizability outside their specialized fields and require 
rigorous ongoing updates. Models like COVID-twitter-BERT, which focus on spe-
cific events or datasets, face challenges in maintaining relevance over time due to the 
dynamic nature of their data sources. Innovations like MedGPT and ClinicalGPT show 
promise in clinical settings, yet they must navigate significant challenges related to data 
privacy and the need for extensive, diverse training data to ensure accuracy and util-
ity across varying medical scenarios. Furthermore, approaches like MultiMedQA and 
Taiyi aim to broaden the applicability of biomedical LLMs across different languages and 
medical contexts, yet they must balance the breadth of language coverage with the depth 
of medical understanding to be truly effective in global healthcare applications.

Biomedical healthcare on vision language models

This section elaborates on the training of vision language models for biomedical imag-
ing, and their practical applications in the biomedical healthcare sector.

How to train vision language models for biomedical imaging

Deep neural networks demonstrate outstanding performance in various vision tasks, 
including image classification, object detection, and instance segmentation. A key to 
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this success in the foundation model era is the concept of pre-training, which, unlike in 
NLP where it usually involves language models, traditionally meant training on exten-
sive labeled image datasets like ImageNet [48]. More recently, diverse learning methods 
have been introduced to overcome limitations of conventional supervised learning, such 
as generalization errors and spurious correlations. We examine several methodologies 
suitable for imaging applications as follows:

• Unsupervised Pre-training: Unsupervised pre-training leverages large volumes of 
unlabeled image data to learn rich feature representations without the guidance of 
explicit annotations. Techniques such as autoencoders [223] and generative adver-
sarial networks (GANs) [224] train models to generate or reconstruct images, ena-
bling them to capture the underlying data distributions and learn complex patterns 
within the visual inputs. This approach is particularly useful in domains where 
labeled data is scarce or expensive to obtain.

• Contrastive Self-supervised Learning: Contrastive self-supervised learning tech-
niques [225–227] train models to differentiate between various modifications of a 
given input image, such as determining whether two images are rotated versions of 
each other or entirely distinct. This method enables the model to develop features 
applicable to diverse vision tasks, including object detection and semantic segmenta-
tion.

• Masked Self-supervised Learning: Drawing inspiration from BERT’s approach in NLP, 
masked self-supervised learning [228–230] is gaining popularity in computer vision. 
This generative pre-training method trains models to reconstruct images from par-
tially obscured inputs, aiding in understanding the underlying structure of visual 
data.

• Contrastive Language-image Pre-training: An innovative method, contrastive lan-
guage-image pre-training [50] (CLIP), involves training a vision model using diverse 
image-text datasets. The model learns to match images with corresponding texts 
within a mini-batch through contrastive learning. CLIP shows impressive zero-shot 
capabilities, performing on par with traditional models like ResNet [35] on ImageNet 
without task-specific training. Text descriptions enhance understanding of the visual 
content, facilitating the model’s comprehension of visual elements and their interre-
lations, which is essential for effective learning.

• Instructed fine-tuning: Instructed fine-tuning involves explicitly guiding the model 
during the fine-tuning process with task-specific instructions. This method builds 
upon the foundation established during pre-training by aligning the model’s learning 
objectives closely with the nuances of the target task [50]. For example, in biomedi-
cal imaging, models can be instructed to identify specific medical conditions from 
images using detailed descriptions of symptoms or expected imaging features. This 
approach helps the model to focus on relevant aspects of the data, enhancing its per-
formance on specialized tasks such as diagnosing diseases from medical scans.

Note that a significant challenge in harnessing FMs for vision-language tasks lies in 
overcoming the “task gap” and the “domain gap”. The task gap refers to the differences 
between the generic meta-tasks used in FMs, such as masked language modeling in 
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BERT or causal language modeling in GPT, and the specialized requirements of down-
stream vision-language tasks, such as medical image annotation or diagnostic interpre-
tation. The domain gap further highlights the disparity between the general training 
corpora used, and the highly specialized datasets needed for tasks in specific fields like 
biomedicine. To effectively deploy a pre-trained language model in vision-language 
applications within a specific domain, it is crucial to undertake both domain and task 
adaptations [182, 231–233]. Domain adaptation involves additional training of a model-
originally pre-trained on broad, general datasets within a targeted domain, such as 
biomedicine. This step ensures that the model becomes attuned to the specific termi-
nologies and data types characteristic of the domain.

Practical VLMs in biomedical healthcare

Biomedical vision-and-language models have largely been shaped by influential self-
supervised pre-training techniques, such as SimCLR [225] in computer vision and BERT 
[207] in natural language processing. These foundational approaches have paved the way 
for the adoption of advanced text-to-image diffusion models [27, 51, 234] in the medical 
field [235, 236], enhancing tasks ranging from diagnostic imaging to patient interaction. 
This subsection provides a detailed overview of the existing vision-and-language mod-
els (VLMs) within the biomedical sector and elucidates their functionalities. In this sur-
vey, VLMs in the biomedical healthcare sector are categorized into three primary types: 
dual-encoder, fusion encoder, and hierarchical structures. Each model type offers dis-
tinct advantages and limitations, tailored to specific application needs within the health-
care context.

Dual-Encoder Models process visual and textual inputs independently through sepa-
rate encoders before merging the resulting vectors for final task execution. This archi-
tecture is particularly effective for tasks that require robust single-modal or crossmodal 
representation, such as image classification, image captioning, and cross-modal retrieval. 
However, the dual-encoder approach may fall short in fully capturing the intricate inter-
plays between visual and linguistic elements, which can limit its effectiveness in more 
complex multimodal tasks. Fusion-encoder models integrate visual and linguistic data 
early in the processing pipeline, utilizing a single encoder to manage both modalities. 
This method facilitates the capture of complex interactions between text and image, 
proving advantageous for tasks that demand a deep multimodal understanding, such 
as visual question answering and complex diagnostic reasoning. While fusion encod-
ers excel in multimodal integration, they may encounter challenges in scenarios where a 
clear distinction between modalities is necessary.

Besides the dual-encoder and fusion-encoder models, the field also explores innova-
tive biomedical FMs that combine vision and language, such as hierarchical encoder 
alignment [237, 238] and medical text-to-image diffusion models [234, 239]. Hierarchi-
cal alignment constructs input pyramids on both visual and linguistic sides, enhancing 
the model’s ability to match features across modalities at multiple abstraction levels, 
which not only improves feature correspondence and model generalization but also 
optimizes the learning process, making it more efficient and adaptable to complex tasks 
like medical diagnosis from imaging and textual data. Such structured FMs offers sig-
nificant advantages in terms of computational efficiency, robustness, and scalability, 
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demonstrating potential for broad applications, especially in the biomedical field. Diffu-
sion models are generative models inspired by non-equilibrium thermodynamics. They 
operate by defining a Markov chain of diffusion steps that gradually add random noise to 
data. The model then learns to reverse this diffusion process, reconstructing the desired 
data samples from the noise. This approach is particularly powerful in medical applica-
tions where generating high-fidelity images from textual descriptions can assist in diag-
nostic visualizations and treatment planning.

We summarize recent significant developments in adapting vision-language models 
for biomedical healthcare as follows, where the model type, encoder details, training 
corpora, and released dates are detailed at Table 3.

• ConVIRT [253]: ConVIRT utilizes contrastive learning techniques to simultaneously 
train ResNet and BERT encoders on paired image and text data. This approach signif-
icantly improves the model’s performance in image classification tasks by effectively 
reducing the dependency on large volumes of labeled data. By optimizing feature 
extraction and enhancing the semantic alignment between images and their textual 
descriptions, ConVIRT enables more accurate and efficient classification, making it 
particularly useful in scenarios where annotated datasets are limited.

• GLoRIA [254]: GLoRIA advances the field by employing both global and local con-
trastive learning strategies to finely align words in radiology reports with corre-
sponding sub-regions within images. This method enhances local representation 
learning, allowing for more precise identification and classification of localized fea-
tures in medical images. Such detailed alignment improves diagnostic accuracy and 
aids in the development of more sophisticated automated radiology analysis tools.

• MedCLIP [20]: MedCLIP leverages the innovative architecture of the CLIP model, 
specifically tailored for the medical domain. By utilizing pre-computed matching 

Table 3 Overview of vision‑language models in biomedical healthcare

Model Name Type Image Encoder Text Encoder Training Corpora Release Date

ConVIRT Dual ResNet ClinicalBERT MIMIC‑CXR 2022

GLoRIA Dual ResNet BioClinicalBERT Chexpert [240] 2021

MedCLIP Dual ResNet/ViT BioClinicalBERT Chexpert, MIMIC‑CXR 2022

CheXZero Dual CLIP‑Image CLIP‑Text Chest X‑rays 2022

LoVT Dual ResNet ClinicalBERT MIMIC‑CXR 2022

Adapted VLMs Hierarchical Diffusion, VAE [241] Bert, CLIP Chexpert, MIMIC‑CXR 2022

VisualBERT Fusion Varies BERT MIMIC‑CXR 2020

MedViLL Fusion ResNet BERT MIMIC‑CXR 2022

ARL Fusion CLIP‑Image RoBERTa [242] MedICaT [243], MIMIC‑CXR, 
ROCO[244]

2022

LViT Fusion ViT BERT QaTa‑COV19 [245], 
MoNuSeg [246]

2023

RoentGen Hierarchical Diffusion CLIP‑Text MIMIC‑CXR 2022

CLIPSyntel Dual CLIP GPT‑3.5 MMQS [247] 2024

Med‑unic Dual ResNet/ViT CXR‑BERT [248] MIMIC‑CXR, PadChest [249] 2024

EchoCLIP Dual ConvNeXt [250] CLIP‑Text Echocardiogram videos 2024

Llava‑med Fusion Llava [8] Llava PubMed [251], PMC‑15M 
[252]

2024
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scores, MedCLIP enhances the alignment between medical images and their cor-
responding textual descriptions. This capability facilitates effective zero-shot learn-
ing, allowing MedCLIP to accurately classify medical conditions without the need 
for extensive fine-tuning on large annotated datasets. The model’s ability to directly 
apply learned representations from diverse medical contexts makes it a valuable tool 
for rapid and efficient disease diagnosis, particularly in environments where labeled 
medical data is scarce.

• CheXZero [255]: CheXZero is another adaptation of the CLIP model, focused on 
zero-shot learning for medical imaging, specifically in chest radiography. Unlike 
traditional models that require detailed annotations for each new disease classifica-
tion task, CheXZero applies the powerful zero-shot capabilities of the CLIP model 
to accurately identify pathologies in chest X-rays without additional model training. 
This approach is particularly beneficial for rapidly evolving medical scenarios, such 
as new disease outbreaks or rare conditions, where the availability of comprehen-
sive labeled datasets might be limited. CheXZero’s innovative use of CLIP for direct 
application in medical diagnosis demonstrates its potential to significantly streamline 
diagnostic processes in healthcare settings.

• LoVT [256]: LoVT specifically targets localized medical imaging tasks by implement-
ing a local contrastive loss that aligns representations of sentences or specific image 
regions. This alignment is crucial for tasks that require detailed understanding of 
small, localized anatomical structures or pathological features, enhancing the mod-
el’s accuracy in specialized medical imaging applications.

• Adapting Pretrained Vision-Language Foundational Models to Medical Imaging 
Domains [236]: This study explores the effectiveness of adapting general vision-
language models to the medical imaging domain. It demonstrates how foundational 
models, originally designed for broad applications, can be fine-tuned to meet the 
specific needs of medical diagnostics and research, thus broadening their applicabil-
ity and improving performance in specialized tasks.

• VisualBERT [257]: This study focuses on adapting general-domain vision-language 
models, such as LXMERT and VisualBERT, for the integration of medical images and 
texts. The effectiveness of these adapted models in disease classification showcases 
their potential in clinical settings, where they can support diagnostic processes and 
enhance the accuracy of medical assessments.

• MedViLL [258]: MedViLL enhances the multimodal interaction between medical 
images and associated textual data through an innovative vision-language model 
framework by incorporating extensive medical knowledge and utilizing tailored 
masking schemes, MedViLL is specifically designed to improve understanding and 
generation tasks within the medical field, which excels in synthesizing comprehen-
sive medical reports and generating detailed medical annotations, crucial for assist-
ing healthcare professionals in making informed decisions. The approach to integrat-
ing complex medical datasets ensures a deeper contextual understanding and a more 
nuanced interpretation of both visual and textual medical data.

• ARL [259]: ARL (Align and Reasoning Language model) introduces a unique align-
ment strategy that specifically targets the challenges of medical imaging and text 
analysis. By aligning sentence or image region representations through a localized 
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contrastive loss, ARL effectively bridges the gap between visual features and their 
corresponding textual annotations. This model is particularly adept at tasks that 
require precise localization of medical findings within images, supporting detailed 
diagnostic processes. ARL’s focus on enhancing the correlation between detailed 
image regions and descriptive text makes it an invaluable tool for advanced medical 
imaging applications where accuracy and detail are paramount.

• LViT [260]: LViT leverages medical text annotations to significantly improve seg-
mentation results, particularly in semi-supervised settings where labeled data may 
be scarce. By integrating rich textual information, LViT enhances its understanding 
of medical imagery, leading to more accurate segmentation and analysis of medical 
scans.

• RoentGen [235]: RoentGen introduces a pioneering approach by applying text-to-
image diffusion models to medical imaging. This novel methodology holds prom-
ise for generating detailed and accurate medical images from textual descriptions, 
potentially revolutionizing the way medical imagery is produced and understood.

• CLIPSyntel [247]: CLIPSyntel represents a synergistic application of CLIP and large 
language models to address the challenge of multimodal question summarization in 
healthcare. This model harnesses the strengths of both visual and textual data pro-
cessing to provide concise and relevant summaries of complex medical inquiries, 
aiding healthcare professionals CLIP and LLM Synergy for Multimodal Question 
Summarization in Healthcare [261].

• Med-unic [262]: Med-unic presents an approach to enhance the performance of 
medical vision-language pre-training models across different languages. The authors 
focus on reducing bias in these models, which often perform better in languages with 
abundant training data (like English) compared to languages with less data. They 
introduce a unified framework that integrates multilingual textual features and visual 
content effectively. Their method involves using a debiasing technique that ensures 
more equitable learning from visual and textual data across various languages. This 
is achieved by carefully balancing the dataset and incorporating cross-lingual adapta-
tion [263] techniques to improve model performance uniformly across different lin-
guistic contexts.

• EchoCLIP [264]: EchoCLIP is a specialized vision-language foundation model 
designed to improve echocardiography interpretation. EchoCLIP leverages the rela-
tionship between cardiac ultrasound images and expert cardiologist interpretations 
across diverse patient groups and diagnostic scenarios. The development of this 
model addresses the critical challenge of limited availability of annotated clinical 
data in cardiac imaging. By training on over one million cardiac ultrasound images, 
EchoCLIP aims to enhance the accuracy and efficiency of echocardiogram, offering 
a robust tool for cardiac diagnostics that can adapt to various clinical conditions and 
imaging indications.

• Llava-med [265]: Llava-med presents a novel approach to training a vision-language 
conversational assistant tailored for the biomedical field. The study introduces a cost-
efficient method for rapidly developing a multimodal conversational AI that can 
understand and discuss biomedical images alongside textual data. Unlike previous 
models that rely extensively on large-scale image-text pairs from general domains, 
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Llava-med is trained specifically with biomedical data to better address the unique 
needs of the medical community.

VLMs in the biomedical domain offer diverse applications but also face certain limita-
tions. Models like ConVIRT and MedCLIP leverage contrastive and zero-shot learning 
to improve semantic alignment between medical images and texts, reducing reliance on 
extensive labeled datasets and enhancing diagnostic accuracy. However, these models 
may struggle with generalization outside their training specifics and have limited abil-
ity for continual learning. GLoRIA and ARL focus on fine-grained alignment of medi-
cal data, improving localized feature identification but potentially lacking in broader 
application flexibility. Models such as CheXZero and RoentGen introduce innovative 
approaches to medical imaging by applying zero-shot learning and text-to-image dif-
fusion models, streamlining diagnostic processes and even generating medical images 
from textual descriptions. Yet, these models do not fully address the varying complexi-
ties of medical conditions across diverse datasets. EchoCLIP and Llava-med exemplify 
specialized applications, targeting cardiac imaging and conversational biomedical AI, 
respectively, but must overcome challenges like limited annotated data and the need for 
specialized training to ensure widespread applicability.

Open challenges and opportunities in federated foundation biomedical 
research
The integration of AI technologies, particularly large pre-trained foundation mod-
els in the biomedical field, presents a range of future challenges and opportunities that 
must be tackled to unlock their full potential. This section delves into the key issues 
and potential avenues for progress concerning the application of federated foundation 
models in biomedical research. It underscores the need for robust solutions that ensure 
privacy, enhance model generalizability, improve computational efficiency, and address 
regulatory and ethical considerations. As we explore these challenges, we also highlight 
promising strategies that may pave the way for more effective and equitable AI-driven 
healthcare solutions.

Challenges of foundation models in biomedical healthcare

Research on foundation models in the biomedical healthcare domain presents several 
challenges and directions for future exploration:

• Data Privacy and Security: The primary challenge in foundation model, especially 
in healthcare, revolves around maintaining patient confidentiality and adhering to 
stringent data protection regulations like HIPAA [266] in the U.S and GDPR [17] in 
Europe. Future research needs to focus on developing robust encryption methods 
and privacy-preserving algorithms that allow for the secure sharing of insights with-
out exposing sensitive patient data [267, 268].

• Model Generalization across Diverse Datasets: FMs involve training models on 
highly heterogeneous data sources, often leading to challenges in model gener-
alization. Research should explore techniques to enhance the generalizability of 
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foundation models across diverse healthcare systems and varied patient demo-
graphics without compromising performance.

• Scalability and Computational Efficiency: The computational demand for training 
large-scale LLMs and VLMs is significant. Optimizing resource allocation, reduc-
ing communication overhead, and proposing efficient model updating mecha-
nisms are crucial areas for future development to ensure scalability and practical-
ity in real-world healthcare settings.

• Bias and Fairness: Ensuring that foundation models do not perpetuate or amplify 
biases present in downstream tasks is critical [26, 269, 270], especially under the 
biomedical domain, where the targeted problem for each patient can be narrow. 
Future research should include developing methodologies for bias detection and 
mitigation in model training and deployment phases. This also involves designing 
fair algorithms that provide equitable healthcare outcomes across different popu-
lations [271, 272].

• Interoperability and Standardization: There is a need for standardized protocols 
to ensure interoperability among different healthcare systems participating in 
foundation model learning.

• Personalization: Medical treatments and diagnostics often require high degrees 
of personalization. AI models must be capable of adapting to individual patient 
needs and conditions, which pose challenges in model design and data utilization 
without compromising generalizability.

• Scaling: Deploying AI solutions on a large scale, particularly in diverse healthcare 
settings, presents logistical and computational challenges. Scalability involves not 
only the expansion of AI systems to handle larger datasets but also ensuring these 
systems are accessible across different regions and healthcare infrastructures.

• Biomedical Requirements of Accuracy: Biomedical applications demand extremely 
high levels of accuracy and reliability. AI models used in diagnostics or treat-
ment recommendation must meet rigorous standards to prevent errors that could 
adversely affect patient health.

• Robustness to Adversarial Attacks: As the applications of a foundation model in 
biomedical scenarios can be distributed, they are susceptible to various types of 
adversarial attacks that can compromise model integrity. Enhancing the robust-
ness of foundation models against such attacks, and ensuring secure and reliable 
model performance, are a significant direction for ongoing research.

• Regulatory and Ethical Considerations: As foundation models evolve, there will 
be increased scrutiny from regulatory bodies concerning their use in clinical set-
tings. Research must address these regulatory challenges by developing models 
that are not only effective but also transparent and explainable to satisfy regula-
tory requirements and maintain public trust.

• Longitudinal Studies and Continuous Learning: Implementing models that 
can adapt over time to new data and evolving biomedical conditions is crucial. 
Research into continuous learning mechanisms that allow FMs to update with-
out forgetting [273] previously learned knowledge while integrating new insights 
is essential for maintaining the relevance and accuracy of biomedical models.
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Opportunities in federated foundation models

Federated learning offers a unique framework for addressing several challenges asso-
ciated with foundation models, particularly in the sensitive and data-intensive field of 
biomedical healthcare. In this survey, we would like to highlight how federated learning 
can help overcome the challenges of FMs and what opportunities it presents in both aca-
demic research and industrial applications:

• Data Privacy and Security: Federated learning enables the collaborative training of 
predictive models by sharing model updates rather than raw data. Each participating 
institution retains its data locally, significantly minimizing the risk of data breaches 
and unauthorized access. This method is especially beneficial in healthcare, where 
patient data is highly sensitive and subject to strict privacy regulations. Note that 
upholding data privacy is crucial not only for complying with laws like GDPR and 
HIPAA but also for maintaining patient trust. Federated learning’s ability to train 
models without compromising data privacy helps healthcare organizations imple-
ment AI solutions without risking patient confidentiality or facing legal penalties. 
Increased Model Robustness and Trustworthy: Trust in medical AI systems is 
essential for their acceptance by both medical professionals and patients. Systems 
known for their reliability and backed by a transparent, accountable training process 
are more likely to be trusted and thus more widely adopted, which makes it crucial to 
further investigate the trustworthy federated foundation models.

• Bias and Fairness: Addressing bias and ensuring fairness is critical for Federated 
Foundation Models, particularly in the healthcare domain where imbalanced data or 
algorithmic biases can lead to unequal patient outcomes. FL frameworks must con-
sider demographic diversity and institutional disparities in data availability to create 
equitable models. Techniques such as fairness-aware aggregation methods, adver-
sarial training for debiasing, and reweighting of underrepresented data during local 
training can mitigate biases. Additionally, the use of synthetic data generation to bal-
ance class distributions can further improve trust and fairness in healthcare applica-
tions.

• Real-time Learning and Adaptation: In federated learning frameworks, models can 
be updated continually as new data becomes available across the network. This 
dynamic learning process allows the models to adapt to emerging health trends or 
new strains of diseases. The ability to update and adapt foundation models in real-
time is vital for keeping pace with the fast-evolving nature of diseases and treatments, 
ensuring that healthcare providers have the most current tools at their disposal.

• Collaborative Innovation: By aggregating insights from diverse healthcare environ-
ments and patient demographics, federated learning facilitates the development of 
models that perform well across different settings. This heterogeneous data input 
helps the model learn more comprehensive patterns and reduces the risk of bias 
towards any particular group or condition. Specifically, how to use federated learn-
ing to efficiently establish a cooperative ecosystem where different healthcare entities 
can contribute to and benefit from shared AI advancements without compromising 
their data sovereignty is worth for real-world application, which can lead to more 
rapid development and refinement of AI technologies.
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• Multimodality: Medical data are often multimodal, encompassing an extensive 
array of data types-including text, images, videos, databases, and molecular struc-
tures-across various scales from molecules to populations [129, 274], and presented 
in both professional and/or lay language [275, 276]. While current self-supervised 
models excel within individual modalities, such as text [208], images [277], genes 
[197], and proteins [278], they typically lack the capability to integrate and learn from 
these diverse sources simultaneously. To truly leverage the rich information available 
across different modalities, there is an urgent need to develop models that can per-
form both feature-level and semantic-level fusion. Successfully integrating these var-
ied data types could revolutionize how biomedical knowledge is unified and signifi-
cantly accelerate discovery processes in biomedicine. Federated learning frameworks 
can capture a richer and more nuanced understanding of patient conditions, which is 
crucial for multimodal tasks like diagnosing complex diseases that may require cor-
relating symptoms, radiology images, and genetic information.

• Synthetic Data Generation for Further Training: Federated learning can facilitate the 
generation of synthetic training data, which helps address the scarcity of annotated 
datasets, particularly in specialized medical fields. By learning from diverse sources, 
federated models can generate new, synthetic examples that preserve the statistical 
properties of real data without revealing any individual patient’s information. This 
synthetic data can then be used to further train and refine FMs across the network. 
The generation of synthetic data is a critical solution for overcoming data limitations 
in biomedical research, where privacy concerns and the rarity of certain conditions 
can significantly constrain the availability of training data.

Conclusions
This survey has delved into the transformative potential of foundation models and fed-
erated learning within the biomedical healthcare domains. Foundation models repre-
sent a significant advancement in artificial intelligence, offering robust, adaptable tools 
that can be fine-tuned for specific applications without constructing new models from 
scratch. These models, trained on expansive datasets, are capable of performing a wide 
array of tasks-from text generation to video analysis-that were previously beyond the 
reach of earlier AI systems. In the biomedical and healthcare sectors, where the efficacy 
of AI and the integrity of data privacy are crucial, foundation models play a pivotal role 
by enabling the extraction of valuable insights from constrained datasets. This survey 
has highlighted the current applications of FMs in these sectors, particularly focusing on 
large language models and vision-language models.

Meanwhile, Federated learning, characterized by its privacy-preserving and decentral-
ized approach, complements the capabilities of foundation models perfectly. By com-
bining the robust, generalizable nature of FMs with the privacy-centric, decentralized 
attributes of federated learning, researchers can perform deep analyses using globally 
pooled insights from locally held datasets. This synergy holds immense potential to meet 
the specific needs of biomedical AI applications, offering scalable solutions that accom-
modate the continuous updating of foundation models with new, relevant data.

Additionally, this survey has outlined various challenges and opportunities that arise 
with the adoption of federated foundation models in healthcare. Federated learning 



Page 45 of 54Li et al. BioData Mining            (2025) 18:2  

addresses critical issues such as data privacy, model generalization, scalability, and inher-
ent biases within AI models. By allowing multiple institutions to collaboratively train 
models while keeping their data localized, federated learning not only complies with 
strict data privacy laws but also enhances the diversity and efficacy of medical AI appli-
cations. Key areas where federated foundation models could notably impact biomedical 
research and practice include enhancing model robustness and fairness, enabling real-
time model updates and adaptations, and facilitating cross-institutional and interna-
tional collaborations without compromising data security.
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