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Artificial intelligence (AI) has significantly impacted various fields, including

oncology. This comprehensive review examines the current applications and

future prospects of AI in lung cancer research and treatment. We critically

analyze the latest AI technologies and their applications across multiple

domains, including genomics, transcriptomics, proteomics, metabolomics,

immunomics, microbiomics, radiomics, and pathomics in lung cancer

research. The review elucidates AI’s transformative role in enhancing early

detection, personalizing treatment strategies, and accelerating therapeutic

innovations. We explore AI’s impact on precision medicine in lung cancer,

encompassing early diagnosis, treatment planning, monitoring, and drug

discovery. The potential of AI in analyzing complex datasets, including genetic

profiles, imaging data, and clinical records, is discussed, highlighting its capacity

to provide more accurate diagnoses and tailored treatment plans. Additionally,

we examine AI’s potential in predicting patient responses to immunotherapy and

forecasting survival rates, particularly in non-small cell lung cancer (NSCLC). The

review addresses technical challenges facing AI implementation in lung cancer

care, including data quality and quantity issues, model interpretability, and ethical

considerations, while discussing potential solutions and emphasizing the

importance of rigorous validation. By providing a comprehensive analysis for

researchers and clinicians, this review underscores AI’s indispensable role in

combating lung cancer and its potential to usher in a new era of medical

breakthroughs, ultimately aiming to improve patient outcomes and quality of life.
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1 Introduction

Lung cancer is a major challenge in oncology, with a substantial

impact on global health metrics. Non-small cell lung cancer

(NSCLC) is the predominant form, constituting the majority of

cases (1, 2). When diagnosed at an advanced stage, the prognosis is

quite poor, with long-term survival rates being relatively low (3, 4).

However, if detected at an early stage, the chances of survival

improve significantly. For those with locally advanced disease, the

survival rates are moderate but still concerning (5). Small cell lung

cancer (SCLC) is less common but has an even more serious

outlook, with survival rates dropping significantly when the

disease has spread extensively. The financial and emotional

impact of these cancers on patients and their families is

considerable, affecting the quality of life in a meaningful way.

The critical importance of early screening for lung cancer has been

increasingly recognized, as it substantially enhances the chances of

early detection and treatment. However, even those diagnosed at an

early stage are not exempt from the risk of relapse (6). Recurrence

often leads to the progression to advanced stages, drastically

diminishing the survival prognosis. The pathogenesis and

progression of lung cancer are governed by intricate regulatory

networks, underscoring the complexity of this disease. Furthermore,

the precise mechanisms driving lung cancer initiation and

progression, chemotherapeutic resistance, and resistance to targeted

therapies such as those against Epidermal Growth Factor Receptor

(EGFR) and Anaplastic Lymphoma Kinase (ALK), as well as immune

resistance, remain areas necessitating further investigation.

A comprehensive glossary of essential artificial intelligence (AI)

terminology used in this manuscript is presented in Table 1.

In recent years, AI has emerged as a transformative force in

biomedical research, particularly in the domain of lung cancer. AI

enhances the potential for early diagnosis through high-precision

imaging and pattern recognition, offering new avenues for predicting

and monitoring disease progression (7–9). Additionally, AI-driven

approaches are crucial in unraveling the complex molecular and

genetic landscapes of lung cancer, thus aiding in the identification of

novel therapeutic targets and the development of personalized

treatment strategies (10, 11). As lung cancer research continues to

evolve, the integration of AI technology promises to revolutionize

the field, paving the way for more effective and tailored interventions.

AI, a branch of computer science, focuses on creating systems

capable of performing tasks traditionally requiring human

intelligence. The overarching goal of AI is to enable machines to

emulate and execute functions such as perception, learning,

reasoning, planning, and natural language processing.

Categorically, AI encompasses various technologies including

machine learning (ML), deep learning (DL), natural language

processing (NLP), computer vision, and robotics (12–14). ML, a

pivotal subset of AI, involves techniques that allow computers to

learn from data and enhance their performance over time (15).

Within ML, methods such as supervised learning, unsupervised

learning, semi-supervised learning, and reinforcement learning are

employed to extract patterns and make predictions. DL, a further

specialized subset of ML, leverages neural networks with multiple
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layers (deep neural networks, DNNs) to mimic the human brain’s

processing mechanism, significantly advancing applications like lung

Computed Tomography (CT) radiomics (16). NLP technology

enables machines to recognize, understand, and generate human

languages, facilitating tasks such as text processing, language

translation, semantic analysis, and the development of chatbots

(17). In the domain of computer vision, AI grants computers the

ability to interpret and understand visual information, encompassing

object detection, image classification, and facial recognition, which

are particularly relevant in the pathological analysis of lung cancer

(18). Robotics, another facet of AI, involves designing and building

robots capable of performing tasks requiring human-like

intelligence, including perception, movement, and navigation—for

instance, the robotic-assisted lung lobectomy (Robot-L) (19).

Presently, the applications of AI in the domain of lung cancer

research are extensive, encompassing the comprehensive analysis

of genomic data, which includes the fields of genomics,

transcriptomics, and epigenomics. Additionally, AI methodologies

are applied in the realms of radiomics for imaging analysis, digital

pathology for the examination of tissue specimens, and the

integration and interpretation of real-world multimodal datasets. A

notable example is the recent publication in Nature by Harvard

University and Massachusetts Institute of Technology, describing

PathChat, a versatile AI framework for visual and linguistic analysis

in human pathology (20). Through these varied applications, AI not

only enhances diagnostic accuracy and therapeutic planning in lung

cancer but also promises to usher in a new era of personalized

medicine, ultimately improving patient outcomes.

AI has become a pivotal force in lung cancer research,

revolutionizing the methodologies by which we understand,

diagnose, and treat this pervasive disease. AI techniques

are being increasingly applied to various -omics domains,

including genomics, transcriptomics, proteomics, metabolomics,

immunogenomics, microbiomics, radiomics, and pathology.

These applications have significantly enhanced our ability to

decipher complex biological data, providing unprecedented

insights into the molecular mechanisms underlying lung cancer.

Moreover, AI’s integration into precision medicine promises

transformative advancements in early diagnosis, therapeutic

monitoring, and novel drug development. In this review, we delve

into the multifaceted roles AI plays across these diverse fields,

exploring current applications and envisioning the promising future

of AI-driven innovations in lung cancer research and treatment.

Figure 1 illustrates how AI transforms diverse biological data to

enhance lung cancer diagnosis, personalize treatment, and

accelerate drug development, thereby advancing precision

oncology. This comprehensive application underscores AI’s

immense potential in addressing the full spectrum of lung cancer

management, from early screening to therapeutic monitoring and

novel drug discovery. As lung cancer research continues to evolve,

the integration of AI technologies promises to revolutionize the

field, paving the way for more effective and individualized

interventions. In this review, we delve into the multifaceted roles

AI plays across these diverse domains, exploring current

applications and envisioning the promising future of AI-driven
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innovations in lung cancer research and treatment. We examine

how AI’s capabilities in data analysis, pattern recognition, and

predictive modeling are being harnessed to improve early

detection rates, optimize treatment strategies, and expedite the

development of targeted therapies. Furthermore, we discuss the

potential of AI to overcome existing challenges in lung cancer
Frontiers in Oncology 03
management, such as the complexity of tumor heterogeneity and

the need for more precise prognostic tools. By critically assessing

the current state of AI applications in lung cancer and projecting

future developments, this review aims to provide a comprehensive

overview of the transformative impact of AI on the landscape of

lung cancer research and clinical practice.
TABLE 1 Glossary of key terms artificial intelligence.

Artificial Intelligence (AI) The ability of computer systems to perform tasks that typically require human intelligence, such as visual
perception, speech recognition, decision-making, and language translation.

Machine learning (ML) A subset of AI that focuses on the development of algorithms and statistical models that enable computer
systems to improve their performance on a specific task through experience, without being
explicitly programmed.

Deep Learning (ML) A subset of machine learning based on artificial neural networks with multiple layers, capable of learning
complex patterns in large amounts of data.

Natural Language Processing (NLP) A field of AI that focuses on the interaction between computers and humans using natural language,
enabling machines to understand, interpret, and generate human language.

Computer vision A field of AI that enables computers to gain high-level understanding from digital images or videos, aiming
to automate tasks that the human visual system can do.

Robotics The branch of technology that deals with the design, construction, operation, and use of robots, often
incorporating AI for decision-making and task execution.

Deep neural networks (DNNs) Artificial neural networks with multiple layers between the input and output layers, capable of modeling
complex non-linear relationships.

Convolutional Neural Networks (CNNs) A class of deep neural networks most commonly applied to analyze visual imagery, designed to
automatically and adaptively learn spatial hierarchies of features.

Recurrent Neural Networks (RNNs) A class of neural networks where connections between nodes form a directed graph along a temporal
sequence, allowing it to exhibit temporal dynamic behavior.

Support vector machines (SVMs) Supervised learning models used for classification and regression analysis, effective in high-
dimensional spaces.

Principal Component Analysis (PCA) A statistical procedure that uses orthogonal transformation to convert a set of observations of possibly
correlated variables into a set of values of linearly uncorrelated variables.

t-Distributed Stochastic Neighbor Embedding (t-SNE) A machine learning algorithm for visualization that reduces dimensionality based on similarity
of datapoints.

Uniform Manifold Approximation and Projection (UMAP) A dimension reduction technique that can be used for visualization similarly to t-SNE, but also for general
non-linear dimension reduction.

Principal Component Analysis (PCA) AI systems that can provide human-understandable explanations for their decisions or predictions.

Explainable Artificial Intelligence (XAI) AI systems that can provide human-understandable explanations for their decisions or predictions.

Gradient-weighted Class Activation Mapping (Grad-CAM) A technique for producing visual explanations for decisions made by convolutional neural networks.

Local Interpretable Model-agnostic Explanations (LIME) A technique that explains the predictions of any classifier in an interpretable and faithful manner.

Area Under the Curve of Receiver Operating Characteristic
(AUC-ROC)

A performance measurement for classification problems at various thresholds settings, representing the
degree of separability between classes.

Precision-recall curves A graphical plot that illustrates the trade-off between precision and recall for different thresholds in a
binary classifier system.

F1 scores The harmonic mean of precision and recall, providing a single score that balances both metrics.

Calibration plots Graphical representations of the agreement between predicted probabilities and observed frequencies, used
to assess the calibration of probabilistic predictions.

Decision curve analysis A method for evaluating and comparing prediction models that accounts for the clinical consequences of
using a model.

SHapley Additive exPlanations (SHAP) A game theoretic approach to explain the output of any machine learning model. It connects optimal credit
allocation with local explanations using the classic Shapley values from game theory and their
related extensions.
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2 AI in lung cancer:
current applications

The application of AI in lung cancer primarily focuses on several

areas: genomics, transcriptomics, proteomics, metabolomics,

immunomics, microbiomics, radiomics, and pathomics. A

comprehensive comparative analysis of AI applications across these

omics fields in lung cancer research is presented in Table 2.
2.1 AI in lung cancer genomics

The application of AI in lung cancer genomics encompasses the

analysis of gene mutations and variations, the assessment of

genomic instability, the study of epigenetics, and the

enhancement of non-invasive liquid biopsy techniques. These

advancements facilitate early detection, precision treatment, and a

comprehensive understanding of the genetic landscape of lung

cancer, with the potential to improve patient outcomes and

inform therapeutic strategies.
2.1.1 Gene mutations and variations
In the realm of lung cancer genomics, AI has revolutionized the

identification and analysis of genetic mutations and variations,

playing a pivotal role in advancing precision medicine. The

integration of DL models, such as convolutional neural networks

(CNNs) and recurrent neural networks (RNNs), facilitates the

detailed analysis of large-scale genomic data, enabling the precise
Frontiers in Oncology 04
identification and classification of specific genetic mutations like

EGFR, Kirsten Rat Sarcoma virus (KRAS), and ALK (21–24).

Additionally, NLP techniques can autonomously extract

mutation-related information from scientific literature and genetic

databases, thereby enriching the knowledge base for lung cancer

genomics (25–27). ML algorithms further extend the capability of

AI by estimating the frequency and distribution of particular gene

mutations across diverse populations, thus aiding in the

formulation of personalized treatment plans (10, 28).

Moreover, AI excels in the integration of multi-omics data for a

comprehensive understanding of the impact of genetic mutations

on disease progression and prognosis (29–31). This integration not

only enhances molecular characterization but also identifies novel

therapeutic targets. In drug discovery, virtual screening powered by

AI accelerates the identification of potential drug candidates

tailored to specific genetic mutations while predicting their

efficacy and side effects (32, 33). Individualized therapeutic

approaches are meticulously honed by the AI-driven dissection of

each patient’s unique mutational profiles, thereby maximizing the

efficacy of treatment outcomes.

Predictive models utilizing ML analyze gene mutation data to

forecast disease prognosis, treatment responses, and survival rates,

thereby assisting clinicians in decision-making processes (24, 34).

Furthermore, the application of DL in pathological image analysis

automates the identification of tissue and cellular characteristics

correlated with specific gene mutations, increasing diagnostic

accuracy and efficiency (35–37). Leading AI-based initiatives,

such as those by Foundation Medicine, Tempus, and IBM

Watson for Oncology, exemplify the transformative potential of
FIGURE 1

Artificial intelligence-driven multi-omics framework for lung cancer precision medicine.
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AI in enhancing the precision of lung cancer diagnosis and

treatment (38). Additionally, AI-driven large-scale databases like

The Cancer Genome Atlas (TCGA) and the Genomic Data

Commons (GDC) provide invaluable resources for ongoing

research and clinical applications.

2.1.2 Genomic instability
In the domain of AI application on genomic instability in lung

cancer, significant advancements have been made across various

dimensions, including changes in chromosome number, structural

alterations of chromosomes, and gene amplification and deletions (39).
Frontiers in Oncology 05
Firstly, alterations in chromosome number, such as triploidy

and tetraploidy, are hallmark indicators of genomic instability. AI

has been leveraged to study these phenomena through two primary

modalities: image analysis and genomic sequencing data analysis.

For example, DL techniques using CNNs can now automatically

analyze chromosomal smears to identify changes in chromosome

number and morphology (40). Concurrently, ML algorithms

applied to whole-genome sequencing data can detect aneuploidy

states, thereby identifying chromosome number instability (28).

Secondly, AI plays a crucial role in detecting chromosomal

structural variations such as deletions, duplications, and inversions.
TABLE 2 Comparative analysis of AI applications across omics fields in lung cancer research.

Omics Field AI Techniques Key Applications
Performance/
Strengths

Limitations

Genomics
Deep Learning,
Machine Learning

- Gene mutation analysis
- High accuracy in
mutation detection

- Requires large datasets

- Genomic instability assessment - Improved early diagnosis
- Complexity in interpreting
genetic variations

- Epigenetics study
- Non-invasive screening
(liquid biopsy)

- Liquid biopsy enhancement

Transcriptomics
Deep Learning, Natural
Language Processing

- Gene expression analysis
- Identification of
novel biomarkers

- Challenges in handling noise
in expression data

- RNA sequencing
data interpretation

- Insight into gene regulation
- Difficulty in interpreting
complex gene interactions

Proteomics
Machine Learning, Deep
Neural Networks

- Protein-protein
interaction prediction

- High-throughput analysis
- Limited by
proteome complexity

- Biomarker discovery - Identification of drug targets - Challenges in data integration

Metabolomics
Machine Learning,
Deep Learning

- Metabolic pathway analysis - Early diagnosis potential
- Metabolite
variability challenges

- Biomarker identification - Treatment response monitoring
- Need for standardized
data collection

Immunomics
Deep Learning,
Machine Learning

- Immune escape mechanism study
- Personalized
immunotherapy approaches

- Complexity of immune
system interactions

- Neoantigen discovery
- Improved understanding of
tumor-immune interactions

- Limited availability of
comprehensive immune data

- Immunotherapy
response prediction

Microbiomics Machine Learning

- Microbiome profile analysis
- Novel insights into lung
cancer etiology

- Challenges in standardizing
microbiome data

- Host-microbiome interaction study
- Potential for microbiome-
based therapies

- Complexity in interpreting
microbial diversity

Radiomics
Convolutional Neural
Networks, Deep Learning

- Image feature extraction - Non-invasive diagnosis
- Variability in
imaging protocols

- Tumor classification - High accuracy in image analysis
- Need for large, diverse
image datasets

- Treatment response prediction

Pathomics
Convolutional Neural
Networks, Deep Learning

- Automated tissue analysis - Improved diagnostic accuracy
- Challenges in standardizing
tissue preparation

- Cancer subtype classification
- Efficient
histopathological analysis

- Need for extensive
pathologist validation
frontiersin.org

https://doi.org/10.3389/fonc.2024.1486310
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huang et al. 10.3389/fonc.2024.1486310
Advanced DL models can analyze high-throughput sequencing data

with high precision, accurately pinpointing structural variations on

chromosomes. Integration of multi-omics data, including genomics

and transcriptomics, further enhances AI’s capability to detect

structural changes, utilizing ensemble learning models to combine

multiple data sources to improve accuracy and sensitivity (41, 42).

Thirdly, gene amplification and deletions represent another

aspect of genomic instability in lung cancer. AI’s involvement in

this arena includes the detection of gene amplification through AI

analysis of copy number variation (CNV) data. Advanced deep

learning models such as CNNs and RNNs have been successfully

employed to identify CNVs (43, 44). Similarly, ML algorithms can

analyze high-throughput sequencing data to detect gene deletions,

and recent developments also include the use of AI models to

analyze single-cell sequencing data, revealing cellular heterogeneity

and gene loss events with higher resolution.

Notable instances of AI application include Google’s

DeepVariant, a deep learning tool for genomic research that

accurately detects genomic variants, and CopyNumberNet, a deep

learning-based algorithm designed to identify CNVs from whole-

genome sequencing data (45). Additionally, databases such as

TCGA and Gene Expression Omnibus (GEO) provide extensive

genomic and gene expression data, which researchers can analyze

using AI techniques to identify genomic instability events in

lung cancer.

2.1.3 Epigenetics
The integration of AI into lung cancer epigenetics research has

marked a significant advancement in understanding the epigenetic

alterations associated with lung cancer, which play crucial roles in

tumorigenesis, progression, and treatment responses. Unlike

genetic changes, epigenetics focuses on the regulatory

mechanisms of gene expression, encompassing DNA methylation,

histone modifications, non-coding RNA (ncRNA) regulation, and

chromatin remodeling (46–50). The potential of AI in lung cancer

epigenetics is becoming increasingly evident, particularly in the

analysis of DNA methylation and histone modifications, as well as

the regulatory roles of ncRNAs.

In the realm of DNA methylation, AI algorithms, including ML

and DL, are employed to analyze extensive methylation datasets,

enabling the identification of specific methylation patterns

associated with lung cancer (51, 52). These patterns serve as

biomarkers for early detection and classification of different lung

cancer types, and AI-driven analysis of methylation data is utilized

to predict patient prognosis, aiding in the development of

personalized treatment plans (53, 54). Histone modifications also

benefit from the capabilities of AI; by analyzing acetylation and

methylation data, AI can construct detailed histone modification

maps to elucidate their distribution and changes in lung cancer (55).

Moreover, AI algorithms assist in decoding how these modifications

influence gene expression, revealing potential regulatory

mechanisms that are critical to the pathogenesis of lung cancer.

The regulatory impacts of ncRNAs, particularly microRNAs

(miRNAs) and long non-coding RNAs (lncRNAs), are further
Frontiers in Oncology 06
elucidated through the analytical capabilities of AI. ML models

predict miRNA target genes and assess their roles in lung cancer,

identifying new therapeutic targets (29, 56, 57). Similarly, AI

predicts the expression patterns and potential functions of

lncRNAs, uncovering their regulatory effects in lung cancer and

aiding in the discovery of novel therapeutic mechanisms (58).

Additionally, integrated multi-omics analysis facilitated by AI

merges various epigenetic datasets, offering comprehensive

insights into the complex regulatory networks underlying lung

cancer and allowing for the creation of personalized treatment

models based on epigenetic data and clinical information. A notable

study utilizing DL models identified multiple DNA methylation

sites related to lung cancer prognosis, while integrated analyses

revealed coordinated epigenetic regulation of gene expression in

lung cancer (30).

These applications underscore AI’s significant potential in

decoding the intricate epigenetic landscapes of lung cancer,

providing innovative strategies and tools for future research and

therapeutic interventions.

2.1.4 Non-invasive liquid biopsy
The application and research of AI in non-invasive liquid biopsy

for lung cancer have seen remarkable advancements in recent years,

especially in the detection of circulating tumor DNA (ctDNA) from

blood samples. Liquid biopsy is an innovative method for diagnosing

and monitoring lung cancer by analyzing cancer-related substances in

blood or other bodily fluids. Within this domain, AI has significantly

enhanced the early detection, monitoring, and personalized treatment

of lung cancer. For early diagnosis, AI algorithms coupled with high-

sensitivity techniques like digital Polymerase Chain Reaction (dPCR)

and next-generation sequencing (NGS) can accurately identify lung

cancer-specific mutations and molecular markers from large datasets,

distinguishing early-stage lung cancer patients from healthy individuals

(59). In terms of monitoring treatment efficacy, ctDNA levels are

dynamically measured throughout the treatment process to

immediately assess tumor burden and response to therapy (60, 61).

AI models can predict treatment outcomes and potential resistance,

providing real-time insights (62, 63). Furthermore, AI-driven analysis

of ctDNA enables early detection of relapse post-primary treatment by

identifying high-risk patients (64, 65). Personalized treatment is

another critical area where AI contributes significantly; analyzing the

mutation spectrum in ctDNA provides detailed genomic information

aiding the selection of the most suitable targeted and immunotherapies

(66). Additionally, AI can optimize treatment regimens by integrating

ctDNA data with clinical characteristics and treatment history to

enhance therapeutic effectiveness (67, 68). Prognostic evaluation is

yet another facet where AI demonstrates its utility; it analyzes ctDNA

to predict patient survival and disease progression risk, facilitating

informed decision-making for treatment strategies and life planning

(61, 69). Development of AI-based intelligent diagnostic systems that

combine liquid biopsy results with imaging further enhances diagnostic

comprehensiveness and accuracy (66). To validate these applications,

multicenter clinical trials are essential, ensuring the accuracy and

reliability of AI-integrated liquid biopsy approaches.
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2.2 AI in lung cancer transcriptomics

Transcriptomics in lung cancer involves investigating the changes

in gene expression and transcription levels utilizing high-throughput

sequencing technologies such as RNA Sequencing (RNA-Seq). This

methodology provides comprehensive insights into the messenger

RNA (mRNA) and other transcription products within lung cancer

cells and tissues, revealing their gene expression profiles. AI has

revolutionized the field of lung cancer genomics, particularly in the

study and application of lung cancer transcriptomics. The application

of AI in the transcriptomics of lung cancer predominantly focuses on

gene expression profiling, analysis of ncRNA, mRNA modification,

single-cell transcriptomics, spatiotemporal transcriptomics, and

transcription factor regulatory networks.

2.2.1 Gene expression profiling
A gene expression profile specifies the particular pattern of genes

that are activated or suppressed in lung cancer cells, compared to

normal lung cells. Certain genes may be overexpressed, indicating

elevated expression levels, while others may be downregulated,

showing decreased expression. These distinct gene expression

patterns are crucial in identifying lung cancer types, progression

stages, and responses to various treatments.

The role of AI in analyzing lung cancer gene expression profiles

is multifaceted and pivotal. Firstly, AI excels in handling and

analyzing massive, high-dimensional gene expression datasets,

efficiently extracting valuable information from complex data

(70). Secondly, through ML algorithms like random forests,

support vector machines (SVM), and DL, AI can discern key

genetic features associated with lung cancer from vast datasets

(71, 72). Thirdly, AI models based on gene expression profiles

enhance the accuracy of disease classification and diagnosis by

distinguishing between benign and malignant tumors or different

lung cancer types (73, 74). Furthermore, AI can predict patient

prognosis and treatment efficacy using gene expression data, aiding

physicians in formulating personalized treatment plans to improve

outcomes (75). Additionally, AI facilitates new drug discovery and

targeted therapy development by identifying potential drug targets

and biomarkers from gene expression profiles, furthering the

advancement of precision medicine (76). Lastly, through pathway

analysis, AI can identify biological pathways related to lung cancer,

deepening our understanding of cancer mechanisms and guiding

effective treatment strategies (77).

In summary, AI in lung cancer gene expression profiling

significantly enhances diagnostic and therapeutic precision and

supports the progression of personalized medicine.

2.2.2 Analysis of ncRNA
In recent years, significant strides have been made in

uncovering the role of ncRNAs in lung cancer, facilitated by

advancements in AI. ncRNAs, which include miRNAs, lncRNAs,

and circular RNAs (circRNAs), do not translate into proteins but

are crucial in regulating gene expression, RNA processing,

chromatin structure, and various cellular functions. AI techniques
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have revolutionized the identification and analysis of these ncRNAs,

offering promising avenues for lung cancer research and treatment.

First, AI-assisted miRNA profiling has enabled the

identification of novel miRNA biomarkers associated with lung

cancer, aiding in gene expression regulation. ML methods applied

to miRNA datasets have uncovered potential diagnostic and

therapeutic targets (78). Similarly, lncRNAs have been the focus

of predictive modeling using sophisticated algorithms such as

LDAenDL, which can forecast lung cancer-related lncRNA

biomarkers (79). These discoveries are critical for gene regulation

and chromatin modification, proposing new therapeutic strategies

(80).Furthermore, circRNAs have been studied through ML and

AI-based integrative analyses, revealing their potential roles in

cancer biomarkers and their importance in gene expression and

signaling pathways regulation (81). By leveraging the capabilities of

AI in big data analytics and pattern recognition, these studies

significantly propel the understanding and application of ncRNAs

in lung cancer, offering new horizons for diagnostics and

treatment advancements.

2.2.3 AI in mRNA modification for lung cancer
In lung cancer transcriptomics, AI advancements have

significantly enhanced the study and application of mRNA

modifications, particularly N6-methyladenosine (m6A) (82). As

an essential player in gene expression, mRNA undergoes

methylation, impacting its stability and translation. ML models

like SVM, random forests, and DL networks (CNNs, RNNs) have

effectively identified m6A modification sites. These technologies

utilize high-throughput data, such as RNA-Seq, to elucidate m6A’s

effects on mRNA half-life and degradation. Combining

transcriptomic and proteomic data, AI has revealed how m6A

influences translation efficiency and mRNA localization. AI

analyses have also linked m6A patterns to lung cancer prognosis

and treatment responses, facilitating the discovery of biomarkers

and personalized therapies. This integration of AI has propelled

m6A research, offering promising insights into lung cancer

diagnostics and therapeutics.

2.2.4 AI in single-cell transcriptomics
AI has revolutionized single-cell transcriptomics in lung cancer,

providing deep insights into cellular heterogeneity, the tumor

microenvironment, cancer stem cells, and therapeutic responses

and resistance mechanisms. Single-cell transcriptomics, a high-

throughput sequencing technology, enables detailed gene

expression analysis at the single-cell level, essential for

understanding lung cancer pathogenesis and immune evasion. AI

algorithms, such as clustering techniques, identify and classify

different cell populations within tumors, unveiling intratumoral

heterogeneity (83). ML uncovers critical genes associated with

specific cell types, delineating unique cellular characteristics (84).

AI reconstructs cellular development trajectories, shedding light

on transitions from normal to malignant cells. In the tumor

microenvironment, AI analyzes ligand-receptor interactions and

integrates single-cell RNA-seq with spatial transcriptomics to map
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the spatial distributions of cells (85). It also enhances the

identification of immune cell populations, deepening the

understanding of immune evasion. In cancer stem cell research, AI

identifies specific markers and drug resistance mechanisms, unveiling

potential therapeutic targets (86). AI predicts therapeutic responses

by analyzing pretreatment and posttreatment transcriptomics data,

aiding personalized treatment strategies and showcasing the potential

of AI potential in precision medicine for lung cancer (86).

2.2.5 AI in spatiotemporal transcriptomics of
lung cancer

In the realm of spatial-temporal transcriptomics, AI has become

indispensable for dissecting the intricate landscape of lung cancer.

This emerging technology scrutinizes cellular transcriptional

activity across different spatial and temporal contexts, offering

insights into cellular interactions, migration patterns, and the

tumor microenvironment. AI-based algorithms, including ML,

DL, and image processing, handle the massive datasets generated,

facilitating the integration of data across various time points and

spatial locations (87, 88). Through AI-enhanced image analysis,

such as cell segmentation and microenvironmental parsing, DL

methods like CNNs can automatically identify and classify cell types

and structures within complex images. Pattern recognition

capabilities of AI further enable the identification of dynamic

gene expression patterns and interactions among cellular

populations, essential for predicting disease progression and

therapeutic responses. Dimensionality reduction and visualization

techniques, optimized by AI, such as Principal Component Analysis

(PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and

Uniform Manifold Approximation and Projection (UMAP),

provide intuitive interpretations of high-dimensional data,

revealing the spatial and temporal distribution of different cell

types and gene expressions. Moreover, AI can elucidate gene-

environment interactions, pinpointing how spatial and temporal

variations impact lung cancer development. This approach also aids

in predicting drug responses, paving the way for personalized

therapies by associating specific gene expression profiles with

drug sensitivity or resistance. The integration of AI in spatial-

temporal transcriptomics not only enhances the accuracy and

efficiency of data analysis but also empowers researchers to

unravel the complex biological processes underlying lung cancer,

driving the advancement of novel therapeutic strategies.

2.2.6 AI in transcription factor regulatory
networks in lung cancer

AI has shown immense potential in enhancing the

understanding and treatment of lung cancer by focusing on

transcription factor regulatory networks. These networks, which

involve complex interactions between transcription factors and

their target genes, are critical in lung cancer development and

progression. AI excels in managing and integrating vast datasets,

such as gene expression and clinical data, revealing hidden patterns
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and associations. Techniques like genomics and transcriptomics

allow AI to analyze high-throughput sequencing data, identifying

crucial transcription factors and target genes. Additionally, AI

algorithms, including ML and DL, facilitate the construction and

inference of intricate regulatory networks (89).ML algorithms play a

pivotal role in selecting key regulatory factors from extensive

datasets, highlighting potential therapeutic targets. AI also

contributes to the discovery of novel biomarkers for early

diagnosis and prognosis of lung cancer. In drug discovery and

repurposing, AI-driven virtual screening identifies compounds that

disrupt critical regulatory networks, offering new therapeutic

avenues. Moreover, AI supports personalized medicine by

integrating genomic, regulatory network, and clinical data to

formulate individualized treatment plans and predict patient

outcomes. By modeling and simulating regulatory networks, AI

aids in uncovering underlying biological mechanisms, thereby

advancing our comprehension of lung cancer. The promising

applications of AI in this domain are expected to drive innovative

solutions and propel lung cancer research and treatment forward.
2.3 AI in proteomics of lung cancer

Proteomics, the large-scale study of proteins, generates massive

datasets that require sophisticated tools for efficient and accurate

analysis. AI excels in this aspect, offering rapid data processing and

analysis capabilities. ML algorithms are adept at recognizing

complex patterns within these datasets, identifying key protein

expression profiles and biomarkers associated with lung cancer.

This enables researchers to discern important biological insights

that traditional methods might overlook.

In the realm of feature selection and classification, AI plays a

pivotal role. It can efficiently identify which protein features are

most distinctive between lung cancer patients and healthy

individuals, thereby enhancing diagnostic precision (90). AI-based

classification models, such as decision trees, random forests, and

SVM, can predict the presence of lung cancer in samples with high

accuracy (91). Moreover, the application of ML algorithms in

biomarker discovery has been transformative. These algorithms

analyze proteomics data to identify potential biomarkers for early

diagnosis, prognosis prediction, and monitoring therapeutic efficacy

(92). DL models further augment this process by extracting high-

dimensional features from complex data, revealing insights that

might be missed by conventional approaches.

AI also contributes to the construction of protein interaction

networks, which are crucial for understanding the molecular

mechanisms of lung cancer (93). By performing network analyses,

AI can identify key nodes and pathways, thereby highlighting critical

points of intervention and potential drug targets. Additionally, AI

tools can predict protein-protein interactions that are pivotal in lung

cancer progression, providing deeper biological understanding and

guiding the development of targeted therapies.
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Lastly, the automation and optimization of experimental design

through AI significantly enhance research efficiency and cost-

effectiveness. AI can design and optimize experiments, reducing

the number of required trials and associated costs while increasing

accuracy. By simulating and modeling experimental outcomes,

researchers can expedite their studies, accelerating the overall

research process. Overall, the integration of AI in lung cancer

proteomics has exponentially expanded the depth and breadth of

biomedical research, facilitating the discovery of effective diagnostic

and therapeutic methods with unprecedented speed and precision.
2.4 AI in lung cancer metabolomics

AI has been prominently utilized in the field of metabolomics for

lung cancer, significantly advancing both research methods and

clinical practices. Lung cancer metabolomics, the study and analysis

of metabolic changes within patients, involves handling vast and

complex datasets generated by high-throughput technologies such as

mass spectrometry and nuclear magnetic resonance spectroscopy.

These initial datasets often contain significant noise and complex

structures, necessitating robust processing techniques. AI plays a

critical role in this phase by automating data cleaning and denoising,

ensuring high-quality results by removing outliers and reducing

noise. Furthermore, AI employs ML and DL algorithms for feature

extraction, discerning vital metabolic features pertinent to lung

cancer diagnosis and research (94, 95). It integrates data from

diverse sources like blood, tissue, and urine samples, creating a

comprehensive database. For instance, using autoencoders in ML,

researchers can capture nonlinear variations and distinguish

significant metabolic features between cancer patients and healthy

controls, enhancing data processing efficiency and accuracy (95, 96).

The contribution of AI extends to the discovery of biomarkers

critical for early diagnosis and treatment monitoring (96). Through

pattern recognition techniques, such as supervised or unsupervised

learning algorithms including neural networks, SVM, and random

forests, AI identifies metabolites significantly associated with lung

cancer, pinpointing potential new diagnostic biomarkers.

Additionally, AI bolsters disease classification and personalized

diagnosis by utilizing DL models on metabolomics data to

distinguish lung cancer subtypes and even precancerous lesions

automatically (97). These models, like convolutional neural networks,

enable high-accuracy classification supporting the development of

personalized treatment strategies based on individual metabolic data.

Moreover, AI aids in prognostic prediction, leveraging metabolomics

data to forecast disease progression and patient outcomes (98). By

integrating AI with survival analysis models such as Cox regression,

researchers can identify key prognostic factors, predict survival time of

patients and recurrence risk, aiding in tailored therapeutic decision-

making. Furthermore, in drug development and repurposing, AI

utilizes metabolomics data to identify target enzymes and proteins,

predict drug efficacy, and explore existing new potential uses

for drugs in lung cancer treatment, thereby expediting drug

development processes.
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2.5 AI in lung cancer immuno-oncology

“Lung cancer immunomics” is an emerging term that combines

immunology and omics research to delve into the immune

mechanisms involved in lung cancer and their relationship with

genomic characteristics. Our review primarily focuses on this topic,

emphasizing the application of AI in studying tumor immune evasion

mechanisms, immune-related gene mutations, tumor mutation

burden (TMB), neoantigen discovery, immune microenvironment

analysis, and the personalization of immunotherapy.
2.5.1 AI in immune evasion of lung cancer
The application of AI in studying the immune escape

mechanisms in lung cancer has yielded significant advancements,

bringing a more nuanced understanding of the complex tumor-

immune interactions. One crucial area of application is the

immunophenotyping analysis, where DL and ML techniques are

utilized to analyze Fluorescence-activated Cell Sorting (FACS) data

(99). This allows for the precise identification and classification of

various immune cell subtypes, elucidating their roles in immune

escape (100). Another pivotal use of AI lies in the analysis of T-cell

receptor (TCR) and B-cell receptor (BCR) repertoires. ML models

can decode the complex clonal dynamics associated with immune

escape by analyzing the rearrangement sequences of TCRs and

BCRs (101). Additionally, single-cell immunogenomics, supported

by AI algorithms, has enabled a granular investigation of the

functional states and interactions of heterogeneous immune

cells within the Tumor Microenvironment (TME) (102). AI

techniques also contribute to a comprehensive analysis of

immune escape-related genes and pathways, identifying key

drivers and mechanisms of immune evasion. In the realm of

therapeutic applications, ML models predict patient responses to

immunotherapies, such as Programmed Death-1/Programmed

Death-Ligand 1 (PD-1/PD-L1) inhibitors, thereby aiding in

the personalization of treatment strategies (101). Moreover,

through the simulation and modeling of the tumor immune

microenvironment, AI provides insights into how cancer cells

exploit these alterations to evade immune surveillance, identifying

novel therapeutic targets (102). Collectively, AI not only enhances

our understanding of lung cancer immune escape mechanisms

but also plays a crucial role in the development of more effective

immunotherapies (101).

2.5.2 AI in immune-related gene mutations of
lung cancer

The ability of AI to process vast amounts of genomic data has

proven indispensable in identifying mutations pertinent to the

immune response, such as those in the PD-L1, Cytotoxic T-

Lymphocyte Antigen 4 (CTLA-4), or Human Leukocyte Antigen

(HLA) genes (103). By decoding these genetic variations, AI aids

in elucidating the interactions between tumors and the

immune system, thereby facilitating the design of personalized

treatment plans.
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Furthermore, AI significantly enhances the prediction of

responses to immunotherapy. By scrutinizing immune-related

genetic information, AI models can forecast their potential

reactions to immunotherapeutic agents like PD-1/PD-L1

inhibitors (99). This predictive capability enables clinicians to

tailor immunotherapy regimens more accurately, optimizing

therapeutic efficacy and reducing the likelihood of adverse

reactions. The integration of AI into the analysis of immune-

related gene mutations thus represents a transformative

progression in lung cancer treatment, providing deeper insights

and fostering more precise interventions (104).

As our understanding of the complex interplay between the

immune system and cancer deepens, AI-driven approaches are

poised to become even more central in identifying vital genetic

mutations and tailoring immunotherapies. The implications for

personalized medicine are profound, underscoring the necessity for

continued research and development in this promising intersection

of AI and lung cancer immunogenomics.

2.5.3 AI in TMB of lung cancer
AI has emerged as a transformative tool in the estimation and

prediction of TMB in lung cancer. Utilizing comprehensive whole-

genome sequencing data or specific gene panel data, AI, powered by

advanced DL and ML algorithms, can meticulously analyze

extensive genomic information. This enables the precise

estimation of TMB, which is crucial for understanding tumor

profile (105). Moreover, TMB is a significant biomarker for

determining the efficacy of immunotherapies, such as PD-1/PD-

L1 inhibitors. High TMB levels often correlate with better responses

to these immuno-oncology agents. By leveraging AI to integrate

TMB data with other clinical parameters, healthcare professionals

can develop more personalized treatment plans, thereby enhancing

therapeutic outcomes. Additionally, AI models that combine TMB

with other biomarkers can provide valuable prognostic insights,

aiding in the prediction of lung cancer patients’ outcomes. This

prognostic capability is vital for shaping long-term treatment

strategies and follow-up plans. The continuous advancements in

AI technologies herald a promising future for its application in the

precise and personalized management of lung cancer, particularly

through the lens of TMB analysis.

2.5.4 AI in the discovery of neoantigens in lung
cancer immunotherapy

AI models excel in predicting the likelihood of mutant proteins

being processed into peptide fragments recognizable as neoantigens

by the immune system, with tools such as DeepNovo or PepFormer

aiding in this endeavor (106, 107). Additionally, AI algorithms

critically evaluate the stability of these peptides within biological

environments, ensuring their viability as neoantigens. The binding

affinity of mutated peptides to Major Histocompatibility Complex

(MHC) molecules is a crucial determinant of neoantigen

effectiveness, with machine learning models like NetMHCpan and

MHCflurry being instrumental in this prediction (108, 109). AI also

models the complex process of neoantigen generation and MHC
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presentation, filtering out the most promising candidates. This AI-

driven approach not only enhances the accuracy of neoantigen

identification but also accelerates the development of personalized

cancer immunotherapies.

2.5.5 AI in immune microenvironment of
lung cancer

AI algorithms have demonstrated remarkable efficacy in single-

cell RNA sequencing analysis, enabling the identification and

classification of various immune cell types within the TME, such

as T cells, B cells, and natural killer (NK) cells (101). ML techniques

further facilitate lineage tracing, revealing the developmental and

differentiation pathways of immune cells in the TME (102).

Additionally, AI aids in functional gene expression analysis,

evaluating immune cell states such as activation, inhibition, and

exhaustion, and constructing interaction networks between

immune cells and tumor or stromal cells, elucidating their

functional roles within the TME. AI technologies also excel at

characterizing immunosuppressive microenvironments by

identifying factors like Tregs and Myeloid-Derived Suppressor

Cells (MDSCs), and their impact on immune responses. Dynamic

monitoring of the TME is achieved through AI-assisted liquid

biopsy technologies, enabling real-time surveillance of ctDNA and

immune cell states, thus assessing immunotherapy efficacy.

Furthermore, using ML for spatial analysis of TME can predict

the efficacy of immunotherapy in SCLC patients (110). The crucial

role of AI in lung cancer immunology research promises even

greater advancements in the field, heralding innovative and

breakthrough diagnostics and therapies.
2.6 AI in lung cancer microbiomics

AI technologies, notably DL and ML algorithms, have become

pivotal in several aspects of microbiome research. Through AI-

driven approaches, researchers can accurately identify and classify

microbial species, as well as assess their relative abundances within

the lung microbiome (111). This capability is invaluable, given the

complexity and sheer volume of data generated by high-throughput

sequencing techniques.

One key area of AI application is the prediction of microbial

functions and metabolic pathways. By analyzing microbial genomes

using AI models, researchers can infer potential functions and

metabolic activities of various microbes, thereby elucidating their

roles in the pathogenesis and progression of lung cancer (111). This

functional prediction is crucial for understanding how specific

microbes may contribute to cancer development, providing

insights that could lead to new therapeutic strategies.

Pattern recognition and feature extraction are another vital area

where AI proves indispensable. ML algorithms are adept at

extracting significant features from complex microbiome data sets

(112). These features can then be utilized to explore the associations

between certain microbial species or communities and lung cancer.

This process aids in the identification of microbiome markers that
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could be correlated with disease presence, progression, or even

patient outcomes.

In addition, AI enhances the ability to perform comprehensive

association analyses by integrating clinical characteristics with

microbiome data to identify microbial biomarkers related to lung

cancer. This integration facilitates the identification of potential

microbial indicators that could be used in diagnostic assays or as

therapeutic targets. Furthermore, AI algorithms are employed to

build and validate predictive models for lung cancer risk

assessment, enhancing early screening and diagnostic accuracy by

incorporating both microbiome and clinical features (113). Such

risk assessment models are crucial for early intervention and

improving patient prognosis.

Prognostic models based on microbiome data powered by AI can

also predict patient outcomes, including survival time and response to

treatment (113). This predictive capability is essential for personalized

medicine, as it allows for tailored therapeutic approaches based on

unique microbiome profile. Additionally, AI aids in drug discovery

and development, where it can be used to screen for potential anti-

cancer or health-promoting microbial metabolites. By identifying

these promising compounds, AI can contribute to the development

of new therapeutics for lung cancer treatment.

In summary, the applications of AI in lung cancer microbiome

research have significantly accelerated the research process,

providing powerful tools for precise diagnosis, personalized

treatment, and the development of new drugs. The integration of

AI with microbiome research holds immense potential to advance

our understanding of lung cancer and improve patient outcomes.
2.7 AI in radiomics of lung cancer

Radiomics, as a computational technique, focuses on extracting a

vast array of features frommedical images, which include parameters

such as shape, texture, intensity, and wavelet attributes. Detailed

analysis of these features provides comprehensive information about

lung tumors, aiding in diagnosis, prognostic prediction, and the

assessment of therapeutic responses. AI’s application in lung cancer

radiomics is extensive, significantly enhancing the automation and

accuracy of image analysis.

One of the primary applications of AI in lung cancer radiomics

is automated image segmentation. Utilizing DL algorithms,

particularly CNNs, AI can precisely segment tumor regions

within lung images, thereby minimizing human error and

reducing time consumption (16). Architectures such as U-Net

and Mask R-CNN are extensively applied in medical image

segmentation, demonstrating high efficacy in delineating tumor

boundaries from surrounding tissues (114, 115). In terms of feature

extraction and selection, ML algorithms play a pivotal role. These

algorithms automatically extract high-dimensional imaging

features, such as shape, texture, and wavelet characteristics, and

subsequently select features with the most significant diagnostic and

prognostic value (116). Techniques like Random Forest, SVM, and

Principal Component Analysis (PCA) are commonly employed for
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feature selection and dimensionality reduction, enabling the

creation of robust predictive models.AI-driven diagnostic support

systems, such as computer-aided diagnosis (CAD), enhance early

detection accuracy by identifying abnormalities in CT scans and

highlighting regions of interest for clinicians. Notable systems like

IBMWatson Health and Google-owned DeepMind have developed

advanced solutions that support early lung cancer diagnosis,

underscoring the potential of AI in clinical practice.

Prognostic prediction models, powered by DL and other ML

techniques, analyze radiomic data to forecast patient outcomes,

including survival rates, disease progression risks, and treatment

responses (117). For instance, by combining survival analysis

models with imaging features, personalized prognostic predictions

can be made, aiding in informed clinical decision-making (118).

AI also significantly contributes to personalized treatment

planning and evaluation. By analyzing radiomic features, AI

algorithms recommend tailored treatment plans, encompassing

the optimal combination of immunotherapy, surgery, and

radiotherapy (119–121).

To handle the extensive volume of radiomic data, AI leverages

cloud computing and distributed computing technologies.

Platforms such as Amazon Web Services (AWS) and Google

Cloud provide scalable solutions for efficiently processing and

analyzing large-scale medical imaging datasets, facilitating

advanced research and clinical applications.

Furthermore, AI-enhanced radiomics is instrumental in

predicting lymph node metastasis in early-stage NSCLC and

improving the accuracy and efficiency of lung nodule detection

and diagnosis during screenings. Studies combining AI with

Positron Emission Tomography/Computed Tomography (PET/

CT) imaging have demonstrated significant advancements in

detecting and evaluating NSCLC, particularly in identifying occult

lymph node metastasis and predicting responses to immunotherapy

based on radiomic features (122).
2.8 Leveraging AI for pathomics in
lung cancer

AI represents a transformative technology in the domain of

pathological histology of lung cancer, offering substantial potential

to revolutionize diagnostic accuracy and efficiency, optimization of

treatment plans, and support for personalized medicine.

Pathological histology, referring to the microscopic study of lung

cancer tissues, is integral to the precise diagnosis, categorization,

staging, and formulation of targeted treatment strategies. By

leveraging AI in this field, clinicians and pathologists can

significantly enhance the accuracy and speed of diagnostic

processes. DL technologies, particularly CNNs, are adept at

automating the analysis of pathological tissue section images

(123). These AI algorithms can identify and quantify the

presence, type, density, and distribution of cancer cells, thus

aiding pathologists in making rapid and accurate diagnoses.
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Furthermore, AI-driven image classification systems classify

pathological images into distinct lung cancer types, thereby

facilitating more precise diagnostic outcomes (124, 125). In terms

of feature extraction and quantification, AI systems can harvest a

plethora of data from pathological images, including cell

morphology, arrangement patterns, and staining intensity, which

are critical for assessing cancer severity and progression (126). The

role of AI extends beyond diagnosis by also predicting patient

prognosis based on a combination of pathological images and

clinical data, such as survival rates and recurrence risks (127).

This predictive capability is essential for formulating personalized

treatment plans tailored to individual patient profiles.

Additionally, the ability of AI to predict treatment response by

analyzing genomic data alongside pathological images enables the

selection of the most effective treatment modalities, such as

chemotherapy, targeted therapy, or immunotherapy, suited to

unique characteristics (128). AI also excels in data integration and

information management, combining data from diverse sources,

including genomic data, electronic health records (EHRs), and

pathological images, to provide comprehensive patient

information that supports critical decision-making processes. By

automating repetitive workflows, such as digitizing tissue sections,

pre-processing images, and performing preliminary analyses, AI

enhances the efficiency of pathology laboratories.

Real-time diagnostic assistance during microscopic examinations

further exemplifies the capability of AI, offering diagnostic

suggestions that help pathologists detect subtle abnormalities (129).

The AI systems’ ability to continuously learn and improve from new

data ensures sustained accuracy in diagnostic results. Moreover, AI

platforms facilitate cross-institutional collaboration and knowledge

sharing by enabling the sharing of data and models, fostering

innovation and collective expertise in pathological research.

Several studies illustrate the practical application of AI in

pathological histology of lung cancer. For instance, researchers at

the University of Washington utilized ML algorithms to predict

brain metastasis in early-stage non-small cell lung cancer using 118

lung biopsy samples (130). At the University of Texas Southwestern

Medical Center, the combination of AI with traditional pathology

expedited the formulation of treatment plans (131). Researchers at

New York University Langone Health demonstrated that AI tools

capable of autonomous learning could analyze lung tissues to

predict cancer recurrence, aiding in the prognostication and

severity assessment of lung cancer (132).

An article in “Nature” discusses PathChat, a multimodal

generative AI assistant specifically developed for human

pathologists (20). By utilizing visual language models, PathChat

effectively processes and integrates various data modalities. This

innovative approach significantly enhances diagnostic accuracy and

efficiency, offering robust support to pathologists in their

professional analyses. The future applications of AI in lung cancer

pathological histology are vast, promising substantial improvements

in diagnostic precision and efficiency while advancing personalized

medicine and pathological research.
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3 The new era of precision oncology:
AI-driven revolution in lung cancer
care and future prospects

The field of precision medicine in lung cancer is undergoing a

paradigm shift, largely driven by advances in AI. Precision medicine

refers to the approach of tailoring medical treatment to the

individual characteristics of each patient, such as genetic profile,

tumor molecular characteristics, and other biomarkers. By aligning

treatment options with the unique biological context of each

patient, precision medicine aims to enhance therapeutic efficacy

while minimizing unnecessary adverse effects. AI holds

considerable promise in the future of lung cancer precision

medicine, including early diagnosis, personalized treatment

regimens, treatment monitoring, and new drug development.

For early diagnosis, the potential of AI potential in image

recognition is monumental. By applying AI and image

recognition technologies to vast collections of CT scans, AI can

automatically identify early-stage lung nodules and minute

pathological changes, thereby facilitating early diagnosis and

increasing the chances of successful treatment (133). This

capability is being seamlessly integrated into clinical workflows,

enhancing the efficiency and accuracy of radiologists’ work. For

instance, AI-powered computer-aided detection (CAD) systems are

now being employed in many hospitals to assist radiologists in

detecting and characterizing lung nodules on CT scans. These

systems can rapidly analyze hundreds of images, flagging

suspicious areas for further review by radiologists. This not only

speeds up the diagnostic process but also improves the detection

rate of small nodules that might be overlooked by human eyes

alone. Moreover, AI algorithms are being developed to differentiate

between benign and malignant nodules, potentially reducing

unnecessary biopsies and follow-up scans. For example, a deep

learning model developed by researchers at Google Health and

Northwestern University demonstrated the ability to detect lung

cancer from CT scans with a performance on par with or better than

radiologists (134). Such tools are gradually being incorporated into

clinical practice, serving as a “second reader” to support

radiologists’ decision-making processes. AI’s role in early

detection extends beyond imaging. Complementarily, AI’s ability

to analyze ctDNA from liquid biopsies could detect genetic

mutations associated with lung cancer at an early stage (135).

This non-invasive approach is particularly promising for

screening high-risk populations and monitoring disease

recurrence. AI algorithms can analyze complex patterns in

ctDNA data, potentially identifying cancer-specific signatures

before traditional diagnostic methods can detect the disease (136).

In pathology, AI’s automated analysis of histopathological slides

can swiftly and accurately identify cancerous regions, thereby

improving diagnostic precision and efficiency. These AI systems

are being integrated into digital pathology workflows, assisting

pathologists in quantifying biomarkers, grading tumors, and
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identifying specific histological patterns associated with different

lung cancer subtypes (126).Importantly, these AI applications are

not limited to NSCLC but are also being developed and refined for

SCLC detection. Given the aggressive nature of SCLC and the

critical importance of early detection, AI tools are being tailored

to identify the unique radiological and pathological features of

SCLC, potentially leading to earlier diagnosis and improved

outcomes for this challenging subtype of lung cancer (137).

In the realm of personalized treatment plans, AI promises to

revolutionize gene analysis and targeted therapy. AI systems,

leveraging DL and extensive datasets, will be able to process and

analyze large volumes of genetic data to pinpoint mutations and

biomarkers associated with lung cancer (138, 139). By predicting

the response of specific genetic profiles to targeted therapies,

AI can help devise highly customized treatment protocols

(140). Additionally, AI can integrate multidisciplinary data,

encompassing genetic information, imaging data, clinical records,

and lifestyle habits, to holistically evaluate patient health (133). This

multimodal approach will lead to more precise and effective

treatment plans, improving therapeutic outcomes and reducing

side effects. Furthermore, adaptive AI systems will dynamically

adjust treatment strategies based on real-time data, such as changes

in biomarker concentrations or imaging results, thus refining the

precision and personalization of lung cancer therapies.

For cases of advanced-stage cancer, AI is increasingly aiding

oncologists in creating personalized treatment plans, leveraging

predictive analytics to optimize chemotherapy, targeted therapies,

and immunotherapies. For instance, AI algorithms are being

developed to predict the efficacy of tyrosine kinase inhibitors

(TKIs) in patients with specific EGFR mutations, allowing for

more precise treatment selection (141). Similarly, AI models are

being used to predict response to ALK inhibitors in patients with

ALK-positive NSCLC, potentially guiding treatment decisions and

improving outcomes (142).Additionally, AI can integrate

multidisciplinary data, encompassing genetic information,

imaging data, clinical records, and lifestyle habits, to holistically

evaluate patient health (143). This multimodal approach leads to

more precise and effective treatment plans, improving therapeutic

outcomes and reducing side effects. For example, AI models that

incorporate radiomics features from CT scans, along with clinical

and genetic data, have shown promise in predicting response to

immunotherapy in NSCLC patients (144).Furthermore, adaptive

AI systems can dynamically adjust treatment strategies based on

real-time data, such as changes in biomarker concentrations or

imaging results, thus refining the precision and personalization

of lung cancer therapies. This is particularly valuable in

managing treatment-related toxicities and adapting dosages to

maximize efficacy while minimizing side effects. In the rapidly

evolving sphere of oncology, particularly within the realm of

immunotherapy for lung cancer patients, the integration of AI

has introduced significant advancements in therapeutic precision

and personalization. This burgeoning field is underscored by recent

research that showcases the development of cutting-edge AI and

machine learning models, which are meticulously designed to

predict patient responses to immunotherapy (145, 146). These
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models extend their utility by forecasting progression-free

survival and overall survival rates, specifically tailored for

individuals battling NSCLC (147). Such AI-driven tools leverage

standard clinical data to evaluate the efficacy of immune checkpoint

inhibitors, thus equipping clinicians with vital insights that inform

the selection of optimal treatment regimens. Consequently, these

technological innovations are revolutionizing the landscape of

personalized medicine, granting healthcare providers the

capability to discern which patients are predisposed to benefit

most from specific immunotherapy treatments.

In the context of treatment monitoring, AI’s ability to conduct

real-time data surveillance is nothing short of transformative. By

enabling the continuous monitoring of vital physiological metrics,

genetic profiles, and treatment responses through sophisticated

smart devices and sensors, AI facilitates timely modifications to

treatment plans that align with evolving data patterns, thereby

maximizing therapeutic efficacy. For instance, AI algorithms can

analyze serial CT scans to assess tumor response to treatment,

potentially detecting subtle changes that might indicate the need for

treatment modification before clinical symptoms appear (148).

Similarly, AI models can monitor changes in circulating tumor

DNA levels during treatment, providing early indications of

treatment response or resistance (64).Furthermore, predictive

models empowered by AI serve a pivotal role in not only

forecasting treatment outcomes and patient prognoses but also in

crafting individualized predictions regarding disease trajectories

(110, 149, 150). These insights are invaluable in helping clinicians

devise comprehensive, long-term management strategies. For

example, AI models that integrate clinical, pathological, and

genomic data have shown promise in predicting long-term

survival in NSCLC patients, potentially guiding decisions about

treatment intensity and follow-up protocols. The importance of AI

is further emphasized by its capacity to predict and signal potential

complications through real-time analysis of physiological data and

clinical records, which is crucial in preempting adverse medical

events and guiding proactive interventions, ultimately mitigating

the risks associated with immunotherapy treatments.

In the realm of drug development for lung cancer, significant

strides have been made through the integration of AI. AI platforms

have revolutionized the pharmaceutical industry by enhancing the

speed and reducing the costs of drug discovery processes (151). AI

are being used to streamline various stages, from identifying

druggable targets to optimizing lead compounds (152–154). AI’s

ability to rapidly analyze biological datasets is exemplified by projects

like those at Lawrence Livermore National Laboratory and

BridgeBio, which have advanced to clinical trials for medications

targeting genetic mutations in cancer. The application of AI

facilitates virtual drug screening, optimizes therapeutic molecule

development, and enhances clinical trial design, thereby shortening

trial durations and minimizing costs (155). Additionally, AI is

pivotal in personalized medicine, creating tailored treatments

based on genetic profiles, thus maximizing efficacy and minimizing

side effects compared to conventional approaches.

The future applications of AI in lung cancer precision medicine

are vast and multifaceted. AI is playing an increasingly pivotal role in
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early detection, personalized treatment planning, treatment

monitoring, and new drug development. By harnessing the power

of genetic, clinical, and imaging data, AI can deliver highly accurate

and effective medical solutions, significantly improving patient

survival rates and quality of life. As technology advances, the

integration of AI into lung cancer precision medicine will continue

to expand and deepen, heralding a new era of personalized healthcare.

The seamless incorporation of AI tools into clinical workflows is

enhancing the ability to detect both NSCLC and SCLC at earlier

stages, while also providing oncologists with powerful decision

support systems for crafting personalized treatment plans for

advanced-stage patients. However, it’s important to note that while

AI holds great promise, its implementation in clinical practice should

be done cautiously and ethically. Rigorous validation studies,

regulatory approvals, and ongoing monitoring of AI systems in

real-world settings are crucial to ensure their safety and efficacy.

Additionally, efforts should be made to address potential biases in AI

algorithms and to ensure equitable access to AI-enhanced healthcare

across diverse populations. As we move forward, the synergy between

human expertise and AI capabilities will likely define the future of

lung cancer care, offering hope for improved outcomes and quality of

life for patients worldwide.
4 Technical challenges and solutions

AI holds considerable promise for advancing lung cancer

diagnosis, treatment, and prognosis. Nonetheless, realizing this

potential requires addressing several key challenges related to data

quality and quantity, model interpretability, statistical validation,

and ethical and privacy considerations.

Initially, addressing data quality and quantity is crucial. Medical

datasets often contain noise, missing values, and errors due to human

input, all of which can adversely affect AI model performance.

Moreover, the development of large-scale, high-quality annotated

datasets is fraught with difficulties, limiting the robustness and

generalizability of AI models. Data heterogeneity further

complicates this issue, as variations across healthcare institutions or

imaging devices often lead to a lack of standardization. Additionally,

integrating diverse data types, such as imaging, genomic, and clinical

records, calls for sophisticated multimodal analysis.

To confront these challenges, several strategies are recommended.

Implementing rigorous data cleaning and standardization protocols

can significantly mitigate noise and rectify errors, thereby improving

data quality. Enhancing data volume through multi-center

collaborations and secure data-sharing platforms is essential, all

while maintaining strict data privacy and security. Furthermore,

employing data augmentation techniques, including image rotation,

translation, and scaling, can bolster training sample sizes. The

creation of unified data formats and processing standards is crucial

for the standardization and integration of multimodal data, thereby

maximizing the utility of available information.

Equally important is the challenge of model interpretability,

particularly with DL models like CNNs. While CNNs excel in image

diagnostics, their “black box” nature makes understanding their

decision-making processes difficult, thus impeding trust in their
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predictions. To enhance interpretability, several approaches are

suggested. Employing Explainable AI (XAI) techniques, such as

Gradient-weighted Class Activation Mapping (Grad-CAM), helps

produce heat maps that visualize decision-making focal areas.

Additionally, incorporating attention mechanisms into CNNs

analyzing CT scans can highlight suspicious areas, providing

visual cues of the decision process to clinicians. The use of Local

Interpretable Model-agnostic Explanations (LIME) can

further clarify individual predictions, enhancing clinicians’

comprehension of data feature contributions. A notable addition

to these interpretability methods is the SHapley Additive

exPlanations (SHAP) approach. SHAP, based on game theory

concepts, offers a unified framework for interpreting predictions.

It provides both global and local explanations of model behavior,

which is particularly valuable in medical imaging where

understanding the importance of different image regions in model

decisions is crucial. SHAP’s model-agnostic nature and strong

theoretical foundation make it especially suitable for complex

deep learning models used in lung cancer detection, potentially

increasing clinicians’ trust in AI-assisted diagnoses.

In parallel, rigorous statistical validation is needed to ensure the

reliability and generalizability of AI models in lung cancer research.

Applying stratified k-fold cross-validation ensures that cancer

stages or subtypes are consistently represented across folds,

yielding robust model performance estimates. External validation

on independent datasets is critical for assessing model performance

on unobserved data from various institutions, unveiling potential

biases or limitations. Comprehensive performance metrics should

also be evaluated, including Area Under the Curve of Receiver

Operating Characteristic (AUC-ROC), precision-recall curves, and

F1 scores, alongside traditional metrics. Calibration plots and

decision curve analysis can effectively gauge the clinical utility of

these models across different threshold probabilities.

Moreover, ethical and privacy considerations are foundational

to the application of AI in healthcare. The use of patient data raises

complex ethical issues, necessitating robust safeguards for privacy

protection and adherence to ethical guidelines. Transitioning from

research to clinical practice further underscores the need for models

capable of operating reliably across diverse clinical environments

and conditions.

In summary, systematically addressing these challenges through

strategic measures can markedly enhance the applicability and

effectiveness of AI in lung cancer research and clinical settings.

Enhancing model interpretability and ensuring thorough statistical

validation are key to building clinician trust and encouraging

clinical integration. Developing comprehensive interpretability

frameworks and validation protocols will enable healthcare

professionals to confidently rely on AI diagnostic results, thereby

improving diagnostic accuracy and treatment efficacy for patients.
5 Conclusion

The integration of AI into lung cancer research and treatment

has already demonstrated substantial advancements, enhancing

diagnostic accuracy, treatment planning, and patient outcome
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prediction. AI’s application across various -omics fields, radiomics,

and pathology has provided unprecedented insights into the

molecular mechanisms of lung cancer, facilitating early detection

and personalized treatment strategies. Despite challenges such as

data quality, interpretability, and ethical considerations, ongoing

technological advancements and strategic solutions promise to

overcome these hurdles. The future of AI in lung cancer is poised

for transformative impact, with potential to revolutionize precision

medicine, accelerate drug discovery, and improve patient care. As

AI continues to evolve, its role in lung cancer management will

deepen, offering innovative solutions and contributing to a more

comprehensive understanding of the disease, ultimately leading to

better patient outcomes and enhanced quality of life.
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AI Artificial Intelligence
Frontiers in Oncology
NSCLC Non-small cell lung cancer
SCLC Small cell lung cancer
EGFR Epidermal Growth Factor Receptor
ALK Anaplastic Lymphoma Kinase
ML Machine learning
DL Deep Learning
NLP Natural Language Processing
DNNs Deep neural networks
CT Computed Tomography
CNNs Convolutional Neural Networks
RNNs Recurrent Neural Networks
KRAS Kirsten Rat Sarcoma virus
TCGA The Cancer Genome Atlas
GDC Genomic Data Commons
CNV Copy number variation
GEO Gene Expression Omnibus
ncRNA non-coding RNA
miRNAs microRNAs
lncRNAs long non-coding RNAs
ctDNA circulating tumor DNA
dPCR Digital Polymerase Chain Reaction
NGS Next-generation sequencing
RNA-Seq RNA Sequencing
mRNA messenger RNA
SVMs Support vector machines
circRNAs circular RNAs
m6A N6-methyladenosine
PCA Principal Component Analysis
t-SNE t-Distributed Stochastic Neighbor Embedding
UMAP Uniform Manifold Approximation and Projection
TMB Tumor mutation burden
FACS Fluorescence-activated Cell Sorting
TCR T-cell receptor
BCR B-cell receptor
TME Tumor Microenvironment
PD-1 Programmed Death-1
PD-L1 Programmed Death-Ligand 1
CTLA-4 Cytotoxic T-Lymphocyte Antigen 4
HLA Human Leukocyte Antigen
MHC Major Histocompatibility Complex
NK Natural killer
MDSCs Myeloid-Derived Suppressor Cells
PCA Principal Component Analysis
CAD computer-aided diagnosis
TKIs Tyrosine kinase inhibitors
AWS Amazon Web Services
19
PET/CT Positron Emission Tomography/Computed Tomography
EHRs Electronic health records
XAI Explainable Artificial Intelligence
HIPAA Health Insurance Portability and Accountability Act
GDPR General Data Protection Regulation
Grad-CAM Gradient-weighted Class Activation Mapping
LIME Local Interpretable Model-agnostic Explanations
SHAP SHapley Additive exPlanations
AUC-ROC Area Under the Curve of Receiver Operating Characteristic
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