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Abstract

The burgeoning accumulation of large-scale biomedical data in oncology, alongside significant strides in deep learning (DL) technolo-
gies, has established multimodal DL (MDL) as a cornerstone of precision oncology. This review provides an overview of MDL applications
in this field, based on an extensive literature survey. In total, 651 articles published before September 2024 are included. We first outline
publicly available multimodal datasets that support cancer research. Then, we discuss key DL training methods, data representation
techniques, and fusion strategies for integrating multimodal data. The review also examines MDL applications in tumor segmentation,
detection, diagnosis, prognosis, treatment selection, and therapy response monitoring. Finally, we critically assess the limitations of
current approaches and propose directions for future research. By synthesizing current progress and identifying challenges, this review
aims to guide future efforts in leveraging MDL to advance precision oncology.
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Introduction
Precision oncology
Cancer remains one of the foremost causes of mortality glob-
ally. The 2020 report from the International Agency for Research
on Cancer identified ∼18.1 million new cancer cases and 9.6
million cancer-related deaths across 185 countries, both figures
rising alarmingly [1]. In the USA, the economic burden of can-
cer was estimated at ∼$124.5 billion in 2010, with projections
rising to $157.8 billion by 2020 [2]. The emergence of novel can-
cer therapies, such as targeted therapies and immunotherapies,
underscores the potential for curative outcomes through early
detection and effective treatment [3, 4]. Consequently, early diag-
nosis, precise tumor classification, and personalized treatment
are critical for improving survival rates, enhancing quality of
life for cancer patients, and alleviating the societal economic
burden.

DL in precision oncology
Over the past two decades, advances in computing technology
has propelled deep learning (DL) to the forefront of precision
oncology. For instance, DL models used in low-dose computed

tomography (CT) lung cancer screening have successfully reduced
the pool of candidates while maintaining high inclusion rates
and positive predictive values [5]. Natural language processing
(NLP) techniques are increasingly applied to extract valuable
insights from electronic health records (EHRs), aiding clinicians
in decision-making [6]. DL has demonstrated exceptional perfor-
mance in tasks such as biological sequence classification [7] and
cancer subtyping [8], with artificial intelligence (AI) systems even
surpassing human experts in certain diagnostic areas [9]. More-
over, DL has shown promise in predicting cancer prognosis. For
example, a DL-based model leveraging pathological biomarkers
was able to stratify colorectal cancer (CRC) patients into distinct
prognostic groups, minimizing overtreatment in low-risk patients
and identifying those who would benefit from more aggressive
therapies [10]. DL also holds potential in personalized treatment
planning and predicting therapeutic responses [11].

While these unimodal DL applications have achieved signifi-
cant success, the rapid advancement of computing and biomedi-
cal technologies, along with the explosive growth of clinical data,
highlights the urgent need for integrated multimodal data analy-
sis to fully harness clinical information and gain deeper insights
into cancer mechanisms.
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Clinical value of multimodal fusion analysis
Vast amounts of multimodal data are generated throughout the
clinical process of cancer care. Multimodal analysis techniques
leverage the unique characteristics of each modality to develop
models that offer a more comprehensive understanding and rea-
soning. This approach closely aligns with real-world clinical prac-
tices, particularly for complex diseases. Common multimodal
fusion models include the integration of various medical imaging
types, such as whole slide image (WSI) and CT [12], as well as
diverse magnetic resonance imaging (MRI) sequences [13], foster-
ing opportunities for innovative fusion strategies. Additionally, the
amalgamation of multi-omics data and the fusion of molecular
omics with imaging data further exemplifies this trend [14, 15].
Cross-modal fusion that encompasses imaging, molecular, and
clinical data represents advanced stages of multimodal analysis
[16].

Numerous studies have shown that multimodal methods out-
performs single-modality approaches in specific tasks [17, 18].
Nevertheless, designing effective fusion methods presents several
challenges, including the high-dimensional nature of multimodal
data, issues with data incompleteness and modality imbalance,
and the need for real-time processing. Moreover, uncovering the
biological significance of multimodal features remains a signifi-
cant hurdle.

Existing reviews have highlighted key DL applications in can-
cer diagnosis, prognosis, and treatment selection [19, 20], with
many focusing on specific data types or cancer categories [21–24],
exploring the taxonomy of MDL models for biomedical data inte-
gration [25], or discussing DL-based multimodal feature fusion
for identifying cancer biomarkers [26]. However, these reviews
typically focus on single-modal data or are limited to multi-omics
data, without offering a comprehensive overview of cross-scale
multimodal data fusion. Consequently, a thorough review of MDL
methods across the entire precision oncology continuum is still
lacking.

Given the rapid expansion of medical multimodal data and the
swift evolution of MDL technologies, this paper aims to survey
various modalities involved in precision oncology and the cutting-
edge MDL models employed for data integration, thereby estab-
lishing a paradigm for the effective utilization of big data in cancer
management (Fig. 1).

Structure of the work
The paper is structured as follows: it begins with a discussion
of literature search strategies, followed by an overview of pub-
licly available multimodal oncology datasets and an introduction
to key DL technologies. Next, we examine modality representa-
tion and fusion techniques, survey MDL applications in precision
oncology, and explore the opportunities and challenges in inte-
grating oncology big data. The paper concludes with a forward-
looking perspective on future developments.

Search methods
A systematic search was conducted in September 2024 across
PubMed, MEDLINE, and Web of Science Core Collection for
peer-reviewed articles published in English, with no date
restrictions. Search terms included medical topics (e.g. cancer,
tumors, lesions), methodologies (e.g. deep learning, artificial
intelligence, convolutional neural networks, machine learning),
and data types (e.g. multimodal, multi-omics, data fusion).
Two independent researchers performed the search to ensure
accuracy; disagreements were resolved by a third investigator

with domain expertise. Initial screening was based on titles and
abstracts, followed by full-text review. Only original research
involving human subjects and with full-text availability was
included, excluding reviews, posters, and comments. A total
of 651 articles met the inclusion criteria and were analyzed,
with selected studies discussed to provide insights into MDL
applications in oncology.

Public multimodal oncology resources
Cancer is a highly complex, heterogeneous biological process,
requiring diverse data sources for accurate diagnosis, treatment,
and prognosis. Commonly used data types—either individually
or in combination—include radiomics, pathomics, acoustic and
endoscopic imaging, genomics, clinical data, dermoscopy, multi-
modal data, and emerging real-world data (Supplementary Mate-
rials 1). Here, we summarized credible publicly available multi-
modal oncology resources and representative MDL studies utiliz-
ing these datasets (Table 1) for the readers’ convenience.

Notably, The Cancer Genome Atlas (TCGA) (https://portal.gdc.
cancer.gov/) and The Cancer Imaging Archive (TCIA) (https://
www.cancerimagingarchive.net/) are extensive databases encom-
passing thousands of samples across various cancer types and
medical centers. They provide rich multimodal data and ana-
lytical tools essential for cancer research. In addition to large-
scale public databases, several specialized multimodal datasets
are available. For instance, Lung-CLiP (Lung Cancer Likelihood in
Plasma) provided clinical, demographic, and genome-wide single-
nucleotide variation (SNV) and copy number variation (CNV) data
for lung cancer cases, as well as codes for reproduction of cor-
responding results [33]. DNA Evaluation of Fragments for Early
Interception (DELFI) offers cell-free DNA (cfDNA) fragmentation
profiles and clinical data for 296 lung cancer patients [34]. Adap-
tive Support Vector Machine (ASVM) integrates cfDNA fragmen-
tome, CNVs, and clinical data for 423 patients across eight cancer
types [35]. The HAM10000 dataset consists of 10 015 multicenter
dermatoscopic images with corresponding clinical data aimed at
improving melanoma detection [36]. These resources are invalu-
able for developing and evaluating MDL algorithms for patient
profiling.

Overview of DL techniques
DL algorithms leverage modular structures to perform complex
functions. For prevalent DL architectures that are applicable
across diverse data types, please see Supplementary Materials 2.
The table of abbreviations and their full forms can be found in
Supplementary Materials 3. Due to privacy and other reasons,
obtaining medical data often faces distinct kinds of limitations.
Missing modalities and labels are common in multimodal
datasets, which contrasts sharply with DL models’ eagerness for
large amounts of labeled data. Fortunately, several techniques
have shown promise to reduce the reliance on extensive data
labeling while maintaining model performance and data security.

Transfer learning
Transfer learning (TL) has emerged as a powerful tool in the field
of DL-based medical data analysis [37]. By delivering knowledge
from one domain to another, TL facilitates the resolution of
analogous tasks. The common attributes found in natural images,
such as colors, edges, corners, and textures, can aid in medical
image tasks like registration, segmentation, and classification.
By maintaining most of the pretrained model weights and just
fine-tuning the last layers, both generalized and domain-specific
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Figure 1. Scope of this review. Multimodal oncology data, DL techniques, and corresponding MDL applications for precision medicine.

Table 1. Public oncology resources for MDL algorithm development

Resource Cancer Modality URL Representative studies

TCGA Pan-cancer Histopathology, multi-omics, clinical data https://portal.gdc.cancer.gov/ [14, 27–30]
TCIA Pan-cancer Histopathology, radiology, MR, US, clinical data https://www.cancerimagingarchive.net/ [31, 32]
Lung-CLiP Lung Clinical data, SNV, CNV https://doi.org/10.1038/s41586-020-2140-0;

http://clip.stanford.edu
[33]

DELFI Lung Clinical data, cfDNA https://doi.org/10.1016/j.chest.2023.04.033;
EDA accession No. EGAS00001005340

[34]

ASVM Pan-cancer Clinical data, cfDNA, CNV https://github.com/ElaineLIU-920/ASVM-
for-Early-Cancer-Detection

[35]

HAM10000 Skin Dermoscopic image, clinical data https://doi.org/10.7910/DVN/DBW86T;
https://isic-archive.com/api/v1

[36]

Note: SNV, single-nucleotide variation; CNV, copy number variation; cfDNA, cell-free DNA.

features are learned, thus saving much annotated data, time, and
computational resources.

Federated learning
Federated learning (FL) is an innovative approach to safeguard-
ing the privacy and security of medical data. It allows multi-
ple participants (referred to as clients) to collaboratively train
a global model without sharing their local data [38]. In this
framework, a central server coordinates multiple training rounds
to produce the final global model. At the beginning of each
round, the server distributes the current global model to all
clients. Each client then trains the model on their local data,
updates it, and returns the modified model to the server. The
server aggregates these updates to enhance the global model,
thus completing one training cycle. Throughout this process,
participants’ data remain on their devices, and only encrypted
model updates are exchanged with the server, ensuring data
confidentiality.

Supervise or not?
The efficacy of DL models hinges on the quality and quantity
of training data. In precision oncology, four primary learning
paradigms—supervised, weakly supervised, self-supervised, and
unsupervised learning—have emerged as pivotal techniques.
While each method possesses distinct characteristics, they
are interconnected and can be complementary in certain
applications.

Supervised learning
Supervised learning (SL) involves training models on labeled
datasets, where each data point is associated with a correspond-
ing target variable. The model learns to map input features to
output labels, minimizing the discrepancy between predicted and
actual values. SL excels in predictive accuracy, making it widely
used for tasks such as classifying tumor subtypes and predicting
patient outcomes [39, 40]. However, SL requires substantial
labeled datasets, which can be challenging to obtain in healthcare,
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http://clip.stanford.edu
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and it assumes a specific data distribution, potentially limiting
generalization ability to unseen data.

Weakly supervised learning
Weakly supervised learning (WSL) addresses the scarcity of
labeled data by leveraging partially labeled or noisy datasets.
A prominent technique is multiple instance learning, which
operates on bags of instances where only the bag is labeled [41].
The model learns to identify patterns within instances to make
predictions for the entire bag. WSL can also use labeling functions
to create training sets. However, weakly supervised labels are
often less accurate than those from human experts, necessitating
careful consideration.

Self-supervised learning
Self-supervised learning (SSL) allows the model to generate its
own labels from the data. Users create a pretext task related to
the primary task of interest. By solving this pretext task, pseudo-
labels are produced based on specific input attributes, enabling
the model to learn representations transferable to the primary
task, even with limited labeled data [42]. SSL is especially useful
when labeled data are scarce or costly to acquire; however, the
design of the pretext task is crucial for ensuring the relevance of
the learned representations.

Unsupervised learning
Unsupervised learning (USL) operates on unlabeled data, identi-
fying patterns and structures without explicit supervision. Statis-
tical methods are employed to uncover underlying relationships.
Techniques such as clustering analysis, dimensionality reduction,
and association rule learning exemplify USL [43–45]. USL offers
the advantage of discovering novel knowledge without relying
on labeled data. However, its results can be non-unique and
less interpretable, making it less suitable for applications where
accuracy is paramount.

The choice of learning paradigm in precision oncology depends
on the specific application, data availability and quality, and the
desired level of accuracy and interpretability. SL is ideal for tasks
with ample labeled data and clear target variables, while WSL
is beneficial when data are limited or noisy. SSL is effective for
pretraining models on large unlabeled datasets, and USL is valu-
able for exploratory data analysis. By understanding the strengths
and limitations of each paradigm, researchers can select the most
suitable approach for their specific research questions.

Integration techniques for multimodal data with
DL
Multimodal modeling addresses the complexities of unstructured
multimodal data, such as images, text, and omics data. It
faces two primary challenges: first, effectively representing data
from each modality; and second, integrating data from diverse
modalities. This section provides an overview of current technical
approaches to these challenges.

Multimodal representation
Multimodal representation involves extracting semantic infor-
mation from diverse data forms into real-valued vectors.
Medical data encompass structured, semi-structured, and
unstructured formats. Effective data representation methods are
vital for revealing relational insights, thereby facilitating accurate
computer-aided diagnosis and prognosis. This representation can
be categorized into unimodal and cross-modal approaches, as
detailed below.

Figure 2. Taxonomy of multimodal fusion strategies.

Unimodal representation
Unimodal representation, or marginal representation, focuses
on distilling key information from a single modality through
various encoding techniques. For textual data, exemplified by
EHRs, word embeddings transform phrases into dense vectors
that capture their semantic meanings, ensuring similar phrases
are closely clustered in a low-dimensional feature space. For
imaging modalities like CT, MRI, and WSI, data are converted
into 2D or 3D pixel matrices, suitable for convolutional neural
networks (CNNs). In ultrasound, endoscopic, and other video data,
individual frames are segmented and encoded similarly to static
images. For genomic and transcriptomic data, one-hot encoding
is commonly employed.

Cross-modal representation
Cross-modal representation, or joint representation, integrates
features from multiple modalities, capturing complementary,
redundant, or cooperative information. Canonical correlation
analysis (CCA) is a traditional method for cross-modal infor-
mation representation, mapping multimodal data—such as
images and text—into a shared latent space by identifying linear
combinations of multidimensional variables [46]. While CCA
enhances multimodal model performance, its linear assumptions
and sensitivity to noise constrain its effectiveness. Recent
advancements focus on multimodal interaction mining and
model efficiency. For example, Zhen et al. developed a spectral
hashing coding strategy for rapid cross-modal retrieval by
employing spectral analysis of various modalities [47]. Cheerla
et al. implemented an attention network to extract cross-modal
features from gene expression data, pathological images, and
clinical information, projecting them into a joint feature space for
representation learning [48]. Zhao et al. proposed a hierarchical
attention encoder-reinforced decoder network to generate natural
language answers in open-ended video question answering [49].

Despite these advancements, current research inadequately
addresses interference and adverse effects from modality-specific
information irrelevant to target tasks. Additionally, existing
encoding methods, often derived from natural language or image
processing, may be overly simplistic for the specialized context
of medical data, leading to complex, redundant structures and
low parameter efficiency in developing multimodal learning
frameworks.

Multimodal fusion
Multimodal feature fusion strategies can be broadly categorized
into three types: data-level fusion, model-based fusion, and
decision-level fusion. When classified by the stage at which fusion
occurs, these correspond to early fusion, intermediate fusion, and
late fusion, respectively (Fig. 2).
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Figure 3. Schematic diagram of (A) early fusion, (B) intermediate fusion, and (C) late fusion. The rectangular box in each section represents the fusion
stage of multimodal features.

Early fusion
Early fusion is the most straightforward approach for integrating
multimodal data, wherein features from diverse modalities are
concatenated and directly input into a DL model (Fig. 3A). This
technique treats the resulting vector as a unimodal input, preserv-
ing the original model architecture. Joint representations of mul-
timodal inputs are learned directly, bypassing explicit marginal
representations. Early fusion can be further divided into two
categories: direct modeling and AutoEncoder (AE) methods.

In direct modeling, multimodal inputs are processed simi-
larly to unimodal inputs. For example, Misra et al. developed
a multimodal fusion framework to classify benign and malig-
nant breast lesions by processing brightness-mode (B-mode) and
strain-elastography-mode (SE-mode) ultrasound images through
separate CNNs for feature extraction, which were subsequently
ensembled using another CNN model [50]. AE methods initially
learn lower-dimensional joint representations, which are then
employed for further supervised or unsupervised modeling. For
instance, Allesøe et al. utilized a Variational AutoEncoder (VAE)
model to integrate multi-omics data, identifying drug–omics asso-
ciations across multimodal datasets for type 2 diabetes patients
[51].

While early fusion effectively captures low-level cross-
modal relationships without requiring marginal representation
extraction, it may struggle to discern high-level relationships
and is sensitive to differences in the sampling rates of various
modalities.

Intermediate fusion
Intermediate fusion involves initially learning each modality
independently before integrating them within a MDL frame-
work (Fig. 3B). This method focuses on generating marginal
representations prior to fusion, allowing for greater flexibility.
Intermediate fusion can be categorized into homogeneous fusion
and heterogeneous fusion based on the networks used for
marginal representation (Fig. 2). In homogeneous fusion, identical
neural networks are employed to learn marginal representations

across modalities, making it suitable for homogeneous modal-
ities. Heterogeneous fusion is applied when modalities differ
significantly, necessitating distinct neural networks for represen-
tation learning. Furthermore, both fusion types can be divided
into marginal and joint categories based on representation
handling. Marginal intermediate fusion concatenates learned
marginal representations as inputs to fusion layers, while
joint intermediate fusion encodes more abstract features from
multiple modalities prior to integration.

In marginal homogeneous intermediate fusion, identical neu-
ral networks learn marginal representations, which are later com-
bined for decision-making. For example, Gu et al. employed a 3D U-
Net to encode positron emission tomography (PET) and CT images
as separate channels, integrating them during the decoding phase
to generate pulmonary perfusion images [52].

Marginal heterogeneous intermediate fusion uses distinct net-
work types for different modalities. The Pathomic Fusion model,
for instance, extracted histological features via CNNs or graph
convolutional neural network, while genomic features were cap-
tured using a feed-forward network. These multimodal features
were then fused through a gating-based attention mechanism
combined with the Kronecker product function [14].

Joint homogeneous fusion begins with concatenating marginal
representations, followed by joint representation learning from
this composite. For example, Yuan et al. constructed two identical
convolutional–long short-term memory (Conv-LSTM) encoders to
extract features from PET and CT, respectively, and these features
were concatenated and transformed by a LSTM module for the
sample [53].

Joint heterogeneous intermediate fusion employs different net-
works for each modality, subsequently deriving joint represen-
tations from concatenated marginal representations. Hu et al.
illustrated this by using a ResNet-Trans network for CT features
and a graph to model relationships between clinical and imaging
features, learning joint representations with a graph neural net-
work for lymph node metastasis prediction [54].

In summary, intermediate fusion strategies offer significant
flexibility in determining optimal fusion depth and sequence,
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potentially revealing more accurate relationships between modal-
ities. However, implementing intermediate fusion requires consid-
erable computational expertise and resources.

Late fusion
Late fusion, inspired by ensemble classification, consolidates
predictions from individual sub-models trained on distinct
data modalities to make a final decision (Fig. 3C). This can
be accomplished through various methods, including voting,
averaging, or meta-learning. For example, Saikia et al. compared
majority voting and weighted voting approaches for predicting
human papillomavirus status using PET-CT images [31]. Sedghi
et al. improved prostate cancer detection by averaging outputs
from temporal enhanced ultrasound and MRI-based U-Nets [55].
Qiu et al. introduced an attention-based late fusion strategy to
integrate complementary information from WSIs and CNVs for
lung cancer classification [27].

While late fusion facilitates comprehensive marginal represen-
tation learning from unimodal models, the reduced interaction
between modalities may lead to irrelevant multimodal features
and complicate model interpretation.

Each fusion strategy has unique advantages and limitations.
The optimal approach depends on various factors, including data
heterogeneity, researcher intuition, biological implications, the
presence of missing values or noise, experimental evidence, com-
putational resources, or a combination of these elements.

MDL applications in precision oncology
The integration of AI at various stages can correlate clinical lab-
oratory tests and examination data with oncological phenotypes.
The adaptability of clinical tasks involving multimodal data varies
across different contexts. This section delves into cutting-edge
MDL applications in cancer management, emphasizing image
analysis, cancer detection, diagnosis, prognosis, and treatment.

Image registration and segmentation
Image processing represents a core application of ML in oncol-
ogy, with key tasks including multimodal image registration and
segmentation. The integration of PET and CT images for lesion
identification and tumor volume delineation is prevalent in clin-
ical practice, yet it remains challenging. Gu et al. utilized a 3D
U-Net architecture, leveraging PET and CT images as dual chan-
nels within a marginally homogeneous intermediate fusion strat-
egy, significantly enhancing the accuracy of pulmonary perfu-
sion volume quantification compared to methods relying solely
on metabolic data [52]. The complexity of understanding spa-
tial correspondences increases when input modalities exhibit
substantial discrepancies in appearance. To mitigate this, Song
et al. proposed a contrastive learning–based cross-modal attention
block that correlates features extracted from transrectal ultra-
sound (TRUS) and MRI. These correlations were integrated into
a deep registrator for modality fusion and rigid image registra-
tion [56]. Additionally, Haque et al. correlated hematoxylin and
eosin–stained WSIs with mass spectrometry imaging (MSI) data to
facilitate modality translation, aiming to predict prostate cancer
directly from WSIs [57].

Segmentation is another classical challenge in image analysis,
critical for accurate diagnosis, therapeutic selection, and efficacy
evaluation. However, segmenting soft tissue tumors, particularly
brain tumors, poses significant challenges due to their complex
physiological structures. Zhao et al. introduced an innovative
glioma tumor segmentation method that integrates fully
convolutional networks (FCNs) and recurrent neural networks

(RNNs) within a unified framework, achieving segmentation
results characterized by both appearance and spatial consistency.
They trained three segmentation models using 2D MRI patches
from axial, coronal, and sagittal views, merging results through
a voting-based fusion strategy [58]. Beyond tissue or organ
segmentation, cell segmentation is fundamental for various
downstream biomedical applications, including tumor microen-
vironment exploration and spatial transcriptomics analysis. In
a challenge aimed at advancing universal cell segmentation
algorithms across diverse platforms and modalities [59], Lee et al.
employed SegFormer and a multiscale attention network as the
encoder and decoder, achieving superior performance in both cell
recognition and differentiation across multiple modalities [60].
Relevant research mentioned in this section is summarized in
Table 2 for further inspection.

Cancer detection, diagnosis, and metastasis prediction
Early detection is paramount for timely treatment and favor-
able prognosis. Currently, MDL methods offer clinicians with
unprecedented opportunities to comprehensively assess patients’
tumor status (Table 3). For instance, Li et al. proposed a VAE-
based framework that integrates single-cell multimodal data,
utilizing SNV features alongside gene expression characteristics
to classify tumor cells [15]. Liu et al. introduced AutoCancer,
which integrates feature selection, neural architecture search,
and hyperparameter optimization, demonstrating strong perfor-
mance in cancer detection using heterogeneous liquid biopsy
data [62].

Precision in tumor diagnosis is a vital area for medical AI
applications. Gao et al. employed CNN and RNN as encoders for
multiphase contrast-enhanced CT (CECT) and corresponding clin-
ical data. These feature sets were concatenated to differentiate
malignant hepatic tumors [63]. Park et al. found that incorpo-
rating metadata, such as the maximum value of the standard
uptake (SUVmax) and lesion size, enhanced the performance
of unimodal CT and PET models [64]. Khan et al. combined CT
features with pathological features using fully connected layers to
classify liver cancer variants [12]. Wu et al. developed a clinically
aligned platform for grading ductal carcinoma in situ, treating
each angle of ultrasound images as a separate modality and
deriving final predictions through max pooling across all angles
[65]. Wang et al. constructed multiple models for ovarian lesion
classification with ultrasound, menopausal status, and serum
data. Their trimodal model achieved superior predictive accuracy
compared to both dual-modality and single-modal approaches
[66]. Similarly, OvcaFinder was created for ovarian cancer iden-
tification, integrating ultrasound images, radiological scores, and
clinical variables [67]. Du et al. aimed to enhance real-time gastric
neoplasm diagnosis by constructing and comparing five models
based on multimodal endoscopy data. Their results indicated
that the multimodal model using the immediate fusion strategy
yielded the best performance [68]. Carrillo-Perez et al. presented
a late fusion model combining histology and RNA-Seq data for
lung cancer subtyping, demonstrating that this integrative classi-
fication approach outperformed reliance on unimodal data [28].
Qiu et al. integrated pathology and genomics data for cancer
classification. Their weakly supervised design and hierarchical
fusion strategy maximized the utility of WSI labels and facilitate
efficient multimodal interactions [27]. Wang et al. employed a
late fusion approach to integrate clinical and dermoscopy images
for malignant melanoma detection [61]. Another study combined
skin lesion images with patient clinical variables, constructing a
multiclass classification model [69].
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Nodal involvement and distant metastasis are critical for
definitive diagnosis, therapeutic decision-making, and prognosis
in cancer patients. Hu et al. integrated CT and clinical features
using a ResNet-Trans and graph neural network (GNN)–based
framework, showcasing promise in predicting lymph node
metastasis (LNM) in non–small cell lung cancer (NSCLC) patients
[54]. Zhong et al. developed a PET-CT-based cross-modal biomarker
to predict occult nodal metastasis in early-stage NSCLC patients,
indicating the superiority of their multimodal model over single-
modal approaches [70].

Overall, tumor detection, diagnosis, and metastasis prediction
involve a diverse array of tumor data modalities, encompass-
ing both the fusion of similar modalities and the integration of
highly heterogeneous modalities. CNNs are commonly employed
in diagnostic models, where supervised learning techniques pre-
vail. Intermediate fusion strategies are frequently utilized, with
comparative studies indicating that intermediate fusion often
surpasses early and late fusion in efficacy. Moreover, the inter-
pretability of features in ML models remains a crucial factor
influencing their potential for clinical translation.

Prognosis prediction
The ability to predict recurrence and survival time in cancer
patients is crucial for selecting and optimizing treatment reg-
imens, particularly in advanced-stage tumors. Enhancing prog-
nosis prediction through the integration of multiple early tumor
indicators could significantly improve the accuracy of clinical
interventions, leading to better patient outcomes and reduced
waste of medical resources.

Recently, MDL has garnered significant attention in tumor
prognosis prediction (Table 4). For instance, Li et al. developed
a two-stage framework that decouples multimodal feature rep-
resentation from the fusion process, demonstrating advantages
in predicting the postoperative efficacy of cytoreductive surgery
for CRC [71]. Miao et al. integrated radiomic features with clin-
ical information, revealing relationships between body compo-
sition changes, breast cancer metastasis, and survival [72]. In
another study, Fu et al. introduced a heterogeneous graph-based
MDL method that encodes both the spatial phenotypes from
imaging mass cytometry (IMC) and clinical variables, achieving
remarkable performance in prognosis prediction across two pub-
lic datasets [73]. Malnutrition is also a critical factor in cancer
prognosis; Huang et al. combined non-enhanced CT features with
clinical predictors to develop models for assessing nutritional
status in gastric cancer, thereby enhancing preoperative survival
risk prediction [77]. Huang et al. constructed an ensemble model
based on EfficientNet-B4, utilizing both PET and CT data to predict
progression in lung malignancies and overall survival (OS). Their
findings indicated that this dual-modality model outperformed
the PET-only model in accuracy and sensitivity, although no signif-
icant differences were observed compared to the CT-only model
[78]. FL presents a promising solution to the challenges posed
by small medical datasets and stringent privacy concerns. For
instance, FedSurv is an asynchronous FL framework that employs
a combination of PET and clinical features to predict survival time
for NSCLC patients [75].

In certain cancers, such as lymphoma, predicting interim out-
comes is vital for adjusting therapeutic regimens and improving
quality of life. Cheng et al. proposed a multimodal approach based
on PET-CT that employs a contrastive hybrid learning strategy
to identify primary treatment failure (PTF) in diffuse large B-cell
lymphoma (DLBCL), providing a noninvasive tool for assessing
PTF risk [53]. Distant recurrence significantly contributes to poor
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prognosis in cancer patients, yet predicting this risk remains
challenging despite insights into correlated factors. To this end,
Volinsky-Fremond et al. designed a multimodal prognostic model
that combines WSIs and tumor stage information to predict recur-
rence risk and assess the benefits of adjuvant chemotherapy
in endometrial cancer, outperforming existing state-of-the-art
(SOTA) methods. Their success can be attributed to the utilization
of Vision Transformer (ViT) for representative learning of WSIs,
alongside a three-arm architecture that integrates prognostic
information from WSIs, molecular phenotypes predicted directly
from WSIs, and tumor stage [29].

Combining MRI or CT with WSI enables a comprehensive
analysis of patient prognosis from both macroscopic and
microscopic perspectives. For instance, Li et al. presented a weakly
supervised framework that employs a hierarchical radiology-
guided co-attention mechanism to capture interactions between
histopathological characteristics and radiological features,
facilitating the identification of prognostic biomarkers with
multimodal interpretability [76]. Chen et al. calculated the
Kronecker product of unimodal feature representations to encode
pairwise feature communications across modalities, controlling
each modality’s contribution through a gating-based attention
mechanism, thereby yielding an end-to-end framework that
combines histological and genomic data for survival outcome
prediction [14].

In summary, patient survival is influenced by numerous fac-
tors, and the intricate interplay among these variables poses
significant challenges for prognostic accuracy, even with exten-
sive clinical data on tumors. MDL presents a novel method for
integrating diverse indicators related to tumor prognosis, offer-
ing the potential to discover new prognostic biomarkers from
cross-scale data. Recent models employing attention mechanisms
have enhanced the interpretability of multimodal features, driv-
ing advancements in AI applications for clinical use.

Treatment decision and response monitoring
Neoadjuvant chemotherapy, targeted therapy, and immunother-
apy are increasingly integral to cancer management. The modern
demand for more effective treatments underscores the need for
accurate, personalized tests over one-size-fits-all approaches. For
example, programmed death ligand-1 (PD-L1) expression status,
evaluated via immunohistochemistry (IHC), serves as a clinical
decision-making tool for immune checkpoint blockade (ICB) ther-
apy. However, many treatments lack specific clinical indicators,
highlighting an urgent need to identify biomarkers that can pre-
dict treatment benefits and support personalized therapy. This
review examines recent advancements in MDL-based treatment
decision-making and response monitoring (Table 5).

To establish appropriate treatment paradigms and prognostic
assessments for intramedullary gliomas, Ma et al. employed a
Swin Transformer to segment lesions from multimodal MRI data.
They combined extracted radiomic features with clinical baseline
data to predict tumor grade and molecular phenotype [79]. Tumor
mutational burden (TMB) has emerged as a promising indicator
of the efficacy and prognosis of ICB therapy in tumors. Huang
et al. developed a surrogate method for predicting TMB from
WSIs in CRC by training a multimodal model that incorporates
WSIs alongside relevant clinical data [30]. Esteva et al. created
an integration framework for histopathology and clinical data to
predict clinically relevant outcomes in prostate cancer patients,
demonstrating enhanced prognostic accuracy compared to exist-
ing tools and providing evidence for treatment personalization
[80]. Zhou et al. introduced a cascade multimodal synchronous Ta
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generation network for MRI-guided radiation therapy, optimizing
time and costs by generating intermediate multimodal sMRI and
sCT data, incorporating attention modules for multilevel feature
fusion [81].

Estimating the efficacy of therapeutic approaches is equally
crucial. While some cancer patients may experience significant
improvement during early targeted therapy, resistance can
develop, rendering treatment ineffective and exposing patients
to adverse side effects. Given the variability and dynamic
nature of treatment responses, current research focuses on
developing effective prediction methods, particularly noninvasive
approaches. Pathologic complete response (pCR) is a recognized
metric for evaluating the efficacy of neoadjuvant chemotherapy
and serves as an indicator of disease-free survival and OS. Joo
et al. developed a fusion model integrating clinical parameters
and pretreatment MRI data to predict pCR in breast cancer,
outperforming unimodal models [82]. Zhou et al. combined
PET-CT, clinical variables, and IHC scores within a multimodal
framework to predict the efficacy of bevacizumab in advanced
CRC patients, utilizing a 2.5D architecture for feature extraction
[83]. Gu et al. applied a DenseNet-121-based multimodal frame-
work to integrate ultrasound and clinicopathological data for
stratifying responses to neoadjuvant therapy in breast cancer
[84]. Rabinovici-Cohen et al. predicted post-treatment recurrence
in breast cancer patients by combining MRIs, IHC markers, and
clinical data within a heterogeneous multimodal framework,
demonstrating the advantages of multimodal fusion [85].

Accurate prediction of treatment outcomes before, during, and
after therapy is essential for developing optimal individualized
strategies, ultimately enhancing progression-free survival and OS
for cancer patients. Current MDL methodologies exhibit remark-
able advantages in integrating multisource data, often surpassing
single-modality models in accuracy, positioning them favorably
to advance clinical decision-making and efficacy evaluation in
oncology.

Discussion and conclusion
Recent advancements in medical imaging and sequencing tech-
nologies have led to an exponential increase in biomedical multi-
modal data. As the demand for precise tumor diagnosis and per-
sonalized treatment continues to rise, effectively harnessing this
wealth of data presents a significant challenge in clinical oncol-
ogy. The impressive success of DL in domains such as computer
vision and NLP has catalyzed its application in tumor diagnosis
and treatment within medical AI. Substantial evidence indicates
that multimodal fusion modeling of biomedical data outperforms
single-modality approaches in performance metrics [70, 78, 82,
85]. Consequently, we propose that MDL methods have the poten-
tial to serve as powerful tools for integrating multidisciplinary
diagnostic and therapeutic data in oncology.

This paper first introduces the key data modalities relevant
to clinical tumor management (Supplementary Materials 1), dis-
cussing their clinical significance. We also provide a summary
of publicly available multimodal oncology datasets, ranging from
large-scale databases like TCGA and TCIA to specialized datasets,
such as HAM10000, which focus on specific tumor types or popu-
lations. These resources offer valuable data for researchers in the
field.

We then outline fundamental DL concepts and common
network architectures (Supplementary Materials 2), guiding
researchers in selecting appropriate frameworks and methods

for constructing MDL models. A review of SOTA modality-
specific and multimodal representation techniques follows, with
a focus on early, intermediate, and late fusion strategies. Evidence
suggests that intermediate fusion models often outperform early
or late fusion approaches [55, 68], so we provide an in-depth
discussion of this method, categorizing it into homogeneous
and heterogeneous fusion, as well as marginal versus joint
fusion. This categorization allows readers to choose suitable
representation and fusion strategies based on the heterogeneity
and computational demands of their multimodal data.

Finally, we explore cutting-edge applications of MDL in oncol-
ogy, covering areas such as multimodal data processing, tumor
detection and diagnosis, prognosis prediction, treatment selec-
tion, and response monitoring. These applications highlight the
latest advancements and emerging trends in MDL for precision
oncology. However, challenges remain, as detailed in the follow-
ing part.

Challenge 1: scarcity of large open-source
multimodal datasets and annotated information
Stringent ethical reviews constrain the acquisition of medical
data, leading to a shortage of multimodal datasets, which contra-
dicts AI’s reliance on big data. To improve model generalization,
training on multicenter datasets is often necessary, but privacy
concerns and labor-intensive data collection methods impede
data sharing. FL has emerged as a promising solution, allowing for
distributed model training without direct data exchange. [86]. In
FL, only model parameters are shared and aggregated, addressing
data privacy issues. As FL technology evolves, real-time data
circulation among medical centers will become more feasible,
enabling large-scale, standardized biomedical multimodal
datasets.

Another common issue with multimodal datasets is modality
incompleteness. For example, full multimodal MRIs typically con-
sist of pre-contrast T1, T2, fluid attenuated inversion recovery,
and post-contrast T1 scans. Missing sequences due to factors
such as acquisition protocols, scanner availability, or patient-
specific issues complicate joint modeling. In practice, prioritiz-
ing modality completeness or diversity depends on the task;
for instance, when crucial modalities are missing, completeness
should take precedence, whereas modality diversity may be more
beneficial in other cases. Approaches to address missing modal-
ities include modality synthesis, knowledge distillation, latent
feature models, and domain adaptation techniques [87–89]. How-
ever, challenges such as long training times and model com-
plexity remain, underscoring the need for more efficient solu-
tions. To enhance clinical applicability, we recommend prioritiz-
ing clinically accessible and affordable modalities over complex
datasets, enabling broader adoption of multimodal AI in precision
oncology.

Furthermore, the scarcity of fully annotated multimodal
datasets remains a bottleneck for MDL model development. While
vast amounts of unlabeled cross-modal data are available, labeled
data are limited and often noisy. Improving annotation reliability
through partial label information is critical. Our review identifies
two weakly supervised annotation approaches: (1) active learning,
which selects reliable labels from pseudo-clusters and iterates
from “easy” to “hard” annotations, and (2) data- and knowledge-
driven annotation, which enhances accuracy by leveraging data
characteristics and prior knowledge. These approaches can
improve annotation efficiency and model robustness, advancing
the application of MDL in precision oncology.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae699#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae699#supplementary-data
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Challenge 2: insufficient fine-grained modeling
in MDL and the need for model optimization
Precision oncology is a multifaceted process involving various
stages, and the increasing complexity of new therapies contin-
ues to challenge AI applications in oncology. While current MDL
efforts focus on tasks such as tumor segmentation, detection,
diagnosis, prognosis, and treatment decision support, many areas
remain underexplored, and fine-grained models are often lacking.
To improve generalization across tasks, it is essential to integrate
diverse techniques and domain-specific expertise, enhancing the
capability of pretrained models.

The high heterogeneity and cross-scale nature of multimodal
medical data pose significant challenges for efficient integration.
Fusion strategies are typically categorized into early, intermedi-
ate, and late fusion. Early fusion, while intuitive, often fails to
establish deep interactions between modalities, leading to subop-
timal information utilization. Intermediate fusion generates more
diverse fused features but increases model complexity, which can
lead to overfitting. Late fusion, typically used at the decision level
as an ensemble method, becomes less efficient as the number of
modalities grows, resulting in linear increases in parameter count,
training inefficiency, and greater sensitivity to modality noise.

Overall, existing methods struggle to balance intra-modality
processing with inter-modality fusion, resulting in performance
bottlenecks and increased computational costs. Promising
solutions include compressing multimodal architectures, such as
multitask models that can train on diverse data types (e.g. images,
videos, and audio) simultaneously. Hybrid fusion approaches,
which combine the strengths of different fusion strategies,
also hold potential. However, the effectiveness of these models,
originally designed for natural images or audiovisual data,
remains to be fully validated in the context of biomedical data.

Challenge 3: poor interpretability of MDL
Explainability has become a major concern in medical AI. The
high dimensionality and heterogeneity of multimodal data exac-
erbate this issue, and the latent embeddings generated after data
fusion frequently lack clear connections to the original modalities,
further hindering transparency.

Current efforts to enhance explainability typically leverage
domain knowledge. Techniques such as ablation studies, feature
clustering, and activation maps illuminate key decision areas,
helping researchers and clinicians better understand the
decision-making processes [90–92]. Some studies have explored
graph-based methods, particularly in radiomics and omics, to
illustrate relationships between data components and offer more
intuitive explanations [93]. Model-agnostic methods, such as
Local Interpretable Model-Agnostic Explanations, approximate
complex model behaviors with simpler local models to improve
interpretability [94].

Debate continues within the academic community about
whether AI models should inherently possess explainability
or rely on post hoc interpretability techniques (e.g. saliency
maps or attention mechanisms). Future AI applications should
prioritize biologically inspired explainable models that enhance
performance while providing clear, understandable rationales for
their decisions, thereby fostering clinician trust. Incorporating
clinical domain knowledge into model design and developing
user-friendly interaction platforms can help mitigate the “black-
box” nature of AI tools, ultimately improving diagnostic accuracy.
Additionally, better visualization tools will be essential for
addressing interpretability challenges. These tools will visually

represent the internal workings of models, making it easier for
users to grasp decision rationales.

Challenge 4: static models and group
spectroscopy in MDL
Current MDL models are often static, resulting in delays in tumor
prediction and hindering timely assessments of tumor progres-
sion, drug resistance, and toxicity. Future models should incor-
porate dynamic medical domain knowledge, establishing real-
time MDL frameworks to improve data processing and integration.
Additionally, mechanisms to manage modality inconsistency and
missing data would broaden the applicability of these models.

While most existing models are group based, precision oncol-
ogy requires personalized treatment plans tailored to individual
patients. Therefore, patient-specific MDL models are a critical
future direction. Other challenges include the evaluation of MDL
models in clinical context, and the security of multimodal data
collection, transmission, and sharing. Multidisciplinary collabo-
ration are needed to solve these issues.

Challenge 5: evaluation of MDL models in clinical
settings
Evaluating the clinical effectiveness of MDL models presents a
novel and formidable challenge. Due to the inherent complexity
of MDL architectures, the high heterogeneity and dimensionality
of the data, and the diverse nature of the modalities involved,
clinical assessment goes beyond simply measuring model accu-
racy. It must also account for time and data costs, as well as the
incremental information gain provided by the inclusion of addi-
tional modalities. These factors are critical for optimizing cost-
effectiveness and harnessing the synergistic potential of multi-
modal data. Consequently, in addition to conventional evaluation
metrics used for unimodal models, it is important to incorporate
indicators such as modality-specific information gain (e.g. mutual
information), clinical feasibility (as assessed by multidisciplinary
expert panels), and the computational complexity that escalates
with the increasing number of modalities (e.g. linear or exponen-
tial growth). As MDL methods continue to evolve and see broader
clinical adoption, establishing a rigorous evaluation framework
will be indispensable.

In summary, our research highlights the growing role of MDL
in precision oncology, fueled by the rapid expansion of biomedi-
cal big data and advancements in DL. Multimodal fusion meth-
ods offer substantial value for cancer management by integrat-
ing diverse modalities to provide comprehensive and accurate
insights. However, the full potential of multimodal data remains
underexplored. Key improvements are needed in handling data
heterogeneity, refining fusion strategies, and optimizing network
architectures for clinical scenarios.

Key Points

• This review synthesizes recent advances in MDL for pre-
cision oncology, covering applications in image process-
ing, diagnosis, prognosis prediction, treatment decisions,
and response monitoring. We also discuss publicly avail-
able multimodal datasets and provide a comparative
analysis of deep learning techniques, modality represen-
tation, and fusion strategies.

• While multimodal models generally show improved per-
formance over unimodal ones, attention-based archi-
tectures and intermediate fusion strategies are often



Multimodal deep learning approaches for precision oncology | 13

effective. However, with varied data noise, evaluation
metrics, and statistical methods between studies, defini-
tive conclusions on the superiority of specific methods
are not yet established.

• Despite progress, challenges in integrating multimodal
data persist. Effective fusion methods and adaptive MDL
frameworks are crucial to overcoming issues like data
heterogeneity, incompleteness, and feature redundancy,
paving the way for the broader adoption of precision
oncology.
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