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ABSTRACT
Transcranial ultrasound imaging is a popular method to study cerebral functionality and diagnose brain injuries. However, 
the detected ultrasound signal is greatly distorted due to the aberration caused by the skull bone. The aberration mechanism 
mainly depends on thickness and porosity, two important skull physical characteristics. Although skull bone thickness 
and porosity can be estimated from CT or MRI scans, there is significant value in developing methods for obtaining thick-
ness and porosity information from ultrasound itself. Here, we extracted various features from ultrasound signals using 
physical skull-mimicking phantoms of a range of thicknesses with embedded porosity-mimicking acoustic mismatches and 
analyzed them using machine learning (ML) and deep learning (DL) models. The performance evaluation demonstrated that 
both ML- and DL-trained models could predict the physical characteristics of a variety of skull phantoms with reasonable 
accuracy. The proposed approach could be expanded upon and utilized for the development of effective skull aberration 
correction methods.

1   |   Introduction

Transcranial ultrasound imaging is a potentially valuable 
noninvasive method to assess cerebral functionality and diag-
nose possible brain injuries [1]. However, a major limitation in 
transcranial imaging is the presence of skull bone, which acts 
as a dispersive barrier and causes distortion to the amplitude 
and phase of the received acoustic waves [2–4]. This distortion 
is evident in terms of acoustic attenuation, dispersion, signal 
broadening, and temporal shift [5, 6]. The degree of distortion 
caused by these phenomena depends primarily on the acoustic 
properties of the cranium (i.e., speed of sound, density, absorp-
tion, scattering, and acoustic impedance) [7, 8]. However, these 
acoustic properties can be determined from the mechanical 
characteristics of the skull bone (i.e., bone type, density, po-
rosity, and thickness). Among these parameters, thickness and 

porosity, which vary depending on location, age, and gender, 
have one of the most significant impacts [5, 9–14]. Since thicker 
skull bones force the acoustic pressure wave to propagate longer 
distances with a high absorption rate, the amplitude is greatly 
impacted in terms of attenuation. Simultaneously, higher po-
rosity increases the frequency of propagating media interfaces 
(bone-fluid), introduces scattering phenomena [9], and affects 
the phase information in terms of dispersion [8], broadening 
(widening of the pulse) [15], and temporal shift [8, 15–20]. 
Therefore, the estimation of the thickness and porosity of the 
skull bone is of great interest. Methods to noninvasively esti-
mate these parameters would help recover the original signal 
and would be a major advancement in brain imaging.

While computed tomography (CT) and magnetic resonance 
imaging (MRI) using methods such as ultrashort time echo 
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(UTE) and zero time echo (ZTE) imaging can predict skull 
thickness and porosity [21], they are not widely available and 
require relatively long scan times [21, 22]. Ultrasound is widely 
available, and innovative technologies could be harnessed to 
determine thickness and porosity, but few analytical-based ap-
proaches have been tested to make such predictions [23, 24]. 
Some that have been tried include porosity prediction from 
ultrasound backscatter using multivariate analysis [20]; use 
of axial transmission velocities [12]; and thickness prediction 
using Sono Pointer [25]. However, these methods predict either 
porosity or thickness, require user inputs, and demonstrate re-
sults that vary significantly between studies. With the ability to 
train models from image sets, machine learning (ML) and deep 
learning (DL) techniques have the potential for better inter-
pretation of imaging data across diverse applications [26–31], 
offering a solution to challenges that traditional methods en-
counter [32].

If appropriate features can be extracted from the data, ML mod-
els can be trained using a relatively small dataset. Conversely, 
if no relevant features are known, DL models can explore 
existing data to identify the most relevant features. Over the 
years, DL models have shown prominent results in the field of 
phase recovery and scattering imaging for different modali-
ties including ultrasound imaging [33, 34]. To our knowledge, 
while there are studies using DL models for extracting skull 
characteristics from other imaging technologies such as MRI 
and CT [35], there are few using ultrasound data [36–39]. In 
[36], the authors estimated the micro-architectural parame-
ters of cortical bone such as pore diameter, pore density, and 
porosity using an artificial neural network. However, the re-
search was limited by only using simulation data for training 
and testing. Also, the results were limited to predicting the 
porosity of cortical layers, where the size of the pores is in the 
micron range. Porosity in this range does not affect the acous-
tic wavelengths typically used in transcranial imaging.

According to [5], the diploë layer of skull bone consists of a more 
complex formation of porous and bone structures that domi-
nates the acoustic scattering, and hence distortion of the ultra-
sound pressure wave. In addition to the variability of porosity, 
the thickness of the diploë layer varies with age [11]. Therefore, 
a good model must predict both porosity and thickness of diploë 
type skull bone in order to compensate for aberrated acoustic 
signal [17].

In this paper, our objective was to achieve high accuracy for 
determining skull bone thickness and porosity in order to im-
prove our understanding of the influence of diploë layer char-
acteristics. Such an objective could enable the development of 
effective skull aberration correction methods. We have uti-
lized both ML and DL approaches to test their capability to 
determine the “thickness” and “porosity” of solid skull phan-
toms, where we varied phantom thickness to mimic changes 
in skull thickness and mixed varying concentrations of poppy 
seeds into resin to mimic porosity [40, 41] (200 phantoms with 
varied thickness and porosity were made). After we explain 
the method of preparing the skull phantoms, we describe the 
selected ML and DL approaches. The results for determining 
thickness and porosity are reported separately.

2   |   Materials And Methods

2.1   |   Sample Preparation and Experimental Setup

The diploë type skull bone phantom was prepared from a mix-
ture of titanium dioxide (Loudwolf, USA), (1% w/w) and differ-
ent concentrations of poppy seeds in an epoxy resin solution 
(Clearcast 7050, The Epoxy Resin Store) (2:1 hardener: epoxy). 
First, the titanium dioxide is homogenized with the resin hard-
ener with the help of a vortex mixer and a sonicator bath. Then, 
the resin was added, and the mixture was vortexed and soni-
cated again before being poured into a Petri dish and placed in-
side a vacuum chamber for 30 min to eliminate any air bubbles 
before solidification. A predefined number of poppy seeds are 
added to the solution inside the Petri dish before placing it in 
the vacuum chamber. A further detailed explanation of the skull 
bone phantom preparation method can be found in [42]; top and 
side views of phantoms showing a range of poppy seed concen-
trations and thicknesses can be seen in Figure 1a (top view) and 
Figure 1b (side view).

A total of 180 samples (diameter: 30 mm) were created with dif-
ferent thicknesses ranging between 1 and 7 mm and different 
concentrations of poppy seeds (range from 10.5% to 22.5% w/w). 
Addition of poppy seeds (diameter: ~1 mm) was used to repre-
sent fluid-filled pockets within the diploë layer of the skull bone 
[42]. This range of poppy seed concentrations was selected to 
mimic a range in porosity of 21%–42% (Figure 1f). We calculate 
porosity by image segmentation of each sample's cross-section, 
using the ratio between the detected seeds in the image and the 
total surface. The presence of the seed inside the sample gener-
ates similar acoustic behavior as is produced in the real skull 
porous region due to the impedance mismatch (high changes in 
density and speed of sound between two environments at their 
interface), creating phenomena such as reflection, mode conver-
sion, refraction, and signal distortion [43]. For each seed mass 
concentration, 20 samples were made with variable thickness 
(ranging from 1 to 7 mm).

Skull phantoms were suspended in a water-filled (coupling me-
dium) bucket that was normal to the ultrasound sensor surface. 
To detect ultrasound pressure waves generated from acoustic re-
flection at the phantom-water interface, we used a linear array 
transducer (L12-5, ATL-Philips, USA). The acquired signals 
were sampled at 62.5MS/s using a Vantage 256 system (Vera 
Sonics Inc., USA). We acquired 50 signals from each element 
of a linear array probe, averaging them to suppress background 
noise and address the random distribution of seeds in the sam-
ple. The width of the probe, with elements spaced 0.2 mm apart 
and positioned parallel to the sample's center, means each el-
ement experiences a slightly different acoustic path through 
the sample. These signals were averaged to represent the char-
acteristics of the sample (Figure 1c). Each averaged signal was 
decomposed into two parts: the first echo (#2 in Figure 1d) rep-
resents the reflection at the top interface between the water and 
the sample and the second echo (#3 in Figure 1d) represents the 
reflection at the bottom interface between the sample and the 
water. To isolate each echo during the signal processing, the en-
velope of the entire signal was obtained, locating the maximum 
of each signal and their starting/ending points.
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2.2   |   Dataset

We utilized the averaged signals from our 180 phantoms of 
varying thickness and porosity, shown in Figure 1e, to train 
the system. For the thickness predictions, 144 samples were 

used for training, which, for DL models, includes 129 sam-
ples for training and 15 for validation, and then 36 samples 
were used for testing. For the porosity predictions, we have 
the same 180 samples representing 9 different porosity values. 
Among the 180 samples, 171 were used for training, which, 

FIGURE 1    |    Skull phantoms and signal acquisition from same. (a) Top view of samples with different concentrations of poppy seeds (10%–22.5%). 
(b) Side view of samples showing samples of different thicknesses. (c) Schematic of the experimental setup used to obtain the signals. (d) An example 
of the acoustic signal obtained from the samples. (e) Thickness and calculated porosity of 180 phantoms. (f) Relationship between poppy seed 
concentration and sample porosity as empirically measured.
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for DL models, includes 153 for training and 18 for validation, 
and 9 (one from each porosity) were used as a test dataset. The 
rationale for selecting the size of training/testing/validation 
datasets can be found in [44].

2.3   |   Dataset Preprocessing and Feature Extraction

As a first data preprocessing step, we used min–max normal-
ization to the signals to maintain data consistency [45]. This 
ensures that all signals are scaled to the same range, which is 
essential for effective model training. Next, we extracted fea-
tures from the normalized signals. In our previous work [42], we 
extracted many features from ultrasound signals of skull phan-
toms and analyzed whether they varied with changes in phan-
tom width and porosity. There, we identified nine features that 
were the most significant. These features are shown in Table 1. 
Detailed descriptions of these features can be found in our prior 
publication [42]. To ensure that features with larger numerical 
values do not disproportionately influence the results, we nor-
malized them using standard scaling before applying ML and 
DL techniques.

For our DL experiments, we used either the same nine features 
or the envelope of the signal.

2.4   |   Implementation of Three ML 
Regression Models

We employed ML techniques, where we used the nine features 
identified above as inputs. ML regression models use combina-
tions of independent variables (in our case signal features) to map 
input features to an output value (thickness or porosity). Three al-
gorithms of increasing complexity were tested. The first method is 
multiple linear regression (MLR), which explores linear relation-
ships between the nine features and the target variables [46]. This 
method allowed us to quantify the influence of each feature on 

the target by estimating the regression coefficients. The general 
form of the MLR equation is

where �0 represents intercept, � i represents the learned coefficient 
of Xi, Xi represents the ith feature value, and Y  represents the target 
value. Ridge linear regression (RLR) is an extension of MLR that 
includes a regularization term to prevent overfitting and enhance 
model generalization. By adding a penalty proportional to the 
squared magnitude of the coefficients [47], RLR reduces the im-
pact of less important features, thereby providing more stable and 
reliable coefficient estimates. While the equation for RLR is the 
same as for MLR, RLR utilizes a loss function with an additional 
penalty component, λ, which demonstrates a regularization pa-
rameter (controls the amount of shrinkage applied to coefficients).

Loss Function:

Polynomial Regression (PNR) is another extension of MLR used 
to identify nonlinear relationships between the nine features 
and the dependent variables [48]. The model is defined as

where Y  is the dependent variable, X  is one of the features, �0, 
�1, �2… � i are the coefficients, and i is the degree of the polyno-
mial. For this study, we used a polynomial degree of 2, which 
incorporates all squared features and all pairwise interaction 
terms. This degree was chosen because it allows for simpler in-
terpretation by limiting the model to linear and quadratic inter-
actions, while also minimizing the risk of overfitting. For our 
system with nine original features, this translates to a total of 54 
features (9 original features, 9 squared features, and 36 paired 
interactions).

2.5   |   Implementation of Two DL Models

Additionally, we explored two DL techniques with two differ-
ent input datasets: One using the same nine features as inputs 
(see Table  1) and another using the envelope as input. Use of 
the envelope allows the models to autonomously learn the most 
relevant features. This approach minimizes the risk of overlook-
ing potentially important features that might be missed with 
manual feature selection. By using the entire signal, the model 
is able to learn intricate patterns and complexities within the 
data, thereby identifying the most significant features without 
relying on prior assumptions.

To reduce model complexity while still capturing intricate fea-
tures that might have been overlooked during manual selection, 
we designed two DL models, the first of which is a feed-forward 
neural network (FFN) consisting of an initial dense layer with 
8 units, followed by a dense layer with 4 units, and finally, an 
output layer for prediction (Figure 2a). We modify the FFN by 
introducing a convolution layer to build our second DL model, 

(1)Y = �0 + �1X1 + … + � iXi

(2)min
�
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n
∑

i=1

(
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i
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� jX
2
j

))

+ �

i
∑

j=1

�2j

(3)Y = �0 + �1X + �2X
2
… + � iX

i

TABLE 1    |    Feature table with corresponding descriptions.

Feature 
name Feature description

Delay Delay between the first and 
second peak (TD)

Slope Slope between the first and 
second peak (TD)

SA-Total-T Surface area of complete signal (TD)

Phase-Shift-T Phase shift of complete signal (TD)

FWHM-SP-T FWHM of second peak (TD)

SA-Total-F Surface area of complete signal (FD)

SA-SP-F Surface area of second peak (FD)

FWHM-Total-F FWHM of complete signal (FD)

FWHM-SP-F FWHM of second peak (FD)

Abbreviations: FD, frequency domain; FWHM, full width half maximum; SA, 
surface area; SP, second peak; TD, time domain.
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a convolution neural network (CNN) [49, 50] to add complexity, 
as it allows hierarchical decomposition of input, and can extract 
high-level features from the input. The CNN design is shown in 
Figure  2b. The architecture consists of one convolutional hid-
den layer with a set of filters whose parameters were learned 
throughout the training process and a feed-forward network. 
These parameters are utilized to obtain the unique and hidden 
learning features which are essential for mapping.

Given different ultrasound signals acquired from skull phantoms 
with varied thickness and porosity values, our neural networks 
learn the distinctive features from the signal and map them to 
the actual thickness or porosity value. Over the years, FFN and 
CNN and their variations have been used in biomedical imaging 
to solve problems such as seizure prediction [31, 51] and EEG data 
classification [52]. More complex DL architectures such as long 
short-term memory (LSTM) and generative adversarial networks 
(GANs) require large amounts of training datasets, whereas sim-
ple neural networks (few layers) have performed well on small 
datasets [53]. Another reason for selecting simple neural networks 
is the relatively small size of the inputs: in one set of experiments, 
we use only nine features, and in another, we employ an enve-
lope of length 200 which is straightforward, lacking complexities 
such as dips or noise. We aimed to predict continuous values—
thickness and porosity—by optimizing filter parameters through 
the minimization of a loss function using as input either the 
extracted features (CNN-F or FFN-F) or the extracted envelope 
(CNN-E or FFN-E). Hyperparameter tuning led us to utilize the 
Adam optimizer with 2500 epochs and employ the mean absolute 
error (MAE) as the loss function for porosity and mean squared 
error (MSE) as the loss function for thickness.

3   |   Results And Discussion

3.1   |   Thickness

Table  2 reports the combined results for all methodologies 
(ML and DL) predicting thickness. The results of the models 
are summarized as follows: The MLR model achieved the best 
performance of all the models, but all the ML models were very 
similar (and good, average R2 = 0.907 ± 0.004). MLR showed 
an MAE of 0.29, MSE of 0.13, and RMSE of 0.36. The PNR 
model yielded an MAE of 0.30, MSE of 0.14, and RMSE of 0.38, 
while RLR showed an MAE of 0.32, MSE of 0.15, and RMSE 
of 0.39. Among the DL models, FFN-F had the best perfor-
mance, with an MAE of 0.31, MSE of 0.24, RMSE of 0.49, and 
R2 = 0.85. The CNN-F model had higher error metrics with an 
MAE of 0.71, MSE of 0.89, and RMSE of 0.94. When using the 
envelope as input, the FFN-E model recorded an MAE of 0.65, 
MSE of 0.68, and RMSE of 0.82, whereas the CNN-E model 
showed an MAE of 0.64, MSE of 0.66, and RMSE of 0.81. 
Overall, the ML models slightly outperformed the DL models 
for determining thickness. Among the DL models, those using 
features as inputs (FFN-F and CNN-F) performed better than 
those using envelopes (FFN-E and CNN-E). This suggests that 
envelope-based inputs may not be as effective as features for 
predicting thickness.

Figure  3 shows the best-performing models from both ML 
and DL methodologies for predicting thickness: MLR for ML 
(Figure 3a) and FFN-F for DL (Figure 3b). The figure highlights 
the accuracy of the predicted thickness values. Some outliers are 
observed: we anticipate that increasing the size of the training 
dataset would help reduce these discrepancies and improve the 
overall accuracy of the models.

3.2   |   Feature Contributions to ML 
Thickness Model

The relative contributions of the features for the MLR model are 
shown in Figure  3a. Slope contributes the most to the model, 
with a weight of 80.19%. The second most significant feature is 
FWHM-Total-F, contributing 19.21%. The results indicate that 
thickness can be reasonably well portrayed by linear combina-
tions of the two identified features.

FIGURE 2    |    A schematic overview of the FFN and CNN 
architectures used in this study. (a) FFN architecture; DL#1 (8 units) 
and DL#2 (4 units) are both dense layers. (b) CNN architecture; CL 
#1 represents a convolutional layer (8 filters), FL represents a Flatten 
layer, and DL represents a dense layer (4 units). In (b), the dotted lines 
illustrate how each part of the input is processed by different filters in 
the convolutional layers, visually representing the learning process and 
the interaction of various filters with different regions of the input data.

TABLE 2    |    Performance comparison of models for predicting 
thickness values (mm): MAE, MSE, and RMSE Metrics (models 
depicted in bold are graphed in Figure 3).

Model MAE MSE RMSE

MLR 0.29 0.13 0.36

PNR 0.30 0.14 0.38

RLR 0.32 0.15 0.39

FFN-F 0.31 0.24 0.49

CNN-F 0.71 0.89 0.94

FFN-E 0.65 0.68 0.82

CNN-E 0.64 0.66 0.81
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3.3   |   Porosity Results

Table  3 contains the combined results for all methodologies 
predicting porosity using the same performance metrics 
(MAE, MSE, and RMSE). Among the models, the CNN-E, DL 
model achieved the best overall performance, with the low-
est MAE of 2.98, MSE of 17.94, and RMSE of 4.23. The RLR 
model achieved the best performance from the ML category, 
exhibiting a competitive performance with an MAE of 3.42, 
MSE of 17.01, and RMSE of 4.13 (R2 = 0.47). While FFN-E 
also performed well, achieving an MAE of 3.21, MSE of 19.04, 
and RMSE of 4.36, the feature-based DL models (FFN-F and 
CNN-F) had higher error metrics. FFN-F recorded an MAE 
of 4.10, MSE of 23.82, and RMSE of 4.88, while CNN-F had 
an MAE of 3.18, MSE of 23.79, and RMSE of 4.87. Among all 
other ML models, PNR showed relatively higher error rates 
with an  MAE of 3.42, a surprising MSE of 94.54, RMSE of 
9.72, and R2 of 0.10. MLR performed nearly as well as RLR, 
with an MAE of 3.42, MSE of 17.16, RMSE of 4.14 and R2 of 
0.46. The superior performances of the FFN-E and CNN-E 

models highlight the advantage of using envelope data for im-
proved porosity prediction accuracy despite potential relation-
ships suggested between features and porosity in [42].

3.4   |   Feature Contributions to Porosity ML Models

The relative contributions of the RLR features are shown in 
Figure  4a: SA-SP-F contributes the most to the model, with a 
weight of 43.15%. The second most significant feature is SA-
Total-F, contributing 23.74%, followed by FWHM-SP-T at 
12.35%. The other features, FWHM-SP-F and SA-Total-T, con-
tribute 10.25% and 7.57%, respectively. This distribution sug-
gests that surface area (SA) and FWHM, both in the time and 
FD, are the most influential features in predicting porosity, with 
some contributions from other features as well.

Reviewing Figure  4, it is clear that while the general trend is 
captured, the performance at the extremes, particularly on 
higher values, suggests a need for improvement. This indicates 
that the models struggle to predict at the upper end of the range, 
possibly due to the limited data available for these higher values. 
Our use of poppy seeds simulated a porosity range of 21%–42%. 
For comparison, the porosity of the parietal bone varies, with 
the outer and inner tables typically having porosities between 
10% and 30%, while the central diploe layer has a much higher 
porosity, ranging from 50% to 80% [10]. On average, the entire 
bone likely exhibits a porosity in the range of 20%–41%, which is 
consistent with the range simulated by our poppy seed concen-
trations. While our model successfully captures this average po-
rosity, more complex phantoms with multiple layers exhibiting 
different porosity values would provide a more accurate repre-
sentation of bone structure.

Up to this point, we have described our results for independent 
models generated to predict either thickness or porosity from 
our phantoms, where a range of models for each variable were 
trained and tested separately. We also designed a model to pre-
dict both thickness and porosity simultaneously. To enhance the 
simultaneous model's accuracy, we introduced additional com-
plexities to capture more detailed lower-level features. However, 
this approach resulted in a high MSE for both predictions (data 
not shown). We then sought to analyze the variables sequentially 
by first finding thickness, and then feeding thickness values into 

FIGURE 3    |    Evaluation of the performance of thickness prediction 
on the test data. (a) best ML architecture (MLR: multiple LR) and (b) best 
DL architecture (FFN-F). Percent contributions of the most significant 
features are shown for the ML architecture. Multiple LR: multiple linear 
regression; FFN-F: feed-forward network (features as input).

TABLE 3    |    Performance comparison of models for predicting 
porosity values (%): MAE, MSE, and RMSE Metrics (models depicted in 
bold are graphed in Figure 4).

Model MAE MSE RMSE

MLR 3.42 17.16 4.14

PNR 3.42 94.54 9.72

RLR 3.42 17.01 4.13

FFN-F 4.10 23.82 4.88

CNN-F 3.18 23.79 4.87

FFN-E 3.21 19.04 4.36

CNN-E 2.98 17.94 4.23
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the porosity model. However, incorporating thickness values 
into the porosity model did not improve performance. To un-
derstand these results, we generated a correlation matrix en-
compassing the nine identified features as well as thickness and 
porosity. Analysis of the matrix indicated that thickness and po-
rosity are driven by distinct signal features, with no significant 
correlation between them. Based on these findings, we decided 
to develop two separate models, one for each variable, to opti-
mize accuracy for both thickness and porosity separately.

Analyzing the range of models tested for predicting thickness, 
it is evident that the ML models performed exceptionally well, 
demonstrating that they were able to effectively leverage the in-
formation contained in the features to extract thickness. This 
may be because the ML models worked with specific features 
that had previously been demonstrated to be highly correlated 
with thickness [42]. Two key features that significantly contrib-
uted to thickness prediction in ML models were Slope in the 

time domain and FWHM of the complete signal in the frequency 
domain (FWHM-Total-F). Slope combines delay and amplitude, 
which were previously shown to correlate with thickness pre-
diction [42]. FWHM-Total-F is expected to be broadened by 
the length of time the signal takes to pass through the phan-
tom, making it a reasonable key indicator for thickness. The DL 
models also showed promising results, if not quite as accurate 
as the ML models. The DL-F models (CNN-F and FFN-F) had 
the same initial inputs as the ML models, and here, the unstruc-
tured learning of neural networks showed, principally, that the 
sample size was perhaps too small to achieve high accuracy. 
The DL-E models (CNN-E and CNN-F) also performed reason-
ably well, likely because the envelope somewhat recapitulates 
aspects of the broadening extracted by the slope and FWHM-
Total-F features.

For porosity predictions, the best results were observed using 
the RLR method in the ML models. We noticed that FWHM 
and SA features, both in the frequency (FD) and time (TD) do-
mains, made significant contributions. In the FD, acoustic aber-
rations caused by porosity appear to introduce variations in the 
frequency components of the signal. Both FWHM and SA effec-
tively capture these changes: FWHM reflects the broadening of 
the signal in the FD, while SA captures changes in the signal's 
area. Similarly, in TD, porosity-induced echoes can lead to a re-
duction in signal peak amplitude. Both SA and FWHM in TD are 
sensitive to these changes, allowing them to capture the effects of 
porosity on the signal. The feature-based DL and the ML models 
performed worse than the envelope models, demonstrating the 
extracted features dataset was insufficient to fully capture poros-
ity values. The envelope-based methods, particularly the CNN-E 
model, were able to extract features that are relevant to porosity, 
though these features were not fully captured due to the limited 
sample size as demonstrated by the modest R2 value (0.46).

This limitation suggests that future work in this area, with a 
larger dataset, could further improve the accuracy of porosity 
prediction using DL methods. The envelope worked better for 
porosity prediction because it captures much of the critical in-
formation from the ultrasound signal, such as peak position, 
amplitude, and FWHM. The waveform also simplifies the sig-
nal, reducing the complexity compared to the full signal, which 
contains multiple peaks with amplitude variations. Such varia-
tions are often influenced by hardware, making DL applications 
using full signals as input more challenging than applications 
using the envelope as input.

Given a larger dataset (>> 180 samples), the DL models might 
have been able to capture these relationships more effectively. 
Our sample size was limited by the requirement to fabricate and 
test each sample manually. Multiple simulation studies have 
been reported such as [25], but we were dissatisfied with the 
capability of that or other studies to capture the complex effect 
of the acoustic mismatch presented by the presence of diploë in 
skull. Here, we developed physical phantoms that capture this 
mismatch to some extent (although not perfectly, as they are of 
approximately uniform porosity throughout). A limitation of our 
physical phantoms is that there is some estimation required for 
characterizing porosity (see, e.g., Figure 1f) due to local/internal 
variations in poppy seed concentrations, which could affect the 
accuracy of the training and testing data sets.

FIGURE 4    |    Evaluation of the performance of porosity prediction 
on the test data. (a) best ML architecture (RLR: Ridge LR), and (b) best 
DL architecture (CNN-E). Percent contributions of the most significant 
features are shown for the ML architecture. Ridge LR: ridge linear 
regression. CNN-E: convolutional neural network (envelope as input). 
SATT: SA-Total-T, FSPT: FWHM-SP-T, SATF: SA-Total-F, SAPF: SA-SP-F, 
FSPF: FWHM-SP-F.
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4   |   Conclusion

The cranial bone poses a significant barrier to sound waves in 
ultrasound-based transcranial imaging techniques, such as fo-
cused ultrasound, photoacoustic, thermoacoustic, and x-ray acus-
tic imaging [3, 4, 34, 54–59]. Standard reconstruction algorithms 
used in these procedures typically assume that ultrasound waves 
travel through a homogenous medium [60]. The assumption often 
leads to distorted images of the target area due to the heterogeneous 
nature of the cranial bone [60]. To produce more accurate images, 
it is crucial to incorporate the physical characteristics of the skull 
into the reconstruction algorithms. Transcranially acquired ultra-
sounds have aberrations due to the presence of skull bone largely 
due to variations in skull thickness and bone porosity. Therefore, it 
is essential to identify appropriate methods for determining these 
parameters to correct the aberrations. In this study, we evaluated 
the performance of seven different models—comprising three ML 
models and four DL models—for predicting thickness and porosity 
independently. None of the models used the full signal but instead 
were based on either the envelope of the signal or extracted fea-
tures. This reduces the effect of extraneous input caused by system 
noise while still capturing critical information. Among these mod-
els, the MLR method, which is an ML approach, achieved the low-
est MAE of 0.29 for thickness prediction. For porosity prediction, 
the CNN-E, a DL technique, demonstrated the best performance 
with the lowest MAE of 2.98. For practical applications to a human 
adult cranium, a three-layer model should be considered, includ-
ing the inner and outer tables of the skull bone around the diploe. 
Part of our study could be applied to the inner and outer tables, 
where similar thickness variations occur but with lower porosity 
levels. Accurate thickness and porosity for each layer should be 
evaluated within the ranges reported in the literature to examine 
the impact of these physical characteristics on signal features. This 
work can help in understanding the influence of the diploe layer 
on the ultrasound signal and suggests a process for developing an 
effective skull aberration compensating method.
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