Skip to main content
. 2025 Jan 5;26(1):bbae699. doi: 10.1093/bib/bbae699

Table 2.

Representative studies focus on multimodal image process

Topic Study (year) Cancer Modality Backbone Learning method Dataset Fusion strategy Code availability Data availability
Registration Song et al. (2023) [56] Prostate MRI, TRUS CNN, attention Supervised 662 patients Intermediate https://github.com/DIAL-RPI/ Attention-Reg Partial available
Registration Haque et al. (2023) [57] Prostate MSI, WSI CNN Supervised 5 patients Early https://github.com/inzamam1190/HEtoMALDI Need request
Registration and segmentation Gu et al. (2023) [52] Esophagus, lung PET-CT FCN Supervised 53 patients Early No Need request
Segmentation Lee et al. (2023) [60] Various cancers Multimodal microscopy images Transformer Semi-supervised 7242 images Early https://github.com/Lee-Gihun/MEDIAR Yes
Segmentation Zhao et al. (2018) [58] Glioma Multimodal MRI FCN, RNN Supervised 465 patients Late No Yes

Note: CNN, convolutional neural network; TRUS, transrectal ultrasound; MSI, mass spectrometry image; WSI, whole slide image; FCN, fully convolutional network; RNN, recurrent neural network.