Skip to main content
. Author manuscript; available in PMC: 2025 Jan 6.
Published in final edited form as: Med Phys. 2024 Oct 24;52(1):300–320. doi: 10.1002/mp.17476

TABLE 5.

Comparing performance of CT imaging features and pathology-informed CT biomarkers in classifying ccRCC tumors.

Model name ROC-AUC 95% CI F1-score Sensitivity Specificity

Classification Models
Transfer learning with CT slices or training MLP with foundation-model derived features
VGG16-fine-tune 0.778 ± 0.024 (0.707, 0.897) 0.654 ± 0.073 0.616 ± 0.143 0.757 ± 0.117
DinoV2-PCA 0.325 ± 0.130 (0.122, 0.336) 0.408 ± 0.087 0.438 ± 0.075 0.27 ± 0.204
DinoV2-KPCA 0.782 ± 0.026 (0.708, 0.905) 0.709 ± 0.022 0.719 ± 0.044 0.692 ± 0.070
BiomedCLIP-PCA 0.391 ± 0.114 (0.170, 0.397) 0.499 ± 0.074 0.573 ± 0.106 0.281 ± 0.122
BiomedCLIP-KPCA 0.625 ± 0.117 (0.585, 0.823) 0.629 ± 0.048 0.692 ± 0.037 0.486 ± 0.112
Training MLP with pathology informed CT biomarkers
Dinov2-Corrfeat-Avg 0.815 ± 0.007 (0.725, 0.910) 0.663 ± 0.047 0.573 ± 0.083 0.854 ± 0.056
Dinov2-Corrfeat-AvgStd 0.768 ± 0.086 (0.722, 0.911) 0.654 ± 0.086 0.578 ± 0.079 0.811 ± 0.070
BiomedCLIP-Corrfeat-Avg 0.794 ± 0.008 (0.703, 0.914) 0.657 ± 0.028 0.519 ± 0.032 0.941 ± 0.011
BiomedCLIP-Corrfeat-AvgStd 0.765 ± 0.021 (0.693, 0.900) 0.642 ± 0.056 0.541 ± 0.082 0.865 ± 0.057
Segmentation models with classification head
Training segmentation + classification models with CT images
HED-75 0.723 ± 0.036 (0.610, 0.849) 0.641 ± 0.027 0.557 ± 0.050 0.822 ± 0.047
HED-90 0.729 ± 0.035 (0.622, 0.857) 0.651 ± 0.024 0.578 ± 0.047 0.805 ± 0.036
Training segmentation+classification models with pathology-informed CT biomarkers
VGGCorrFeat-HED-75 0.758 ± 0.029 (0.662, 0.881) 0.7 ± 0.053 0.632 ± 0.085 0.832 ± 0.040
VGGCorrFeat-HED-90 0.767 ± 0.030 (0.663, 0.884) 0.694 ± 0.053 0.649 ± 0.089 0.789 ± 0.032

Bold values indicate best performance.

Note: Pathology-informed CT biomarkers improve ROC-AUC irrespective of the kind of features and the models used. DinoV2-CorrFeat-Avg achieves the best ROC-AUC performance, with the lowest standard deviation value across the five-folds.

Abbreviations:ccRCC,clear cell Renal Cell Carcinoma;CT,computed tomography;HED, holistically nested edge detection;KPCA,kernel principal component analysis; MLP, multi-layer perceptron-based; PCA, principal component analysis; ROC-AUC, area under the receiver operating characteristics curve.