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Artificial intelligence assisted real-time
recognition of intra-abdominal metastasis
during laparoscopic gastric cancer
surgery

Check for updates

Hao Chen 1,9, Longfei Gou 1,9, Zhiwen Fang2,3,4,9, Qi Dou5, Haobin Chen6, Chang Chen7, Yuqing Qiu2,
Jinglin Zhang2, Chenglin Ning2, Yanfeng Hu1, Haijun Deng1 , Jiang Yu1 & Guoxin Li 1,8

Laparoscopic exploration (LE) is crucial for diagnosing intra-abdominal metastasis (IAM) in advanced
gastric cancer (GC). However, overlooking single, tiny, and occult IAM lesions during LE can severely
affect the treatment and prognosis due to surgeons’ visual misinterpretations. To address this, we
developed the artificial intelligence laparoscopic exploration system (AiLES) to recognize IAM lesions
with various metastatic extents and locations. The AiLES was developed based on a dataset
consisting of 5111 frames from100 videos, using 4130 frames formodel development and 981 frames
for evaluation. The AiLES achieved a Dice score of 0.76 and a recognition speed of 11 frames per
second, demonstrating robust performance in different metastatic extents (0.74–0.76) and locations
(0.63–0.90). Furthermore, AiLES performed comparably to novice surgeons in IAM recognition and
excelled in recognizing tiny and occult lesions. Our results demonstrate that the implementation of
AiLES could enhance accurate tumor staging and assist individualized treatment decisions.

Gastric cancer (GC) is thefifthmost commonlydiagnosedmalignant tumor
worldwide and the fourth primary cause of cancer-related deaths1,2, often
due to its advanced stage at the time of diagnosis. Intra-abdominal metas-
tasis (IAM) is the primarymode of distantmetastasis ofGC, and 14%ofGC
patients were diagnosed with IAM at their initial presentation3,4. Once IAM
occurs, the initial therapeutic management of patients shifts from curative
resection surgery toward systemic treatment with amedian survival of 3–21
months5,6. Therefore, accurate tumor staging, especially for distant metas-
tasis staging, is crucial for effective treatment decision-making and long-
term prognosis5. The staging of GC patients is predominantly conducted
using enhanced computed tomography (CT) scanning, while PET/CT is
also employed for diagnosing suspectedmetastases7. However, studies have
demonstrated that CT scanning exhibits limited sensitivity in accurate
tumor staging and metastasis detection8,9, especially IAM. Laparoscopic
exploration (LE) is inexpensive andminimally invasive, allowing systematic

examination of the abdominal cavity under direct vision10. Prospective
clinical trials have shown that 0.9–1.7% of GC patients had undetected
metastasis preoperativelywhile discoveredduring the surgery11–14. Due to its
critical role in tumor staging and treatment decision-making, LE is
recommended by several international guidelines for advanced GC7,15,16.

As thefirst phase of laparoscopic cancer surgery, LE is oftenoverlooked
as surgeons prioritize performing lymph node dissection and reconstruc-
tion. However, the accuracy of LE for detecting IAM depends on the sur-
geon’s experience and disease extent5. This procedure is typically performed
by junior surgeons under the supervision of senior surgeons; however,
junior surgeons may lack sufficient experience and skills17. Moreover,
metastatic lesions can be variable in their location, shape, and size18, making
them particularly challenging to detect, especially the single and tiny
implantation metastases on the peritoneum. These kinds of lesions are
prone to be missed by surgeons due to the limitations of light and tissue
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color perceptionwithin the surgicalfield19, whichmay result in the omission
of IAM, leading to incorrect tumor staging and unnecessary gastrectomy.
This impedes making the optimal comprehensive treatment strategy
intraoperatively, such as cytoreductive surgery (CRS)20, hyperthermic
intraperitoneal chemotherapy (HIPEC)21, or systemic chemotherapy22.
Therefore, an emerging solution is to develop an intraoperative artificial
intelligence (AI) systemto recognizemetastatic lesions, improvingdetection
accuracy and reducing the risk of omission.

Computer vision (CV) is the computerized analysis of digital images,
aiming to automate human visual capabilities, often utilizing machine
learning methods, especially deep learning23. CV has demonstrated poten-
tial in assisting surgeons duringminimally invasive surgery, such as surgical
instrument identification24, key anatomical structures segmentation25, phase
recognition26, safety zone detection27, and skill assessment28. However, these
studies primarily focus on laparoscopic cholecystectomy or colorectal sur-
gery, with few studies on complex GC surgery, particularly the phase of LE.
Semantic segmentation, as a type of algorithm in CV, has the potential to
enable precise pixel-level segmentation of IAM lesions, thereby facilitating
real-time accurate recognition of metastasis29. Thus, it is essential to inte-
grate an AI algorithm into laparoscopic GC surgery to assist surgeons in
recognizing IAM lesions.

The objective of the present study was to develop an artificial intelli-
gence laparoscopic exploration system (AiLES) using the semantic seg-
mentation algorithm for the automatic recognition of IAM lesions during
LE for GC, to assist intraoperative tumor staging and treatment decision-
making.

Results
Study design and dataset
The study workflow is shown in Fig. 1. The technical characteristics and
descriptions of the LE are detailed in Table 1. Patient and dataset

characteristics are displayed in SupplementaryTable 1. Therewere 46males
and 54 females in 100GCpatients. Themean age was 62.4 (±6.5) years, and
themean BodyMass Index (BMI) was 24.2 (±4.1) kg/m2. The lengths of the
original and edited videos in the dataset are displayed in Fig. 2a. The average
lengths of the original videos and edited videos were 23.0 ( ± 4.1) min and
12.7 ( ± 1.8) min, respectively. As shown in Fig. 2b, a total of 5111 frames
were divided into three categories according to the extent of metastasis: (1)
single metastases (2254 frames); (2) multiple metastases (1798 frames); (3)
extensive metastases (1059 frames); and divided into six categories
according to the location of metastasis: (1) peritoneum (3221 frames); (2)
omentum (668 frames); (3) bowels (186 frames); (4) mesentery (124
frames); (5) liver surface (819 frames); (6) uterus (93 frames). Notably, the
metastatic location “bowels” included small bowel (154 frames, 3.0% of the
dataset) and large bowel (32 frames, 0.6% of the dataset). Due to their small
proportions, we did not categorize frames of different bowel segments as
separate groups in this study. For model development, the dataset was
divided into a development setwith 4130 framesand an independent test set
with 981 frames at the patient level. The development set is then further
divided into a training set (3304 frames) and a validation set (826 frames).

Annotation consistency of IAM
The intra- and inter-annotator consistencies between the expert surgeon
(H.C.) and novice surgeons (L.G. and H.B.C.) on the randomly selected
subset of 50 frames were displayed in Table 2. For intra-annotator con-
sistency of the novice surgeons, the mean Dice score was 0.94 (±0.03), with
the Dice scores for different lesion locations and metastatic extents all
exceeding 0.90. For the same-level inter-annotator consistency, the mean
Dice score was 0.91 (±0.05), with the lowest consistency observed in
annotating lesions with extensive metastasis, achieving a Dice score of 0.88
(±0.05). For inter-annotator consistency of novice and expert surgeons, the
mean Dice score was 0.89 (±0.06), with the lowest consistency observed in
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Fig. 1 |Workflow of this study. aDataset construction: videos of LEwere converted
to images for dataset construction. All frames from the dataset were annotated by
annotators and reviewed by the expert surgeon; after data annotation, each lesion
image was labeled according to metastatic extents and locations. b Model

development: the dataset was preprocessed with data augmentation and cropping
patches for modeling. cModel evaluation: the performance of the models was
evaluated using the Dice score, intersection-over-union (IOU), inference speed, and
surgeon-AI comparison.
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annotating lesions with extensive metastasis, achieving a Dice score of 0.86
(±0.05). All the annotation consistencies are satisfactory with all the Dice
scores greater than 0.85.

Comparison of AI models for IAM recognition on test set
The performance of developed IAM recognition AI models is presented in
Table 3. The AiLES demonstrated the best performance among all the
models, achieving aDice score (same as F1 score) of 0.76 (±0.17).AiLES also
demonstrated optimal performance across various evaluation metrics,
including intersection-over-union (IOU) of 0.61 (±0.19), recall (same as
sensitivity) of 0.73 (±0.21), specificity of 0.99 (±0.01), the accuracy of 0.99
(±0.01), the precision of 0.79 (±0.16), mean Average Precision at 50% IOU
(mAP@50) of 0.65 and the similarity indices (Table 3 and Supplementary
Table 2) including structural similarity index measure (SSIM) of 0.99
(±0.21) andHausdorff distance (HD) of 67.88 (±40.82). In contrast, the first
universal image segmentation foundationmodel, SegmentAnythingModel
(SAM), achieved poor Dice scores of 0.14 (±0.30), 0.29 (±0.32), and 0.02
(±0.10) for automatic full segmentation, one-box-prompt segmentationand
one-point-prompt segmentation, respectively. Nevertheless, it is worth
highlighting that the fine-tuned Medical SAM Adapter (MSA) showed a
remarkable enhancement in performance compared to the original SAM,
with an improved Dice score of 0.63 (±0.31). The performance of the
DeeplabV3+ model was comparable to MSA with a Dice score of 0.67
(±0.14).Additionally, theAiLEShas the fastest real-time inference speed at a

rate of 11 frames per second (fps), whereas theDeeplabV3+model achieves
7 fps and SAM/MSA detects at 2 fps. The detailed inference speed testing
results are shown in Supplementary Table 3.

Model performance of AiLES for IAM recognition under different
conditions
For tiny lesions, AiLES demonstrated superior segmentation performance
with a Dice score of 0.87 (±0.17) (Supplementary Fig. 1). For single lesions
located on the peritoneum (Table 4), which are typically occult and easily
overlooked, AiLES also achieved excellent recognition performance, with a
Dice score of 0.90 (±0.08). For lesions with different extents of metastasis
(Table4),AiLESachievedgoodsegmentationperformancewithDice scoresof
0.76 (±0.18), 0.74 (±0.16), and 0.76 (±0.14) for single, multiple, and extensive
metastases, respectively. For lesionswithdifferent locations (Table 4), theDice
scores of AiLES were: 0.78 (±0.15), 0.65 (±0.20), 0.67 (±0.08), 0.80 (±0.06),
0.65 (±0.16), and 0.93 (±0.07) for IAMon the peritoneum, omentum, bowels,
mesentery, liver surface and uterus. Additionally, there were two cases
showcasing the capability of the AiLES for IAM recognition during laparo-
scopic surgery in Supplementary Movie 1.

Comparison of IAM recognition between AiLES and surgeon
Figure 3 displays eight different scenes of IAM according to the metastatic
extents (single, multiple, extensive) and locations (peritoneum, omentum,
bowels, mesentery, liver surface, and uterus). The IAM recognition

Table 1 | The technical characteristics and detailed descriptions of the LE duration for gastric cancer

No. Step Description Content

1 Trocar insertion Start: insert a trocar
End: check whether there are puncture
injuries

Insert a 12-mm trocar at the umbilical level and insert a laparoscope into the
abdominal cavity. Establish two operating poles on the left (or right)
abdomen and plug them into two 5-mm trocars for inserting instruments.
Then check for any bruising or puncture injuries to the bowels and confirm if
there is any damage.

2 Exploration of the anterior abdominal
wall and the surface of abdominal
viscera

Start: exploration of bilateral
diaphragmatic dome
End: exploration of the surface of the
ascending colon

The exploration areas include: (1) bilateral diaphragmatic dome,
ligamentum teres hepatis, and falciform ligament; (2) the anterior abdominal
wall; (3) the diaphragmatic surface of the liver lobe; (4) the surface of the
transverse colon and the great omentum; (5) the inferior abdominal wall; (6)
the left side of abdominal wall, the left paracolic sulcus and the surface of
descending colon; and (7) the right side of abdominal wall, the right
paracolic sulcus and the surface of ascending colon.

3 Exploration of the pelvic cavity and the
surface of abdominal viscera

Start: exploration of bilateral fossa iliaca
End: exploration of the sigmoid colon and
upper rectum

Theexploration areas include: (1) bilateral fossa iliaca, bilateral accessories,
and uterus surface (for females); (2) pelvic floor and peritoneal reflection; (3)
sigmoid colon and upper rectum.

4 Exploration of mesentery and the
small bowel

Start: exploration of the mesocolon
transversum
End: exploration of the surface of
small bowel

The exploration areas include: (1) the descending mesocolon, transverse
mesocolon, ascending mesocolon, and their roots; (2) the Treitz ligament;
(3) the mesentery of the small bowel and its root; (4) the surface of the
small bowel.

5 Exploration of the stomach, adjacent
structures, and omental bursa

Start: exploration of the anterior gastric
wall and the greater curvature
End: exploration of the recessus of
hepatorenalis

The exploration areas include: (1) the serosa of the anterior gastric wall and
the greater curvature; (2) the lesser curvature and the lesser omentum; (3)
cardia and pylorus; (4) Ligamentum duodenum; (5) posterior gastric wall; (6)
omental bursa (if tumor located in the posterior gastric wall); (7) recessus of
hepatorenalis.

6 Peritoneal cytology Start: transfuse saline solution into the
abdominal cavity
End: suck and collect the peritoneal
lavage

Transfuse 200ml saline solution into hepatorenal recess, splenic recess,
bilateral paracolic sulcus, and pelvic floor, respectively. Suck and collect
the peritoneal lavage.

7 Suspicious lesion resection with biopsy Start: resect the suspicious lesion
End: use electrocautery for hemostasis

Use laparoscopic scissors or harmonic to resect the lesion if there are any
suspicious tumor deposits. Then use electrocautery to perform
hemostasis. Send the specimens to biopsy.

8 Closure of the abdominal incisions Start: suture peritoneal muscular sheath
layers
End: complete the LE

Suture the peritoneal and muscular sheath layers of the portholes and
complete the LE.

9 Others Start: clean the laparoscopic lens, idle or
any extra-abdominal procedures
End: any one of Steps 1–8 begins

The steps of lens cleaning, extra-abdominal procedures, or idle are defined
as others. The idle step is defined as hold-on time for the surgeon to change
the surgical tools, and adjust the angle of scope. The extra-abdominal
procedures include removing the resected lesions, inserting instruments,
and so on.

The sequence of exploration from step 2 to step 5 is flexible and can be adjusted based on the surgeon’s experience.
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performance of the AiLES, expert surgeons, and novice surgeons is visua-
lized and compared in Fig. 3. To assess the clinical utility of theAiLES, Fig. 4
showcases six key frames from LE to illustrate instances where the novice
surgeon overlooked IAM, contrasted with the developed AiLES’s accurate
recognition. It is inspiring that the AiLES could effectively detect the tiny,
isolated, and occult IAM lesions, which were difficult for novice surgeons.

Furthermore, we compared the recognition performance between the
AiLES andnovice surgeons in randomly selected 50 frames from the test set.
As Fig. 5a demonstrated, the AiLES’s performance metrics including Dice
score (same as F1 score), IOU, recall (same as sensitivity), specificity,
accuracy, and precision were non-inferior to those of the novice surgeons
(P > 0.05). Figure 5b further illustrated that AiLES’s segmentation
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35.2%
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Fig. 2 | Videos and frames in the study dataset. a Lengths of all videos. Original
videos include clips of all LE steps (trocar insertion, intra-abdominal exploration,
peritoneal cytology, resection of suspicious lesionswith biopsy, closure of abdominal

incisions, and others). Edited videos focus only on clips of intra-abdominal
exploration. bNumber of frames in different categories including metastatic extents
and locations.

Table 2 | Intra-annotator consistency and inter-annotator consistency between novice surgeon annotators and expert surgeon
annotators

Category Intra-annotator (Novice) Inter-annotator (Novice–Novice) Inter-annotator (Expert–Novice)

Dice score IOU Dice score IOU Dice score IOU

Overall 0.94 (0.03) 0.89 (0.04) 0.91 (0.05) 0.84 (0.09) 0.89 (0.06) 0.81 (0.09)

Metastatic extent

Single 0.95 (0.02) 0.91 (0.03) 0.92 (0.06) 0.85 (0.09) 0.90 (0.06) 0.83 (0.09)

Multiple 0.94 (0.02) 0.88 (0.04) 0.92 (0.04) 0.86 (0.07) 0.89 (0.05) 0.81 (0.09)

Extensive 0.92 (0.03) 0.86 (0.06) 0.88 (0.05) 0.79 (0.08) 0.86 (0.05) 0.76 (0.08)

Metastatic location

Peritoneum 0.93 (0.03) 0.88 (0.05) 0.91 (0.06) 0.84 (0.10) 0.89 (0.06) 0.81 (0.10)

Single 0.95 (0.02) 0.90 (0.03) 0.91 (0.09) 0.84 (0.13) 0.90 (0.08) 0.82 (0.12)

Multiple 0.94 (0.02) 0.88 (0.04) 0.93 (0.03) 0.88 (0.05) 0.91 (0.05) 0.84 (0.07)

Extensive 0.92 (0.03) 0.86 (0.06) 0.88 (0.05) 0.79 (0.08) 0.86 (0.05) 0.76 (0.08)

Omentum 0.94 (0.01) 0.88 (0.02) 0.92 (0.05) 0.88 (0.07) 0.88 (0.05) 0.80 (0.08)

Bowels 0.95 (0.02) 0.90 (0.04) 0.90 (0.03) 0.82 (0.04) 0.88 (0.04) 0.79 (0.06)

Mesentery 0.95 (0.03) 0.90 (0.05) 0.95 (0.02) 0.91 (0.04) 0.93 (0.05) 0.87 (0.09)

Liver surface 0.96 (0.01) 0.92 (0.02) 0.93 (0.04) 0.88 (0.07) 0.91 (0.04) 0.84 (0.07)

Uterus 0.96 (0.02) 0.92 (0.04) 0.89 (0.03) 0.80 (0.05) 0.88 (0.04) 0.78 (0.06)

Data were expressed in mean (±standard deviation, SD).
IOU intersection-over-union.
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performance across differentmetastatic extents and locations was also non-
inferior to that of novice surgeons. This indicated that the AiLES had
initially reached a level comparable to the novice surgeon in recognizing
IAM lesions’ shapes and boundaries.

Discussion
AI technologies, particularly CV, are increasingly utilized in minimally
invasive surgery, with prior applications focused on identifying surgical
instruments, phases, and anatomical structures to minimize risks and
enhance skill assessment23. However, limited research has focused on
intraoperative diagnosis and treatment decision-making, particularly for
GCpatientswith IAM30,31. Accurate LE is as crucial as safe surgical resection
for the treatment andprognosis ofGCpatients.Yet, surgeonexperiencemay
still lead to misjudgments and omissions of IAM lesions in this phase. This
study is the first to apply the real-time semantic segmentation algorithm
during the LE phase of GC surgery, achieving satisfactory recognition and
segmentation of IAM lesions with a Dice score of 0.76, an IOU of 0.61, and
an inference speed of 11 fps. Dice score, IOU, recall, specificity, accuracy,
and precision are the common metrics used for evaluating model perfor-
mance in segmentation tasks. To further compare model performance
comprehensively, we utilized mAP@50 to evaluate the model’s ability to
accurately segment and distinguish different recognition object classes
within the IAM dataset. Additionally, we employed SSIM and HD to assess
structural similarity andpoint set similarity betweenpredictions andground

truth to evaluate model performance. AiLES, based on RF-Net, out-
performed SAM,MSA, and DeeplabV3+ across these metrics. RF-Net was
originally developedusing anultrasoundbreast cancerdataset similar to our
IAMdataset,making itmore suitable for the segmentation task in our study.
Notably, AiLES achieved Dice scores of 0.90, 0.87, and 0.80 for the com-
monly overlooked single peritoneal lesions, tiny lesions, and mesenteric
lesions, respectively. Themodel matches the accuracy of novice surgeons in
segmenting IAM lesions, while also effectively recognizing lesions that
novice surgeons failed to recognize (Figs. 4 and 5).

For AI studies aimed at clinical applications, it is most important to
choose the appropriate model. Our findings indicated that, compared to
other models, the AiLES based on residual feedback network (RF-Net)
model performed best in identifying IAM lesions, achieving a Dice score of
0.76. This is primarily because RF-Net was developed based on the breast
cancer ultrasound images, which were similar to the IAM lesions in our
study, exhibiting significant variability in shape, size, and extent (Supple-
mentary Fig. 2)32. AiLES employed RF-Net’s core module, the residual
representation module, to learn the ambiguous boundaries and complex
areas of lesions, thereby enhancing segmentation performance (Fig. 6). The
DeeplabV3+model is widely utilized in surgical AI studies for recognizing
anatomical structures and surgical instruments33,34. However, it only
achieved a Dice score of 0.67 in our study, which was lower than the
satisfactory performance (Dice score ≥ 0.75) reported inprevious studies for
anatomy and instrument segmentation33,34. This is mainly due to the

Table 3 | Performance metrics of different IAM recognition AI models

Model Dice score
(F1 score)

IOU Recall
(sensitivity)

Specificity Accuracy Precision mAP@50 Inference
speed (fps)

SAM-Anything 0.14 (0.30) 0.07 (0.28) 0.51 (0.27) 0.95 (0.19) 0.94 (0.19) 0.08 (0.33) 0.16 2

SAM-box 0.29 (0.32) 0.17 (0.31) 0.63 (0.26) 0.98 (0.06) 0.97 (0.06) 0.19 (0.37) 0.41 2

SAM-point 0.02 (0.10) 0.01 (0.07) 0.26 (0.40) 0.77 (0.27) 0.76 (0.27) 0.01 (0.14) 0.01 2

MSA 0.63 (0.31) 0.46 (0.29) 0.59 (0.28) 0.94 (0.20) 0.88 (0.19) 0.67 (0.34) 0.51 2

DeeplabV3+ 0.67 (0.14) 0.50 (0.13) 0.61 (0.06) 0.93 (0.19) 0.85 (0.16) 0.75 (0.23) 0.59 7

AiLES 0.76 (0.17) 0.61 (0.19) 0.73 (0.21) 0.99 (0.01) 0.99 (0.01) 0.79 (0.16) 0.65 11

Data were expressed in mean (±standard deviation, SD). In this study, the Dice score and F1 score have the same values, and recall is also referred to as sensitivity.
IAM intra-abdominal metastasis, AI artificial intelligence, IOU intersection-over-union,mAP@50mean average precision at 50% IOU, fps frame per second, SAM segment anything model,MSAmedical
SAM adapter, AiLES artificial intelligence laparoscopic exploration system.

Table 4 | Summary of performance metrics of AiLES for IAM recognition

Category Dice score (F1 score) IOU Recall (sensitivity) Specificity Accuracy Precision

Test dataset 0.76 (0.17) 0.61 (0.19) 0.73 (0.21) 0.99 (0.01) 0.99 (0.01) 0.79 (0.16)

Metastatic extent

Single 0.76 (0.18) 0.62 (0.21) 0.69 (0.21) 0.99 (0.01) 0.99 (0.01) 0.86 (0.16)

Multiple 0.74 (0.16) 0.59 (0.18) 0.73 (0.21) 0.99 (0.01) 0.99 (0.01) 0.75 (0.16)

Extensive 0.76 (0.14) 0.61 (0.15) 0.75 (0.20) 0.99 (0.01) 0.99 (0.01) 0.77 (0.12)

Metastatic location

Peritoneum 0.78 (0.15) 0.64 (0.18) 0.80 (0.19) 0.99 (0.01) 0.99 (0.01) 0.77 (0.15)

Single 0.90 (0.08) 0.73 (0.12) 0.90 (0.08) 0.99 (0.01) 0.99 (0.01) 0.90 (0.12)

Multiple 0.78 (0.14) 0.64 (0.16) 0.82 (0.18) 0.99 (0.01) 0.99 (0.01) 0.75 (0.15)

Extensive 0.74 (0.15) 0.59 (0.16) 0.75 (0.21) 0.99 (0.01) 0.99 (0.01) 0.73 (0.12)

Omentum 0.65 (0.20) 0.49 (0.21) 0.59 (0.24) 0.99 (0.01) 0.99 (0.01) 0.74 (0.17)

Bowels 0.67 (0.08) 0.50 (0.09) 0.64 (0.12) 0.99 (0.01) 0.99 (0.01) 0.69 (0.18)

Mesentery 0.80 (0.06) 0.67 (0.07) 0.75 (0.09) 0.99 (0.01) 0.98 (0.01) 0.86 (0.10)

Liver surface 0.65 (0.16) 0.48 (0.16) 0.50 (0.18) 0.99 (0.01) 0.99 (0.01) 0.92 (0.12)

Uterus 0.93 (0.07) 0.86 (0.10) 0.95 (0.05) 0.99 (0.01) 0.99 (0.01) 0.91 (0.11)

Data were expressed in mean (±standard deviation, SD). In this study, the Dice score and F1 score have the same values, and recall is also referred to as sensitivity.
AiLES artificial intelligence laparoscopic exploration system, IAM intra-abdominal metastasis, IOU intersection-over-union.
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irregular shapes, locations, and extent of the IAM lesions, which are sig-
nificantly different from more regular anatomical structures and surgical
instruments. Additionally, SAM is the first universal image segmentation
foundation model35, which was released during the design phase of our
study.However, it had not been thoroughly explored in segmentingmedical
images36, particularly surgical images, and demonstrated poor performance
in different segmentation modes including automatic, one-point, and one-
box for IAM lesions, with Dice scores of 0.14, 0.02, and 0.29, respectively.
We thought the unique characteristics of IAM lesion images were sig-
nificantly different from natural images, leading to the unsatisfactory per-
formance of SAMwhich was trained by natural images35. After fine-tuning
with the MSA trained on our dataset37, the MSA demonstrated a notable
improvement over the original SAM in segmenting IAM, with a Dice score
of 0.63.Although the SAMandMSAwere unspecific for our study,we think
our results provide valuable data support and references for applying SAM

in surgical images. As the IAM dataset was original and unique, there were
noavailable studies or algorithms for references andnogold standardmodel
for our dataset. Based on the above factors, we included and evaluated the
current mainstream AI models for IAM segmentation, offering a reference
workflow for future research on surgical image segmentation.Moreover, the
evaluation of different models for real-time intraoperative deployment
showed inference speeds of 2 fps for SAM andMSA, 7 fps for DeeplabV3+,
and 11 fps for AiLES. According to previous surgical AI studies, inference
speeds for surgical image segmentation typically range from 6 fps to
14 fps33,38,39, indicating that the inference speed of AiLES in our study is
applicable and acceptable. In the future, the real-time inference speed of
AiLES could be further improved by utilizing deep learning acceleration
techniques such as TensorRT33.

The clinical practicability of the AI model depends not only on the
model performance, but also on the appropriate annotation approach for

Fig. 3 | Examples of AiLES recognition perfor-
mance. These examples displayed the visualization
effect of IAM segmented by the AiLES, expert sur-
geon, and novice surgeon in different scenes
according to metastatic extents on the peritoneum
and various metastatic locations. To improve the
clarity of the lesion segmentation results, all images
were resized to 512 × 512 pixels. AiLES: artificial
intelligence laparoscopic exploration system.
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constructing a high-quality dataset40. Currently, there are several common
annotation approaches for computer vision image analysis, including point,
bounding box, and polygon. Our study focuses on recognizing and seg-
menting IAM lesions, which have irregular shapes, extents, and boundaries.
For IAM lesion annotation, the point approach only marks the main
location of the lesion and fails to capture sufficient visual features, especially
for extensive lesions; the bounding-box approach may include partial
normal areas, which may cause the model to misidentify normal tissues as
lesions, increasing false positives and leading to inaccurate results. In con-
trast, the polygon approach can accurately outline the boundaries of lesions,
regardless of their shape and extent, similar to how surgeons recognize
lesions (Supplementary Fig. 3). Therefore,we selected the polygon approach
for annotating IAM lesions. Finally, we constructed a high-quality IAM
dataset with 5111 frames from 100 LE videos, with a similar video-to-frame

ratio to that of several excellent surgical AI studies that used the same
annotation approach as ours (Supplementary Table 4)25,34,41–43.

In clinical practice, peritoneal metastasis is the predominant type of
IAM inGCpatients.Whilemultiple and extensive peritonealmetastases are
readily identifiable, single peritoneal metastatic lesions may be prone to
being overlooked due to their tiny size, occult location, or rapid movement
of the camera during LE31. The JCOG0501 trial showed that the incidence of
omitted IAM lesions in the omentum and mesentery ranges between 1.9%
and 5.1%, not less than the 5.1% incidence of peritoneal metastases44. Also,
studies have shown a 10.6–20.0% probability ofmissing IAM lesions during
LE45,46, which could potentially lead to the under-staging of stage IV GC
patients. In addition, the REGATTA trial suggests that initial gastrectomy
may not be an appropriate treatment option for patients with IAM because
of poor prognosis47. Therefore, patients might receive inappropriate gas-
trectomy due to the underestimation of the tumor stage caused by IAM
omission, severely affecting their survival and prognosis. The AiLES excels
in segmenting single peritoneal lesions (Dice score 0.90), tiny lesions (Dice
score 0.87), and mesenteric lesions (Dice score 0.80), and shows robust
performance across different locations (Dice scores 0.62–0.93), effectively
identifying and segmenting lesions often missed by humans, thereby sig-
nificantly enhancing the accuracy of tumor staging (Supplementary
Movie 1).

Individualized conversion therapy is crucial for stage IV GC patients,
who often exhibit tumor heterogeneity and complex metastases48. The
calculation of the peritoneal cancer index (PCI) using LE offers a compre-
hensive evaluation of the extent and pattern of tumor dissemination in the
abdominal cavity20, serving as critical information for determining an
optimal individualized treatment strategy for stage IVGC patients. Current
research and clinical guidelines advocate for the incorporation of PCI scores
into treatment decision-making processes: patients with low PCI scores are
recommended to receive CRS and HIPEC for potential survival benefits49;
patients with high PCI scores are considered to receive systemic che-
motherapy tomanage symptoms and improve quality of life50. All the above
research results confirm the importanceof accuratePCI assessment. It’swell
known that the PCI assessment must take into account the metastatic
conditions on the parietal peritoneum, visceral peritoneum, and the surfaces
of various organs. Recently, Thomas et al. developed a computer-assisted
staging laparoscopy (CASL) system that employs object detection and
classification algorithms to detect and distinguish between benign and
malignant oligometastatic lesions31. The CASL is currently limited to ana-
lyzing static images of single lesions in the peritoneum and liver surface. In

Fig. 4 | Case presentation for clinical utility assessment of the AiLES. The
metastatic lesions in these cases were overlooked by the novice surgeon (red arrow)
but detected by both the AiLES (green arrow) and expert surgeon. AiLES: artificial
intelligence laparoscopic exploration system.

Metastatic extent Metastatic location
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Metrics

Fig. 5 | The comparison of performance metrics between novice surgeons
and AiLES. a Illustrations of performance metrics including Dice score (same as
F1 score), intersection-over-union (IOU), sensitivity (same as recall), specificity,

accuracy, and precision. b Violin plot illustrations of Dice score for different
metastatic extents and locations. AiLES: artificial intelligence laparoscopic
exploration system; ns: no significance (P > 0.05).
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contrast, our AiLES could recognize the IAM lesions with different meta-
static extents (single, multiple, and extensive) and metastatic locations
(peritoneum, omentum, bowels, mesentery, liver surface, and uterus) in
real-time (SupplementaryMovie 1). Consequently, theAiLES could serve as
a valuable complement to the CASL system, compensating for limitations
and illustrating the tremendous potential of AI algorithms to assist
intraoperative PCI assessment for GC patients. However, our AiLES is not
yet capable of recognizing specific organs or abdominal regions where IAM
lesions are located, nor can it measure lesion size during surgery, which are
also fundamental elements for AI-based automatic PCI assessment. AI for
IAM recognition and automatic PCI assessment are not only different
clinical studies, but also different CV tasks. It should be emphasized that,
IAM recognition in our study is an important foundation and first step
toward achieving automatic PCI assessment in the future.

In the clinical applications of AI, researchers are primarily concerned
with how AI compares to the proficiency of professional physicians23. In
studies involving object detection and classification algorithms, AI and
physician performance can be evaluated through simple ‘fast/slow’ and ‘yes/
no’ evaluations25,31. However, these evaluation methods fall insufficient for
semantic segmentation tasks33, where performance differences between
humans and AI are less quantifiable. To address this, we utilized two
approaches to assess the comparisonbetween surgeons andAI. Firstly, using
expert-annotated segmentations as the ground truth, we assessed the seg-
mentation performance of AI and novice surgeons on metastatic lesions
with varying extents and locations, finding no significant difference. This
suggests that AI performs at a level comparable to that of novice surgeons in
lesion identification. Subsequently, we selected images of tiny, occult lesions
for identification by AI and a novice surgeon. In several cases, AI success-
fully identified metastatic lesions missed by the novice surgeon. Since we
used the IAMannotations reviewed by expert surgeons as the gold standard
for model training and development, the segmentation performance of
AiLES can’t surpass that of the expert surgeons, that’s the reason why we
didn’t compare AiLES with experts. Furthermore, LE is typically performed
by novice surgeons under the supervision of senior surgeons, and novice
surgeons may lack experience in recognizing IAM and omitting occult
lesions in clinical practice. Therefore, theremay be sufficient clinical interest
and demand to develop an AI system to assist novice surgeons in recog-
nizing IAM lesions. As expected, the surgeon-AI comparison demonstrated
that AiLES had comparable performance to novice surgeons and

outperformed them in the recognition of tiny and easily overlooked lesions.
The assistance of AiLES is akin to collaborative judgment and decision-
making between two surgeons, thereby shortening the learning curve for
recognizing IAM and reducing the omission risk.

LE is recommended by several international guidelines for advanced
GC in clinical practice7,15,16, which suggests that AiLES holds significant
promise for IAM recognition during actual surgeries. Since AiLES is
developed based on actual surgery videos, it can be integrated into laparo-
scopic devices.Our plan is to display visual results ofAiLES recognition on a
separate screen, alongside the laparoscopic screen51,52. This visual systemwill
assist surgeons in performing accurate intraoperative tumor staging,
avoiding unnecessary gastrectomy, and reducing related healthcare costs,
without changing their established surgical routines.TheAiLEShasnotonly
potential clinical applications in workflow, but also practical value in sur-
gical training for residents, fellows, and young attending surgeons. Pre-
operatively, young surgeons can observe both the original and AI-assisted
lesion visualization videos to enhance their lesion recognition skills, rapidly
improving their abilities and reinforcing their memory of various lesion
shapes and extents. Intraoperatively, AiLES can assist in identifying tiny,
single, and occult IAM lesions and avoid incorrect tumor staging. Post-
operatively, AiLES allows young surgeons to comprehensively review lesion
images from surgery videos, helping them identify weaknesses and make
targeted improvements. Finally, it is important to emphasize that our AI
model for IAM recognition can assist surgeons but can’t replace surgeons in
making treatment decisions. Automated treatment decision-making is a
different clinical challenge andmultimodalAI task. In surgical practice, even
if AiLES’s performance improves in the future, final intraoperative treat-
ment decisions should be made by surgeons.

This study has several limitations. Firstly, the current dataset exhibits
an imbalance in the distribution of IAM lesions across different locations,
such as the omentum, bowels, mesentery, and uterus. Especially, the dataset
did not include frames of ovarian implantation metastasis and lacked suf-
ficient frames of metastasis located on small and large bowels53. It’s neces-
sary to expand the IAMdatasetwith amore balanced distribution of various
metastatic locations. Secondly, all videos in our dataset were collected from
GC surgeries, whichmay limit the generalization of AiLES to other types of
abdominal tumor surgeries. To address this issue, we will collect image data
from surgery videos with IAM in different cancers (e.g., colorectal cancer,
liver cancer, and pancreatic cancer). Thirdly, it is a single-center

Fig. 6 | The model architecture of the AiLES for IAM segmentation. ResNet-34 is
adopted as the Encoder path with pre-trained parameters. This network includes
two steps: The first step (black arrows) is used to generate the initial segmentation
results and learn the residual representation of missing/ambiguous boundaries and

confusing regions. The second step is used to (green dotted arrows) feed the residual
representation into the encoder path and generate more precise segmentation
results. AiLES: artificial intelligence laparoscopic exploration system. IAM: intra-
abdominal metastasis.
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retrospective study, requiring further multi-center and multi-device vali-
dation to strengthen the robustness and applicability of AiLES.

In conclusion, this study effectively showcases the utilization of a
real-time semantic segmentation AI model during the LE phase of
laparoscopic GC surgery, leading to an enhancement in the recognition
of IAM lesions. The AiLES demonstrate comparable performance to
novice surgeons and outperform them in the identification of tiny and
easily overlooked lesions, thereby potentially reducing the risk of inap-
propriate treatment decisions due to under-staging. The results
emphasize the significance of incorporating AI technologies within
surgery to enhance accurate tumor staging and assist individualized
treatment decision-making. In the future, we will improve our model’s
generalization and robustness by expanding the IAM dataset with
comprehensive metastatic locations from various abdominal cancer
videos. Moreover, it is imperative to carry out multi-center and multi-
device validation for the clinical implementation of AiLES.

Methods
Study design
Videos of the LE for GC patients were used to develop and validate the AI
model to recognize IAMexcept for theprimary tumor lesion.Themetastatic
lesions could be classified into different categories based on their locations,
including peritoneum, omentum, bowels, mesentery, liver surface, and
uterus. Additionally, metastatic lesions could also be categorized according
to the extent ofmetastasis within thefield of view, including single,multiple,
and extensive metastases (Supplementary Note 1)18. Metastatic lesions are
furtherdefined as “tiny lesions” if theymeet the following criteria: (1) lesions
with a diameter ≤ 0.5 cm,meanwhile, similar to or smaller than the tip of the
surgical instruments, such as laparoscopic gripper (Supplementary Fig. 4);
(2) presence of only a single lesion in the scene. The detailed technical
characteristics and descriptions of the LE in GC surgery were described in
Table 1, which reflects both the clinical experiences at our center and the
published “Four-StepProcedure”46.Allmetastatic lesionswere confirmed for
their consistency through LE and pathologic biopsy. Ethical approval
(Approval No. NFEC-2023-392) was provided by the Institutional Review
Board of Nanfang Hospital, Southern Medical University, and informed
consentwaswaived due to its retrospective design and the anonymizationof
patient data. This study was conducted in accordance with the TRI-
POD+AI statement (Supplementary Table 5)54.

Dataset
All videos of laparoscopic GC surgery confirmed as IAM at initial
exploration were collected from April 2017 to September 2022 in Nanfang
Hospital, which is the initiating unit of the Chinese Laparoscopic Gastro-
intestinal Surgery Study (CLASS) Group. All duplicate videos were
removed. Videos were included for the first-time LE, without perioperative
chemotherapy or radiotherapy. All videos were transformed into MP4
format,with a display resolution of 1920 × 1080 pixels and a frame rate of 25
fps.The intra-abdominal explorationof various regions and suspicious IAM
lesions is the most important step for LE. We cut out clips involving trocar
insertion, peritoneal cytology, lesion resection with biopsy, closure of the
abdominal wall incision, and other steps, retaining only the clips of intra-
abdominal exploration for study video dataset construction. The expert
surgeons (H.C., J.Y.,H.D., andG.L.) used ffmpeg4.2 software (www.ffmpeg.
org) tomanually extract and select frames from edited videos. The inclusion
criteria of frame selection were as follows: (1) IAM lesions are located in the
peritoneum, omentum, mesentery, bowel surface, liver surface, uterus, and
adnexa, excluding the primary gastric tumor, perigastric lymph nodes, and
nearby invaded structures; (2) if the lesion is observed over a period of time,
experts select frames from different angles and distances, then remove any
similar ones; (3) the frames are clear, without artifacts, glare, smoke, or
bloodstains that could interfere with IAM lesion recognition; and (4)
pathological data is reviewed to confirm that the IAM lesions aremetastatic
throughbiopsy.All framesweremodified tohave anaspect ratio of 16:9.The
specific process for constructing the dataset can be seen in Fig. 1a.

Annotations
The annotation group consisted of four expert surgeons (laparoscopic
gastric surgery experience ≥ 300 procedures) and four medical annotators
(including two novice surgeons). All expert surgeons are core members of
the CLASS group. Themedical annotators (J.Z. and C.N.) are students who
have completed undergraduate medical courses, including anatomy and
surgery, and have watched at least 30 laparoscopic GC surgery videos,
covering both LE and gastrectomy. Theymust be familiar with the features
of IAM lesions. The novice surgeons (H.C. and L.G.), in addition tomeeting
the qualifications of amedical annotator, have completed the rotation of the
surgical department, served as an assistant in surgical procedures, and
participated in no more than 20 laparoscopic GC surgeries. All annotators
received training including learning the LE process, observing actual
laparoscopic surgeries, identifying IAM lesions, and using the annotation
tool. Themedical annotators used the Labelme image polygonal annotation
tool to annotate the IAM lesions. For single IAM lesions, annotators out-
lined their boundaries to create accurate segmentation masks. For multiple
IAM lesions within the same frame, each lesion was annotated separately.
For extensive IAM lesions, particularly large and confluent ones, annotators
outlined the boundaries of each visible lesion and annotated any sur-
rounding normal structures or tissues using the polygonal method,
excluding these normal structures or tissues during mask generation to
ensure accurate annotation. After completing the annotations, we used the
OpenCV module to generate binary masks by converting the outlined
boundaries into segmented areas (Supplementary Note 2 and Supplemen-
tary Fig. 5). Subsequently, all annotations were reviewed by expert surgeons
to ensure the final accuracy of the IAM annotations. To assess the con-
sistency of the annotators, we evaluated three kinds of consistencies:
intra-annotator consistency for the same annotator across different times,
inter-annotator consistency among annotators at the same level, and
inter-annotator consistency among annotators at different levels. To
compute the consistencies mentioned above, a randomly selected subset of
50 frames from the whole dataset was annotated twice at different times,
with a seven-day interval between each annotation. The intra- and inter-
annotator consistencies were expressed in terms of Dice scores and IOU55,
which were further explained in the subsection “Model evaluation and
statistical analysis ”.

Data preprocessing and postprocessing
In the data preprocessing step, all frames underwent preprocessing for
normalization to minimize variations stemming from different imaging
systems, uneven lighting, and motion blur due to the rapid movement of
laparoscopic cameras. Data augmentation is used to expand the dataset and
improve the robustness of model training including flipping, rotating,
noising, sharpening, blurring, brightening, andgamutmapping. In addition,
to segment high-resolution (1920 × 1080 pixels) laparoscopic frames with-
out losing image information, we evenly divided these high-resolution
frames into multiple 512 × 512 pixels patches using a 256 pixels step. All
patches were input in the model mentioned in the “Semantic segmentation
model” subsection to obtain predictionmasks. Finally, wemerged the patch
segmentation results to obtain thefinal high-resolution segmentationmasks
in the postprocessing step.

Semantic segmentation model
The dataset of IAM lesions was randomly divided on a patient-level basis
into a development set (used for model training and validation) and a test
set, with an 8:2 ratio. Since the heterogeneity of breast cancer lesions is
similar to that of the IAM lesions in our study, exhibiting significant
variability in shape and extent. The RF-Net originally developed for seg-
menting the breast cancer ultrasound image was selected to construct the
AiLES32. Figure 6 shows the network architecture of AiLES, which is based
on the U-net. In addition, to identify the most appropriate semantic seg-
mentation model for our task of interest, various state-of-the-art models
including the DeeplabV3+ network and segmentation anything model
(SAM) are tested. The DeeplabV3+ neural network architecture with an
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Xception backbone is adopted because it has beenwidely used in surgical AI
studies for identifying anatomical structures and surgical instruments25,33,34.
The SAM is the first universal image segmentation foundationmodel in the
field of CV35, analogous to ChatGPT in natural language processing, which
has strong segmentation capabilities based on prompts (e.g., boxes, and
points). Furthermore, a medical SAM adapter (MSA) was employed to
improve the performance of the original SAM due to the lack of optimi-
zation in medical images37. The process of data preprocessing and model
development (SupplementaryNote 3) is displayed in Fig. 1b. All codeswere
implemented in Python and Pytorch.

A workstation was used for the development and evaluation of AI
models, which was equipped with 2 NVIDIA RTX 3090 GPUs with
24GB GPU memory, 86GRAM, and Intel(R) Xeon(R) Platinum8157
CPU@3.60 GHz, using Ubuntu 20.04. Specifically, during model training,
both GPUs were used with a batch size of 32. For inference speed testing,
since surgical videos are processed frame by frame, the batch size was
adjusted to 1 with an input image resolution of 1920 × 1080. We utilized
only one GPU when testing the inference speed to simulate the limited
computational resources of the AI-assisted module for laparoscopy in the
operation room. It is important to note that the reported inference speed of
AiLES reflects the total time for image loading, model inference, and pre-
diction result visualization.

Model evaluation and statistical analysis
The primary evaluation metrics used in this study were the Dice score and
IOU,which are commonly employed inCV to quantify the overlap between
the predicted segmented object area by the AI model and the actual area of
the object annotatedby expert surgeon,whichwas called ground truth (GT).
The Dice score and IOU are calculated as follows: Dice ¼ 2 A\Bj j

Aj jþ Bj j,

IOU ¼ jA\Bj
jA∪Bj. In this study, A denotes the segmentation predicted by theAI

algorithm,while B refers to themanually annotated reference segmentation.
The symbol “∩”denotes the intersection betweenAandB,while the symbol
“∪” represents the union between A and B. A value closer to 1 for either the
Dice score or IOUsignifies a higher degree of overlap betweenpredicted and
GT areas, reflecting a perfect match at 1 and no overlap at 0. The secondary
evaluationmetrics (SupplementaryNote 4) derived from true positive (TP),
truenegative (TN), false positive (FP)and false negative (FN) included recall
( TP
TPþFN, same as sensitivity), specificity ( TN

TNþFP), accuracy ( TPþTN
TPþFPþTNþFN),

precision ( TP
TPþFP), and F1 score ( 2TP

2TPþFPþFN, same as Dice score). Addi-
tionally, the mAP@50 and similarity indices (including SSIM and HD) are
used to provide a more comprehensive evaluation of different models.
Furthermore, the inference time of models is tested to assess their real-time
recognition speed. The model evaluation process is displayed in Fig. 1c. To
assess statistical significance (P < 0.05), we utilized a two-sided Student’s
t-test to compare the performance of AiLES with that of the surgeons. All
statistical analyses were conducted using the Python (v3.9).

Data availability
The IAMdataset generated and analyzed in the present study is not publicly
available due to ethical regulations on confidentiality and privacy, but is
available on reasonable request from the corresponding author.

Code availability
TheAImodels developed in this study include RF-Net, DeeplabV3+, SAM,
andMSA.The underlying codes for allmodels are available onGitHub. The
links are as follows: RF-Net is hosted at https://github.com/mniwk/RF-Net.
DeeplabV3+ is hosted at https://github.com/VainF/DeepLabV3Plus-
Pytorch; SAM is hosted at https://github.com/facebookresearch/segment-
anything. MSA is hosted at https://github.com/KidsWithTokens/Medical-
SAM-Adapter. In addition, the custom code of AiLES is hosted at https://
github.com/CalvinSMU/AiLES.
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