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Efficiency and safety of automated label
cleaning on multimodal retinal images
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Label noise is a common and important issue that would affect the model’s performance in artificial
intelligence. This study assessed the effectiveness and potential risks of automated label cleaning
using an open-source framework, Cleanlab, in multi-category datasets of fundus photography and
optical coherence tomography, with intentionally introduced label noise ranging from 0 to 70%. After
six cycles of automatic cleaning, significant improvements are achieved in label accuracies
(3.4–62.9%) and dataset quality scores (DQS, 5.1–74.4%). Themajority (86.6 to 97.5%) of label errors
were accurately modified, with minimal missed (0.5–2.8%) or misclassified (0.4–10.6%). The
classification accuracy of RETFound significantly improved by 0.3–52.9% when trained with the
datasets after cleaning.We also developed aDQS-guided cleaning strategy tomitigate over-cleaning.
Furthermore, external validation on EyePACS and APTOS-2019 datasets boosted label accuracy by
1.3 and 1.8%, respectively. This approach automates label correction, enhances dataset reliability,
and strengthens model performance efficiently and safely.

Retinal diseases are some leading causes of irreversible blindness and impose
bothmedical and economicburdens on society1,2. Screeningbasedon retinal
images, including color fundus photography (CFP) and optical coherence
tomography (OCT), has been shown to play a pivotal role in preventing
blindness3,4. Over the past decade, the application of artificial intelligence
(AI) techniques, including deep learning, in CFP and OCT has successfully
reduced the workforce in image grading and provides a promising avenue
for large-scale blindness prevention, which is particularly pronounced in
underdeveloped regions with limited medical resources5,6.

The development of supervised AImodels requires large, high-quality,
labeleddatasets7.However, labeling is a subjective process. Toovercome this
disadvantage, majority-voting consensus andmulti-level verification can be
used. Both of them demand significant time and effort, especially in med-
icine, which requires a skilled team with high professionalism8,9. However,
despite these efforts, there is still room for errors, omissions, or inaccuracies
in labels, called label noise10,11. It is reported that the mainstream public
datasets, whichwere widely and repeatedly used, have a proportion of noisy
labels ranging from 0.15 to 38.5%12–16. In EyePACS, a commonly employed
public CFP database, labeling errors were reported up to 40%17.

The accuracy of labels directly impacts the model’s performance, and
mislabeling within the dataset can mislead data scientists into selecting a

suboptimal model for deployment18,19. Models trained on noisy samples
from these datasets can pose potential risks in decision-making, hindering
the clinical and real-world implementation ofAI20. Hence,minimizing label
noise is an indispensable component in the development of robust medical
artificial intelligence10.

Although manual re-labeling can be used to clean the noise in the
label17, it is very labor-intensive and time-consuming. Furthermore, it
cannot avoid the problem of graders’ subjectivity. Therefore, it becomes
imperative to explore objective, efficient, interpretable, and automated
means of label refinement to handle the voluminous data effectively. Con-
fident learning, an emergingbranchofweakly supervised learning andnoisy
learning, can identify label errors by estimating the uncertainty in dataset
labels21. An open-source framework known as Cleanlab is developed based
on confident learning and presents a potential solution to reduce label noise
and annotation workload effectively21. Cleanlab has shown prominent
performance in previous studies to find label errors in natural imaging
datasets such as MNIST, CIFAR-10, CIFAR-100, Caltech-256, ImageNet,
and QuickDraw15. However, there are few reports of Cleanlab in medical
images, especially retinal images. Furthermore, Cleanlab can be deployed in
a code-free or simple implementation manner, which does not require
profound coding expertise and can be driven by clinicians.
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In this study, we aimed to comprehensively assess the efficacy and
potential risks of multi-iterations Cleanlab in automated rectifying label
errors inCFP andOCTdatasetswith different noise rates, andwhether data
cleaning improves the performance of the deep learning model in the
classification of retinal images. Furthermore, we explored a strategy to
optimize the number of cleaning iterations. Finally, we conducted external
validation on publicly available datasets to demonstrate the feasibility of our
approach.

Results
The overall process of the study is depicted in Fig. 1. Initially, we
gathered 8 categories of CFP and 7 categories of OCT images, which
were subsequently annotated and divided into experimental sets for
label cleaning and testing sets for performance evaluation via
RETFound finetuning. Within the experimental sets, a proportional
pseudo-label strategy was employed to generate multiple noisy subsets
for both CFP andOCT. Cleanlab was then iteratively applied to identify
and correct mislabeling within the dataset. To assess the impact of
dataset noise on model accuracy, the RETFound model was indepen-
dently fine-tuned on the datasets both before and after label cleaning.
The classification accuracy of thesemodels was subsequently compared
using the identical hold-out testing set.

Label accuracy and dataset quality score
The label accuracies and dataset quality scores (DQSs) before and after each
cleaning iteration are shown in Fig. 2. After completing all six iterations of
unsupervised label cleaning, most label accuracies and DQSs exhibited
remarkable improvements, except in the original noise-free datasets. An
example of confusion matrixes for the datasets with a 40% noise rate is
shown in Supplementary Fig. 1. Thefinal label accuracy ranged from92.9 to
99.4% in CFP and from 88.6 to 99.3% in the OCT. The noisier rate in the
original dataset, the more improvement of label accuracy; however, the
lower final label accuracy in general. The improvement ismore in the initial
iteration and less in later iterations. However, it is found that in some
datasets with low noise label rates, the label accuracy improved at the initial
iterations but decreased later. In the original noise-free datasets, there is a
slight decrease in label accuracy after automated cleaning.

Dataset quality score guiding cleaning strategy
The DQS highly correlated with the label accuracy, with R2 of 0.9798 and
0.9669 for CFP and OCT, respectively (both p < 0.001) (Fig. 3a, b). The
receiver operating characteristic curves show that when the accuracy of 0.98
was set as the criteria, the corresponding cutoff values of DQS were 0.9965
for CFP and 0.9925 for OCT (Fig. 3c, d). Then, we used these thresholds to
determinewhether the dataset should be cleaned. The cleaning iterationwas
stopped when the DQS decreased or remained unchanged. Using this
strategy, the number of iterations needed for various noisy datasets is shown
in Fig. 3e, f. Generally, most datasets needed three to seven rounds of
cleaning. The noisier the dataset, the more iterations needed (r = 0.670 and
0.466 for CFP and OCT, respectively, both p < 0.01).

Cleaning effectiveness and potential risk
Both the 6-iteration strategy and DQS-guided cleaning strategy improved
label accuracy (Tables 1, 2). Themiss rate of pseudo-labels was low, ranging
from1.4 to 2.1% for CFP and 0.5 to 2.8% forOCT, respectively. TheCorrect
modification rate was high (92.3 to 97.5% for CFP and 86.6 to 95.7% for
OCT) after six-iteration or DQS-guided cleaning. However, it should be
noted that while some label noise was successfully detected, there were
instances where it was mistakenly modified to incorrect categories,
accounting for 0.4 to 5.9% for CFP and 2.9 to 10.6% for OCT. Furthermore,
some correct labels are falsely labeled andmis-modified (0.7 to 5.6% forCFP
and 0.7 to 10.7% forOCT).DQS-guided cleaning reduced the chance of this
false labeling in the datasets with a low noise rate (0–15%).

RETFound classification performance
Noise in datasets resulted in decreased classification accuracy of the
RETFound model (Fig. 4). The noisier dataset, the lower the classification
accuracy. Even a 10% noise rate resulted in a 4.0 and 4.4% decrease in
classification accuracy in CFP and OCT, respectively. Except in the clean
datasets (0% noise rate), the classification accuracy of the RETFound
improved using the datasets after six iterations of label cleaning compared to
that before cleaning, with the classifying accuracies increased by 0.3 to 52.9%,
with all p values <0.05 except in 10%noise rate. Thenoisier datasets, themore
improvement in classification accuracy after label cleaning. The classification
accuracy achieved using the cleansed datasets was comparable to that of the

Fig. 1 | Schematic diagram of the overall label cleaning process. a Data prepara-
tion: A total of 2263 CFP and 1316 OCT images were collected and annotated
b pseudo-label strategy: Label noise was deliberately injected by randomly select 5%
from one category and evenly distributed to other categories progressively to create

45 subsets. c Data cleaning: Cleanlab was applied to detect and correct label errors
repeatedly. dModel comparison: The RETFound foundation model was fine-tuned
on datasets before and after label cleaning and tested on a holdout testing set.
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noise-free dataset in both CFP and OCT. This consistent trend was also
observed across precision, recall, and F1-score (Supplementary Figs. 2, 3, 4).

External validation on public datasets
The results of external validation on EyePACS and APTOS-2019 have
demonstrated that Cleanlab is capable of significantly improving both label
accuracies and dataset quality scores in real-world unbalanced settings. A
substantial collection of 14,358 CFPs from EyePACS and 3178 CFPs from
APTOS-2019 underwent multi-grader re-annotation to refine the datasets.
The detailed statistics of the re-annotation and distribution of label noise
within these datasets are presented in Supplementary Table 1. As illustrated
in Supplementary Table 2, after six iterations, the label accuracies increased
from0.916 to 0.929 for EyePACS, and from0.906 to 0.928 forAPTOS-2019.
Additionally, the DQSs improved from 0.9547 to 0.9950 for EyePACS and
from 0.9755 to 0.9987 for APTOS-2019. Following the DQS-guided strat-
egy, during the third round of cleaning for EyePACS, theDQS decreased, so
the final label accuracy from the previous round was used, which was 0.930
in the final. In contrast, after three rounds of cleaning, the DQS of APTOS-

2019 exceeded the threshold of 0.9965, allowing cleaning to be halted in the
third round, resulting in a final label accuracy of 0.924. These results further
confirm the effectiveness and generalizability of this approach.

In cross-validation using EyePACS and APTOS-2019 with updated
consensus labels as ground truth and fine-tuned on RETFound, a marked
increase in AUC after cleaning was noted, with the values increasing from
0.972 ± 0.008 to 0.979 ± 0.004 for EyePACS and from 0.785 ± 0.019 to
0.810 ± 0.021 for APTOS-2019 (both with p = 0.036), as illustrated in
Supplementary Table 3. A modest rise in classification accuracy was also
observed; while this did not achieve statistical significance for EyePACS
(p = 0.105), it did for APTOS-2019 (P = 0.006). Additionally, we observed
consistent upward trends in precisions, recalls, and F1-scores across both
datasets. This trend of a slight enhancement after label cleaning aligns with
our findings in the private CFP datasets with a 10% noise level.

Furthermore, to demonstrate the effectiveness of Cleanlab, two
advanced projects in the field of unstructured data noise, namely Docta and
Fastdup, were included for comparison. We have conducted label cleaning
on the EyePACS and APTOS-2019 datasets using the same methodology.

Fig. 2 | Line charts of label accuracy and dataset quality scores after repeated cleaning iterations. After repeated label cleaning, most of the label accuracies (a, c) and
dataset quality scores (b, d) of CFP (a, b) and OCT (c, d) increased significantly and stabilized at high levels, except in the original noise-free datasets.
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After six iterations of label cleaning anddataupdating,Cleanlab achieved an
increase in label accuracies from0.916 to 0.929 on the EyePACS dataset and
from 0.906 to 0.928 on the APTOS-2019 dataset, as illustrated in Supple-
mentary Fig. 5. In contrast, Docta’s performance significantly dropped to
0.836onEyePACSbut increased to 0.912onAPTOS-2019. Fastdup reached
a plateau after two rounds, with accuracy decreasing to 0.899 on EyePACS
and 0.901 on APTOS-2019. These results suggest that Cleanlab demon-
strates a superiority over other state-of-the-art methods.

Discussion
In this study, we found that Cleanlab can efficiently correct the label errors
automatically for both multi-category CFP and OCT datasets, with a low

risk of missed or mis-correction. Dataset cleaning using Cleanlab can
improve the performance of multi-category classification of subsequent
models. Furthermore, we showed that the DQS can be used to predict the
accuracy of the label, and we set up a strategy using DQS to guide the start
and stop of the iteration. Finally, we demonstrated the effectiveness of
Cleanlab through external validation on two public datasets.

Label noise had a substantial impact on the model’s performance.
Although deep learning may have some robustness against label noise22,23,
our study revealed that 10% of the noise labels resulted in a 3.6 and 4.5%
decrease in classification accuracy for CFP and OCT, respectively, which
deteriorated further as the noise proportion increased. This finding is
consistent with the previous report that only a 6% increase in label noise on

Fig. 3 | Label cleaning strategy guided by dataset quality scores. a, b showed the
strong linear correlation between dataset quality score (DQS) and label accuracy.
c, d showed receiver operating characteristic curves for predicting label accuracy

with DQS. The cutoff values of DQS for label accuracy >0.98 were determined to be
0.9965 and 0.9925. e, f The correlation between noise rate and cleaning iterations
using DQS-guided strategy.
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ImageNet can seriously affect the rankings of resnet-18 and resnet-50,
highlighting the crucial importance of label cleaning15.

Label noise is a kind of uncertainty in thefield ofmachine learning.There
are two types of uncertainty: aleatoric (data) and epistemic (model). In our
previous study, we addressed the challenge of epistemic uncertainty by
developing an uncertainty-inspired open set learning model, which can
quantify the uncertainty and use it to detect out-of-distribution data, including
images with atypical features of retinal disease, non-target categories not
included in trainingandnon-CFP images24. In the current study,we resolve the
challenge of aleatoric uncertainty using automatic confident learning, which is
based on the principles of pruning noisy data, counting with probabilistic
thresholds to estimate noise, and ranking examples to train with confidence.

Data cleaning canbeperformedmanually or automatically.Manual re-
labeling is very laborious and time-consuming and cannot resolve the
problem of graders’ subjectivity17. Cleanlab can automatically identify the
data with higher uncertainty in labels and resolve the problem of labor and
subjectivity. The identified images with label issues can be managed using
various strategies: discarding,manual correction, andautomated correction.
The images with labeling issues can be removed from the datasets, and the
classification models can be retrained15. However, due to the scarcity of
medical data, the images identified with labeling issues can be reinspected
manually in an interactive manner. While this approach aims to conserve
resources, it still requires workforce and time if there is a high proportion of
noisy data. Therefore, we directly adopted the suggested label generated by
Cleanlab to replace the original label during each round of label cleaning,
thereby maximizing the utilization of each valuable medical image and
minimizing the need for a workforce. Our results illustrated that cleaned
datasets are comparable to initial noise-free datasets in CFP and onlymildly
inferior in OCT for classification accuracy of the downstream RETFound
model, even for the datasets with noise rates up to 70%. These results
confirmed the efficiency of our approach, fully automatic multi-iteration
data cleaning. This approach is successful in both CFP and OCT datasets,
suggesting its efficiency is not dependent on the modality of images.

We also accessed the limitations and risks of automatedmulti-iteration
data cleaning. Theremay be 0.5–2.8% ofmissed detection and 0.4–10.6% of
error modification rate in all label errors (Tables 1, 2). Consequently,
achieving a completely clean dataset is not feasible with this approach. One
notable risk involves misidentifying actual labels as label issues and subse-
quently mis-modifying them. Our observations reveal that label accuracy
diminishes under two conditions: initial cleaning of noise-free datasets and
repeated excessive cleaning of noisy datasets. For instance, in noise-free
datasets, label accuracy may decrease from 100% to approximately 99.3 or
99.4% after six iterations of cleaning. Conversely, datasets initially con-
taining 5 or 10% noise may experience an initial accuracy increase with
cleaning iterations, followed by a subsequent decrease. Throughout,
Cleanlab consistently exhibited DQS with minimal flagged label errors in
both situations.Ambiguous caseswithoverlapping category representations
likely contribute to higher rates of false labeling compared to correct
modifications of pseudo-labels, thereby impacting label accuracy. To miti-
gate this issue, we propose using DQS as a guide for determining when to
initiate and cease label cleaning, given its strong correlation with label
accuracy. Alternatively, in cases where few label errors are flagged, manual
confirmation based on the ranked label scores of each image can be
employed. This iterative human-machine feedback loop ensures efficient
validation of Cleanlab’s suggested changes, maintaining high label accuracy
without excessive time or effort.

To our knowledge, this study is thefirst to investigate the efficiency and
risk of automatic data cleaning in retinal images. Our fully automatic
approach further minimizes the need for manual re-inspection. This
method was applied in two different modalities of images, suggesting its
potential applicability to other medical specialties or imaging modalities.
CFP andOCT are themost widely used screeningmethods in the context of
fundus diseases despite having completely different imaging principles and
effects. Notably, the flexibility of Cleanlab, which is not tightly bound to
specific data modalities or models, holds great promise and has garnered
interest from clinical professionals21. This indicates that it is more data-

Fig. 4 | Classification accuracy of RETFound
finetuning before and after cleaning. The original
datasets with noisy labels and the ones after
6-iterations of label cleaning were used to fine-tune
the RETFound model and subsequently test on the
hold-out testing sets, respectively. The classification
accuracies in both CFP (a) and OCT (b) demon-
strated notable enhancements, with improvements
becoming more evident as the noise rates increased.
Except in the clean datasets (0% noise rate), the
classification accuracy of the RETFound improved
using the dataset after cleaning compared to that
before cleaning.
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centric than strongly model-dependent, showcasing its robustness and
generalization capabilities.

The application of automated label cleaning in medicine holds sub-
stantial promise. The code-free or simple implementation nature makes this
method accessible to medical practitioners who do not have profound
knowledge of coding. By reducing annotation workload and improving effi-
ciency,medical practitioners canbenefit significantly from the ability to detect
and rectify label errors in a timely and automated manner. This enhances
dataset quality and improves model performance, ultimately advancing the
development and clinical implementation of artificial intelligence in health-
care. This method can be applied to both public and private datasets to
optimize the datasets for deep learning algorithm training. It also has the
potential to identifymisdiagnosis in private datasets andpreventmedical risk.

It is imperative to acknowledge the limitations of our study. Firstly, the
lesions of categories includedwere typical, representative, and distinctive to
someextent, yet theydonot fully encapsulate the intricate clinical landscape.
Therefore, a multi-label, multi-class study instead of a single-label one
would be more appropriate. Secondly, we only included images obtained
froma single piece of equipment. Further investigation is necessary to assess
the applicability of our methodology across multiple devices. Thirdly, the
category distributionwithin the dataset was balanced and did not alignwith
the intricacies of clinical epidemiology. Hence, an evaluation of our
approach using real-world, large-scale clinical datasets is warranted. Finally,
the included datasets were relatively small. A more comprehensive eva-
luation would be possible with larger datasets. In future studies, we would
intend to expand our research to incorporate more extensive datasets.

In conclusion, the utilization of Cleanlab in the context of CFP and
OCT emerges as an efficacious and low-risk method in the realm of label
error detection and correction, which would further improve the perfor-
mance of the classification model trained with these datasets. The DQS-
guided strategy may help to prevent the risk of over-cleaning.

Methods
Dataset construction and pseudo-label strategy
All image data were gathered from the Joint Shantou International Eye
Center (JSIEC). This study was approved by the Ethics Committee of JSIEC
following the principles of the Helsinki Declaration. It was conducted ret-
rospectively, and all data were deidentified to ensure the utmost protection
of patient privacy without the need for patient’s informed consent forms.

TheCFPswere captured using aTRC-NW8Mydriatic Retinal Camera
(Topcon, Japan), with images at a resolution of 3046*2574. A total of eight
distinct classificationswere compiled for label cleaning. These classifications
encompassed age-related macular degeneration (AMD), central serous
chorioretinopathy (CSCR), diabetic retinopathy (DR), normal fundus(N),
pathological myopia (PM), retinal detachment (RD), retinitis pigmentosa
(RP), and retinal vein occlusion (RVO). The OCTs were acquired using the
Cirrus HD-OCT 5000 (Zeiss, Germany), with images at a resolution of
1389*926. A collection of seven disease classifications was amassed,
includingAMD,CSCR,DR, epiretinalmembrane (ERM),N,PM, andRVO.

To ensure sample diversity, one image per patient was randomly
selected for inclusion in this study. Initially, 2296 CFPs and 1340 OCTs in
total were collected following protocols detailed in Supplementary Table 4.
Each image underwent independent annotation by twoophthalmologists in
a blinded manner, with only data having consistent labels included in the
study. As a result, 33 inconsistent CFPs (1.44% of the total CFPs) and 24
inconsistent OCTs (1.79% of the total OCTs) were excluded to ensure the
integrity of the data. Within the consensus-labeled images, the CFP
experimental set for data cleaning were structured to include eight disease
categories, with each category containing 200 images from 200 unique
patients. Similarly, the OCT experimental sets were composed of seven
disease categories, each with 140 B-scans from 140 distinct patients. To
benchmark the classification accuracy of the RETFound model, we addi-
tionally curated two separate hold-out datasets, consisting of 663 CFPs and
336OCTs sourced fromaunique cohort distinct from the experimental sets.
These datasets were noise-free and specifically reserved for comparative

testing, providing a robust framework for evaluating the model’s perfor-
mance. A comprehensive data distribution is provided in Supplementary
Table 5. Subsequently, all included images were resized to (224, 224) and
paired with their corresponding single-labels.

To evaluate the efficacy of Cleanlab in detecting label issues inCFP and
OCT images, we employed a proportional pseudo-label strategy, as illu-
strated in Fig. 1. Initially, a random selection of 5% of images from each
category was evenly redistributed among the remaining classes. This
approach allowed for the creation of 15 noisy gradients for both CFP and
OCT, ranging fromnoise-free (0%noise rate) to very noisy (70%noise rate)
in a progressive manner. To mitigate the potential sampling errors, we
performed triple sampling at each step of adding 5% noise, resulting in the
formation of 45 sub-datasets in total.

Data cleaning using cleanlab
Cleanlab excels at detecting common real-world issues such as label errors,
outliers, and near duplicates. To address the intricate problemof label noise,
we implemented Cleanlab, which uses Confidence Learning principles to
infer and correct label errors. Cleanlab can estimate the probability of each
label’s correctness and identifies potentially incorrect labels by using cross-
validation to compute out-of-sample predicted class probabilities and using
trained models to generate feature embeddings (numeric vector repre-
sentations) for all the image data, subsequently updating the label infor-
mation within the dataset. The code was downloaded from Cleanlab’s
GitHub repository (https://github.com/cleanlab/cleanlab) and imple-
mented on the public platform PyTorch.

In our study, we utilized Cleanlab iteratively to inspect the dataset and
rectifymislabeled errors. The parameter settings were configured based on the
default settings of the framework, employing the Swin Transformer model
trained on varied noisy groups. The SwinTransformer, known for its ability to
handle long-rangedependencies in images throughself-attentionmechanisms,
was utilized to compute predicted class probabilities and extract feature
embeddings. Specifically, the hyperparameters were as follows: the batch size
was set to 32, the learning rate was 0.0001, the number of epochs was 10, the
number of folds was 5, the patience level was set to 2, the optimization algo-
rithmusedwasAdam,and the loss functionutilizedwas the cross-entropy loss.

After completing model training, the predicted class probabilities and
feature embeddingswere loaded intoDatalab, a component ofCleanlab. This
toolwasused to inspect thedataset forpotential label issues.Acomprehensive
audit of the overall dataset quality score (DQS) was conducted to assess the
database’s reliability regarding incorrect labeling, with a higher DQS indi-
cating a cleaner dataset. Additionally, Datalab can flag suspicious images—
those with a high likelihood of being mislabeled—quantified by a numeric
label score ranging from 0 to 1. A lower label score suggests a lower label
quality andagreater likelihoodofmislabeling.Moreover,Datalab can suggest
an alternative label, known as the predicted category, which Cleanlab deems
more suitable for the data point than the original label. It corresponds to the
predicted class probability of themost likely class in thesemulti-class datasets.

Multi-iteration cleaning and DQS-guided cleaning
At first, six sequential rounds of unsupervised label cleaning, data updating,
and model retraining were conducted using Cleanlab without manual
confirmation.Themeans and standarddeviations of the label accuracies and
DQSs of the triple sampling were calculated after each cleaning iteration.

In real-world implementation, the label may be unreliable, so the label
accuracy or noise rate is not available. To optimize the number of iterations,
we developed a DQS-guided strategy. Linear regression was used to inves-
tigate the relationship between label accuracy and DQS. Furthermore, we
defined a threshold of label accuracy = 0.98 to categorize datasets into two
classes: those requiring further cleaning (label accuracy <0.98) and those
that are sufficiently clean and do not require additional cleaning (label
accuracy ≥ 0.98). This binary classification, predicated on the defined
threshold, facilitated the conversion of the continuous label accuracymetric
into a binary format amenable for receiver operating characteristic (ROC)
curve analysis. This approach enabled us to explore the capacity of dataset
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quality score (DQS) to predict label accuracy and to ascertain the DQS
threshold that would trigger the initiation of the label-cleaning process. The
criteria for terminating the label cleaning iteration were set when the DQS
decreased or remained unchanged after cleaning, and the dataset before this
iterationwas used. The numbers of iterationswere recorded for each dataset
with different noise rates.

RETFound finetuning and classification accuracy
To investigate the effect of dataset noise on model performance, we
employed the pre-trained RETFound foundation model for transfer
learning25.We fine-tunedmodels on datasets before and after label cleaning
separately using PyTorch andNvidia Geforce RTX 2080ti GPU (11 G), and
compared their best-predicting accuracy on the same hold-out testing set.
Adam was chosen as the optimizer, with an initial learning rate and weight
decay bothset to 0.0001.Thenumberof epochswas set to 10,while the batch
size was set to 8. The images were randomly divided into training and
validation sets at an 8:2 ratio, so the validation sets may also contain noisy
labels.Models with higher validation accuracywere saved and further tested
on the same hold-out testing set, which are free of noise.

The best testing accuracies before and after cleaningwere recorded and
compared. To mitigate sampling errors that may arise from
dataset allocating and noise distribution, the above steps were then repeated
three times using different random seeds, and their means and standard
deviations of evaluation indicators were calculated and compared using a
two-sidedWilcoxon signed rank test, depending on the distribution of data.

External validation on public datasets
Furthermore, we conducted external validation on two public datasets,
EyePACS and APTOS-2019, which were initially considered noisy. The
original labels for these datasets were annotated by a single individual,
resulting innumerous subjective errors.To improve label accuracy, previous
research organized a group of doctors to re-annotate EyePACS and open-
source detailed image labels17. The process of data preparation for the
EyePACS dataset was illustrated in Supplementary Fig. 6. The original
datasets comprising 88,702 were obtained from Kaggle, while 57,213 were
relabeled17. Thediabetic retinopathywas classified intoDRgrades 0–4,while
other diagnoses as “others” and used amajority-voting principle to establish
ground truth. After excluding 3450 single-annotation images, 53,763 were
retained. Out of these, 2898 images could not reach a consensus, and 36,508
were predominantly classified as “others”, leading to 14,358 images with
consensus DR grades 0–4 in final. For our study, we invited four ophthal-
mologists to thoroughly re-annotate APTOS-2019 according to the Inter-
national Clinical Diabetic Retinopathy Disease Severity Scale. Adhering to
the majority-voting consensus approach, only labels with over 75% agree-
ment among annotators were accepted as the definitive annotations for the
images.This criterionallowedus to include3178outof the total 3662 images
in our analysis. Diabetic retinopathy was further classified as either non-
referable DR (grades 0–1) or referable DR (grades 2–4).

Following the application of Cleanlab, we documented the label
accuracy anddatasetquality score after each cleaning cycle for bothdatasets.
Consistent with our approach to the private dataset, we employed both the
Six-Iteration strategy and the DQS-guided strategy. For the DQS-guided
strategy, we applied a threshold derived from the experimental set of our
private CFP data, setting the DQS cutoff at 0.9965, as shown in Fig. 3 c.

To assess the impact of label cleaning on model classification perfor-
mance, we conducted cross-validation using the EyePACS dataset before
and after label cleaning, fine-tuning the RETFoundmodel on these datasets,
and then testing the model using the APTOS-2019’s consensus labels.
Similarly, we also fine-tuned RETFound on APTOS-2019 and tested with
EyePACS’s consensus labels.

To further illustrate the effectiveness of the Cleanlab-based approach
over existing methods, we compared Cleanlab’s performance with two
leading projects addressing: Docta26 and Fastdup. Like the approach using
Cleanlab, multi-iterations were conducted without manual confirmation,
while label accuracies were calculated after each cleaning iteration.

Evaluation indicator

Label Accuracy ¼ jCorrect Labelsj
jAll Imagesj ð1Þ

Miss rate ¼ jPseudolabelsj � ðjPseudolabelsj \ jLabel issuesjÞ
jPseudolabelsj ð2Þ

Correctmodif ication rate ¼ jCorrect modfication of Pseudolabelsj
jPseudolabelsj ð3Þ

Errormodif ication rate ¼ jError modifications of Pseudolabelsj
jPseudolabelsj ð4Þ

False labeling rate ¼ jActual labelsmis� identified as label issuej
jActual Labelsj ð5Þ

Classif icationAccuracy ¼ TP þ TN
TP þ FN þ FP þ TN

ð6Þ

Precision ¼ TP
TPþ FP

ð7Þ

Recall ¼ TP
TPþ FN

ð8Þ

F1score ¼
2× Precision×Recall
Precisionþ Recall

ð9Þ

Label accuracywasdefinedas theproportionof images in thedataset that
have been correctly labeled, which reflects the overall results and be calculated
in accordance with formula (1). Actual labels refer to the true, verified labels
for the images, which may be obtained through expert annotation and con-
sensus labeling, serving as the benchmark for evaluating the accuracy of the
predicted labels generated by different approaches. Correct labels in formulae
(1) are defined as the labels within the dataset that are consistent with the
actual labels. To comprehensively assess the impact and potential risks
associatedwith label error detection,we employed formulae (2–5) to calculate
the miss rate, correct modification rate, error modification rate, and false
labeling rate, where label issues in formulae (2) indicates the examples, whose
given label is estimated to be incorrect and flagged by Cleanlab.

Furthermore, to evaluate the impact of label cleaning on model per-
formance, we computed classification accuracy, precision, recall and F1-
score employing formulae (6-9). The TP, FP, TN, and FN stand for true
positive, false positive, true negative, and false negative, respectively.

Data availability
Data sets supporting the findings of this study are not publicly available due
to the confidentiality policy of the Chinese National Health Council and
institutional patient privacy regulations. However, they are available from
the corresponding authorsupon request. For replicationof thefindings and/
or further academic and AI-related research activities, data may be
requested from the corresponding authorH.C. (drchenhaoyu@gmail.com),
and any requests will be responded to within 10 working days. Two public
datasets are available as follows. EyePACS: http://www.eyepacs.com/data-
analysis. Corresponding multi-labels are available from supplementary
material to the article17. APTOS-2019: https://www.kaggle.com/datasets/
mariaherrerot/aptos2019?select=train_1.csv.

Code availability
Codes for label cleaning are available at https://github.com/cleanlab/
cleanlab.Codes forRETFoundfinetuning and testing are available at https://
github.com/LooKing9218/RetClean. Codes for Docta are available at
https://github.com/Docta-ai/docta. Codes for Fastdup are available at
https://github.com/visual-layer/fastdup.
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