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Abstract 

Understanding how genetic variants influence molecular phenotypes in different cellular contexts is crucial for elucidating the molecular and 
cellular mechanisms behind complex traits, which in turn has spurred significant advances in research into molecular quantitative trait locus 
(xQTL) at the cellular le v el. With the rapid proliferation of data, there is a critical need for a comprehensive and accessible platform to integrate this 
information. To meet this need, we developed xQTLatlas ( http:// www.hitxqtl.org.cn/ ), a database that provides a multi-omics genetic regulatory 
landscape at cellular resolution. xQTLatlas compiles xQTL summary statistics from 151 cell types and 339 cell states across 55 human tissues. 
It organizes these data into 20 xQTL types, based on four distinct disco v ery strategies, and spans 13 molecular phenotypes. Each entry in 
xQTLatlas is meticulously annotated with comprehensive met adat a, including the origin of the tissue, cell type, cell state and the QTL disco v ery 
strategies utiliz ed. A dditionally, xQTLatlas features multiscale data exploration tools and a suite of interactiv e visualizations, f acilitating in-depth 
analy sis of cell-le v el xQTL. xQTLatlas pro vides a v aluable resource f or deepening our understanding of the impact of functional variants on 
molecular phenotypes in different cellular environments, thereby facilitating extensive research efforts. 
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Introduction 

Genome-wide association studies (GWAS) have substantially
enriched our understanding of genetic variants linked to hu-
man traits and diseases. Nevertheless, a predominant number
of these variants are found in non-coding regions, complicat-
ing the elucidation of their roles and the molecular pathways
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tional variants and molecular phenotypes at diverse biologi- 
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 5, 2024. Accepted: September 13, 2024 
c Acids Research. 
ons Attribution License (https: // creativecommons.org / licenses / by / 4.0 / ), 
provided the original work is properly cited. 

https://doi.org/10.1093/nar/gkae837
https://orcid.org/0000-0002-0688-4666
https://orcid.org/0000-0002-1491-5207
https://orcid.org/0000-0001-8826-0269
https://orcid.org/0000-0001-6500-6217
https://orcid.org/0000-0001-6201-6655
https://orcid.org/0000-0003-1913-081X
http://www.hitxqtl.org.cn/


Nucleic Acids Research , 2025, Vol. 53, Database issue D 1271 

(  

h  

t  

o
 

(  

i  

e  

p  

t  

R  

s  

a  

l  

p  

c  

F  

(  

a  

w  

u  

n  

l  

s  

t  

o  

m  

u  

i  

t  

t  

S  

t  

i  

1  

1  

t  

T  

m  

g  

a  

l  

a  

(  

c  

g  

t  

a  

i  

f  

g  

s
 

a  

t  

l  

a  

t  

l  

d  

m  

c  

l  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 7 ) and DNA methylation (mQTL) ( 8 ). These resources en-
ance our comprehensive understanding of the genetic archi-
ecture, revealing causal relationships and functional impacts
f genetic variants across multidimensional biological levels. 
Large-scale xQTL studies such as GTEx ( 9 ), BLUEPRINT

 10 ) and PsychENCODE ( 11 ) have advanced our understand-
ng of the downstream causal effects of genetic variants. How-
ver, analyses based on averaged signals from tissue sam-
les may obscure the specific cellular contexts in which func-
ional variants influence their associated molecular pathways.
ecent advancements in cell-resolution analysis have sub-

tantially enhanced our understanding of how genetic vari-
tions influence molecular phenotypes within specific cellu-
ar contexts ( 12–16 ). This progress reveals a complex inter-
lay between genetic factors and cellular environments, cru-
ial for unraveling the nuances of genetic regulation ( 17–21 ).
or instance, Natri et al . utilized single-cell RNA sequencing
scRNA-seq) on lung tissues from pulmonary fibrosis patients
nd healthy controls, mapping eQTLs across 38 cell types,
hich revealed both shared and distinct cell-type-specific reg-
latory effects ( 22 ). Nathan et al . explored the impact of ge-
etic variations in memory T cells, demonstrating how cellu-
ar dynamics, including cytotoxicity and regulatory capacity,
ignificantly influence these variations ( 19 ). A pivotal direc-
ion for future genetic research is the precise characterization
f the cellular contexts in which disease-associated variants
odulate molecular phenotypes. This effort is essential for
ncovering the molecular and cellular mechanisms contribut-
ng to disease susceptibility, deepening our understanding of
he involved pathways, and facilitating the development of
argeted therapeutic strategies ( 23–29 ). scQTLbase ( 30 ) and
ingleQ ( 31 ) are pioneering databases specifically dedicated
o housing eQTL research based on scRNA-seq. scQTLbase
ncludes cellular-dependent eQTL (cd-eQTL) resources from
7 distinct studies, while SingleQ maintains a collection of
5 scRNA-seq resources. In addition to single-cell sequencing
echnology, there are other strategies for discovering cd-eQTL.
hese strategies include using purified cell type omics data to
ap cellular-dependent xQTL (cd-xQTL) for understanding

enetic regulation in homogeneous cell populations ( 32 ,33 ),
rtificial intelligence models to detect cell type-specific regu-
atory effects ( 34 ), and cell deconvolution techniques to ex-
mine the interaction between genotype and cell abundance
 35 ). Each of these strategies offers unique insights. However,
urrent data resources do not comprehensively collect and or-
anize cd-eQTL from these diverse approaches. Furthermore,
he lack of cellular resolution genetic regulatory structure data
t other molecular levels limits the depth and breadth of ex-
sting databases. These limitations highlight the urgent need
or a comprehensive resource that not only systematically or-
anizes cell resolution multi-omics genetic structures but also
upports in-depth exploration and analysis. 

To address these issues and meet the growing demand for
 comprehensive and integrated cellular-level genetic regula-
ory landscape database, we propose xQTL Atlas (xQTLat-
as). xQTLatlas integrates 796 datasets from 151 cell types
nd 339 cell states across 55 human tissues, covering 20 xQTL
ypes. All cd-xQTL summary statistical datasets in xQTLat-
as have been processed through standardized pipelines. These
ata enable researchers to systematically study the regulatory
echanisms of risk variants across multidimensional biologi-

al levels in various cellular contexts. xQTLatlas offers multi-
evel data exploration capabilities and unique interactive visu-
alization tools, enabling cross-cell type, phenotype and genetic
variants association analysis views. Additionally, xQTLatlas
has significantly improved the user interface based on user-
centered design principles, enhancing visibility and usability,
and creating an environment conducive to intuitive data visu-
alization and simplified queries. To our knowledge, xQTLat-
las is the first comprehensive database to systematically orga-
nize multi-omics genetic structures of functional variants at
the cellular level. We anticipate that xQTLatlas will become
an invaluable resource for researchers, driving a deeper un-
derstanding of complex genetic regulatory mechanisms and
promoting the development of precision medicine. 

Materials and methods 

Summary statistics collection and curation 

In constructing our comprehensive atlas, xQTLatlas, we
meticulously implemented rigorous filtering criteria to ensure
comprehensive and accurate content (Figure 1 ). We began by
conducting searches on NCBI PubMed and Google Scholar
using predefined keywords and terms related to cell type speci-
ficity and xQTL analysis to identify relevant studies. We in-
tegrated datasets from various cd-xQTL mapping strategies
including cell sorting, single-cell sequencing, interaction anal-
ysis and computational discoveries to maintain data integrity.
We included studies featuring cells from diverse biological
backgrounds—normal, treated, diseased or other stimulated
conditions—and rigorously selected data from published re-
search articles, excluding those lacking essential details such as
critical information on variants, traits or statistical measures.
Due to the limited availability and incomplete statistics of cell-
level trans-xQTL data, trans-xQTLs are not included in the
current version of xQTLatlas. All data are sourced from repos-
itories such as Zenodo ( https:// zenodo.org/ ), FigShare ( https://
figshare.com/ ), GEO ( 36 ), Synapse ( https:// www.synapse.org/ )
and additional links provided in the original publications.
xQTLatlas includes research from both genome-wide and re-
gional cd-xQTL mapping, providing comprehensive coverage
and ensuring that data can be traced back to the demographic
information of the populations studied. We map these pop-
ulations to categories defined in the 1000 Genomes Project
( 37 )—AFR (African), AMR (Admixed American), EAS (East
Asian), EUR (European) and SAS (South Asian), annotating
datasets with multiple populations as ‘MIX.’ Given the vari-
ability of tissues, cell types / states and phenotypes in xQTL
studies, we methodically categorized and annotated datasets
from multiple sources. This methodical approach ensures that
each cd-xQTL dataset can be precisely traced back to its orig-
inal source, such as specific tissues, cell types or mapping
strategies. 

For all genetic variants, we systematically remapped the
chromosomal locations from the original publications to the
Genome Reference Consortium Human Build 38 (GRCh38).
When the coordinates were documented in GRCh37, we em-
ployed LiftOver ( 38 ) to transition these to GRCh38 coordi-
nates. Simultaneously, we updated the original dbSNP ID to
the dbSNP156 release ( 39 ). Alleles for each cd-xQTL were
preserved as documented from their original publications.
The variety of cd-xQTL mapping strategies used across dif-
ferent studies led to significant differences in the format of
summary statistics. We extracted key statistical metrics from
each qualifying publication, including affected molecular

https://zenodo.org/
https://figshare.com/
https://www.synapse.org/
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Figure 1. Ov ervie w of xQTLatlas. xQTLatlas pipeline begins with quality control using predefined publication filters, f ollo w ed b y a detailed e xamination 
and extraction of original variant-phenotype association data. Following this, statistical data are standardized and imputed, culminating in the 
de v elopment of functional modules for xQTL analysis and visualization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

phenotypes and their annotations, genetic variants and asso-
ciated statistical measures. Drawing on established practices
from existing databases ( 4 ,30 ), we standardized the format
of cd-xQTL summary statistics within xQTLatlas. This stan-
dardization ensures that each entry consistently includes de-
tailed information about phenotypes and variant locations, al-
leles, associated P -values, standard errors, effect sizes and false
discovery rates. Where key statistical measures were absent in
the original datasets, we supplemented these by imputing val-
ues based on available additional information. For example, in
cases where standard error were not provided, we calculated
them using available P -values and effect size. 

To augment xQTLatlas, we have integrated systematic
variant annotations from VannoPortal ( 40 ), providing de-
tailed information on allele frequency, linkage disequilib-
rium, evolutionary conservation, functional evidence and vari-
ant pathogenicity predictions across various tissues and cell
types. Furthermore, insights into potential causal relationships
between risk variants and complex traits from C AUS ALdb
( 41 ) have been incorporated to enhance the database’s
comprehensiveness. 

Ontology standardization and categorization 

xQTLatlas encompasses a wide array of molecular pheno-
types, necessitating the standardization of terminology for
both phenotypes and cell types to enhance the consistency and 

usability of the data. For each entry, we provide detailed an- 
notations, including the phenotype type, genomic regions and 

specific names. Each phenotype is meticulously defined with 

specific description and annotation standards. For example,
methylation phenotypes are annotated using probe IDs and 

genomic regions, whereas transcription and gene phenotypes 
are standardized based on genomic positions and names, em- 
ploying the latest GENCODE ( 42 ) Release 46 annotations 
from the GRCh38 version. Phenotypes lacking standardized 

annotations are described by chromosomal positions, such as 
‘chr6:32472840–32473244 

′ for caQTL, and specific histone 
modifications like ‘H3K4me1(chr2:2131351–2132034)’ and 

‘H3K27ac(chr6:32270482–32272947)’. 
In terms of organizing cell type classification in xQTLat- 

las, we conducted a detailed manual review of each cell type 
as reported in the original studies. For each entry in xQTLat- 
las, we aligned and standardized annotations according to the 
tissue source, cell type, cell state and cd-xQTL mapping strate- 
gies provided in the original research. The annotations of cell 
states include specific features described in the publications,
such as particular gene states or conditions like ‘ A TF1+’ for ac- 
tive transcription factor presence or ‘interferon stimulation 24 

h’ to indicate cellular response to treatment. This systematic 
review and annotation process ensures that each cell type in 

xQTLatlas is accurately represented and reflects the detailed 
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ellular context provided by the original studies. Cell types
rom studies that lack specific tissue source information and
re derived from in vitro cultures are classified under ‘Other’.
oreover, we standardized terms from the original publica-

ions by mapping them to the naming conventions of the Hu-
an Cell Landscape ( 43 ) and GTEx ( 44 ), converting abbre-

iations to their full forms and aligning them with widely ac-
epted reference names. 

atabase design 

QTLatlas was constructed using a robust framework that
ncorporates MySQL ( https://www.mysql.com ) for database
anagement and Java for backend development. Primary and

omposite indexing strategies were employed to optimize per-
ormance. A primary key index based on unique identifiers
as used to expedite data retrieval and maintain data in-

egrity . Additionally , a composite index, including chromo-
ome and position columns, was implemented to acceler-
te specific queries. To further enhance performance, addi-
ional columns such as cell type, variant, phenotype and po-
ition were indexed, and a range-based partitioning strat-
gy was adopted, segmenting the dataset into discrete, non-
verlapping sections of 10 million bp each. The user inter-
ace of xQTLatlas was developed with HTML, Vue.js ( https:
/ vuejs.org/ ) and Plotly.js ( https:// github.com/ plotly/ plotly.js/ ),
ncorporating JavaScript libraries for enhanced interaction.
urthermore, IGV.js ( 45 ) was integrated for interactive ge-
omic visualization. For optimal performance, we recommend
ccessing xQTLatlas using web browsers like Google Chrome
r Microsoft Edge, ensuring efficient and effective use of its
unctionalities. 

esults 

verview of xQTLatlas 

he current version of xQTLatlas integrates summary statis-
ics from 61 independent cd-xQTL studies, meticulously de-
igned to ensure completeness and accuracy. Each dataset is
anually annotated to include fundamental details such as

issue source, cell type and state. The entries in xQTLatlas
re categorized into four main types based on the xQTL dis-
overy methods detailed in the original publications: puri-
ed cell type xQTL, single cell xQTL, cell type / state inter-
ction xQTL and in silico inferred cell type xQTL. These
re further divided into 796 datasets affecting 13 molecular
henotypes ( Supplementary Figure S1 ). Single-cell sequenc-
ng, which allow for a finer examination of cell heterogene-
ty and diversity within tissues, contribute the most exten-
ive datasets, representing 46.8% of the total in xQTLatlas
 Supplementary Figure S2 ). Additionally, studies employing
urified cell type and single-cell sequencing for xQTL map-
ing are the most common sources of data, accounting for
6.5% and 25% of xQTLatlas, respectively ( Supplementary 
igure S3 ). xQTLatlas currently includes nearly 1.5 billion
ignificant cd-xQTL entries ( P -value < 0.05), covering 151
ell types and 339 cell states from 55 human tissues, pro-
iding an integrated genetic regulatory landscape with un-
atched depth and breadth. xQTLatlas ensures accessibility

hrough a user-friendly portal, enabling researchers without
xtensive computational backgrounds to engage effortlessly
ith the data. It features interactive modules for visualizing

d-xQTL summary statistics, including heatmaps, locus plots
and scatter plots, along with a genome browser for visualiz-
ing genome-wide genetic associations. Moreover, all datasets
and user-retrieved entries are downloadable in standardized
formats for further analysis. 

Comprehensive data exploration module 

xQTLatlas provides researchers with the capability to com-
prehensively explore cd-xQTL data from multiple dimensions.
Using the data exploration interface (Figure 2 A), users can
efficiently delve into all functional variants and their asso-
ciations with phenotypes, organized systematically by xQTL
type (Figure 2 B). xQTLatlas supports multi-level exploration
across genetic variants, molecular phenotypes and regions of
interest, enabling precise targeting. 

Exploring variant . When searching for specific variants us-
ing their genomic position or dbSNP ID in variant search
mode, users are initially presented with an overview organized
by xQTL type and then by tissue type, as shown in Figure 2 B.
Users can then select a xQTL type of interest for further explo-
ration. Upon choosing a specific subset of data, an interactive
heatmap is displayed with the horizontal axis representing cell
types and the vertical axis representing phenotypes. Each data
cell in the heatmap represents a specific phenotype-variant as-
sociation statistic, with the color intensity indicating the num-
ber of phenotype-variant associations (Figure 2 C). Clicking on
a data cell in the heatmap reveals the association strength and
effect size for functional variants across different phenotypes
within that cell type, where the height of the bars in the his-
togram is determined by the median −log10 P -value of the
phenotype-variant associations, and the color represents the
median effect size (Figure 2 D). Additionally, the extent of spe-
cific phenotype-variant associations across cell types is also
displayed, with data points colored according to the original
publication (Figure 2 E). Beneath the cross-cell type view at the
bottom of the page, the summary statistics table is dynami-
cally updated to reflect the user-selected data subset, simpli-
fying the process of accessing and downloading relevant data
(Figure 2 F). Additionally, this dynamic table includes annota-
tions of cellular context and phenotypes, as well as association
P -values, effect size, standard error and false discovery rate for
each xQTL. It also includes external links to the original pub-
lications and detailed information about the genetic variants.
We have also integrated GTEx, VannoPortal and C AUS ALDB,
providing users with systematic and context-specific variant
annotations and causal effects. This integrated approach not
only enhances user interaction by providing tailored informa-
tion but also facilitates the direct extraction of specific xQTL
data from the interface, significantly boosting the utility of
xQTLatlas for targeted genetic research. 

Exploring phenotype . In the phenotype search mode, users
start with an overview similar to the variant mode. However,
in the interactive heatmap, the vertical axis represents differ-
ent functional variants rather than phenotypes, with each cell
in the heatmap denoting specific phenotype-variant associa-
tion statistics. The color intensity of each cell is determined
by the median −log10 P -value (Figure 3 A). Clicking on a
heatmap cell displays a locus plot for the selected cell type,
illustrating the distribution of functional variants associated
with the phenotype. The most significant cd-xQTL are spe-
cially marked (Figure 3 B), and the color of the data points
is determined by the publication source. Below this, a visu-
alization shows the cross-cell type associations of variants

https://www.mysql.com
https://vuejs.org/
https://github.com/plotly/plotly.js/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae837#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae837#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae837#supplementary-data
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Figure 2. Demonstration of variant exploration in xQTLatlas. ( A ) The data exploration page of xQTAtlas supports three different modes. ( B ) The data 
o v ervie w interf ace after v ariant query is organiz ed b y xQTL type in the first le v el menu and b y tissue in the second le v el menu. ( C ) Interactiv e heatmaps 
for data statistics. ( D ) Further statistical graphs based on xQTL statistics provide an overview of the association between different functional variants and 
phenotypes. ( E ) Comparison of the strength of the association between variant and phenotype in different cell types. ( F ) Summary statistics table. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Figure 3 C), and all modules enable comprehensive interac-
tion with the data points. Like in the variant mode, the sum-
mary statistics table below provides cd-xQTL information. 

Exploring regions of interest. Similar to the phenotype
search mode, xQTLatlas enables customized exploration of
the regulatory landscape within specific genomic regions.
To ensure optimal performance, we recommend limiting the
search range to within 200 kb. The interface features a search
box in the overview section that allows users to query genetic
associations for specific phenotypes within defined intervals.
The data are organized in interactive heatmaps, locus plots
and scatter plots, following the same user-friendly format as
in the phenotype search mode ( Supplementary Figure S4 ). This
provides a consistent and efficient user experience. 

Genome-wide association strength browser 
module 

xQTLatlas includes an interactive genomic browser that
supports tailored exploration of diverse cd-xQTL datasets.
Within the ‘Browser’ page, datasets are categorized by tissue,
cell type, cell state, cd-xQTL mapping strategy and source of
publication. Users can customize their analysis by adding mul-
tiple tracks to compare multi-omics cd-xQTL datasets. xQTL
datasets of interest can be visualized by selecting them through
the ‘Show Track List’ button (Figure 3 D), and users have the
capability to save the comparative genomic structure of a spe-
cific region as an SVG file. In addition, xQTLatlas supports
precise localization of genomic regions, phenotypes or vari-
ants in tracks, and highlights specific cd-xQTL data to better
target user needs. Clicking on data points reveals detailed in-
formation about each cd-xQTL, including the dbSNP ID and 

the associated P -value. For instance, xQTLatlas illustrates a 
visualization of the genetic variants impacts on gene expres- 
sion, histone modification and methylation within the same 
genomic region in naive CD4 + T cells (Figure 3 D). In this con- 
text, functional variants exert a more significant regulatory 
effect on molecular phenotypes at the levels of methylation 

and histone modifications than on gene expression. This in- 
dicates that epigenetic modifications play a predominant role 
in shaping the functional landscape of this region, potentially 
directing differential gene activity that could affect cellular be- 
havior and responses. This underscores the complex interplay 
between different molecular mechanisms and emphasizes the 
utility of xQTLatlas in dissecting the multilayered genetic in- 
fluences on cellular functions. 

Discussion and future directions 

We have developed xQTLatlas, a comprehensive database de- 
signed to explore genetic regulatory landscapes at the cel- 
lular resolution. xQTLatlas supports multiscale data explo- 
ration and offers multidimensional visualization and anal- 
ysis capabilities. It incorporates data from an array of cell 
types, cell states and cd-xQTL mapping strategies, enabling 
in-depth analysis to uncover the intricate regulatory struc- 
tures of functional variants. xQTLatlas is distinguished by 
several innovative features: (i) The current version has metic- 
ulously curated hundreds of cd-xQTL datasets, organized in 

a hierarchical tree structure to facilitate efficient data access 
based on unique properties. (ii) Multi-level data exploration 

capabilities and distinctive interactive visualization modules 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae837#supplementary-data
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Figure 3. Demonstration of phenotype exploration and genome browser in xQTLatlas. ( A ) Interactive heatmaps for data statistics. ( B ) View of genetic 
regulatory str uct ures f or specific phenotypes. ( C ) Vie w of phenotype-v ariant associations across cell types. ( D ) Genome bro wser of xQTLatlas visualiz es 
the genetic architecture of different molecular phenotypes within the same genomic region in naive CD4 + T cell. 
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llow users to explore genetic regulatory landscapes across
arious scales. (iii) A genetic structural landscape browser for
isualizes the association structures of multi-omics quantita-
ive trait locus across the genome-wide. For further guidance,
efer to the Tutorial page on xQTLatlas. 

Compared to other resources that encompass partial
ellular-resolution xQTL data, xQTLatlas exhibits signifi-
ant advantages. Specifically, QTLbase ( 4 ) focuses primar-
ily on tissue-level data, consequently providing limited cel-
lular resolution xQTL. Furthermore, databases like scQTL-
base, ImmuneRegulation ( 46 ) and SingleQ lack diversity in
their xQTL mapping strategies, cell types, molecular pheno-
types and visualization techniques. xQTLatlas integrates an
extensive range of genetic regulatory resources based on vari-
ous mapping strategies and molecular phenotypes, enhancing
both the depth and breadth of the data. Additionally, by stan-
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dardizing cell type terminology and systematically annotating
functional variants along with their potential causal relation-
ships, xQTLatlas significantly advances its practical utility.
xQTLatlas features advanced visualization and exploration
tools that enable interactive, multi-scale exploration, compar-
ison and analysis of xQTL data. Its user-friendly interface sig-
nificantly enhances researchers’ capacity to perform compre-
hensive studies of the genetic regulatory landscape, surpassing
the functionalities of existing databases. As our understand-
ing of the complexity and heterogeneity of biological systems
deepens, tools like xQTLatlas become increasingly essential.
It significantly advances the exploration of genetic regulatory
mechanisms at the cellular level, which is crucial for eluci-
dating how genetic variants operate across various cellular
contexts. 

We plan to regularly update xQTLatlas, adding new data
and features every 6 months to ensure our users have access
to the latest and most relevant data in cd-xQTL research.
With the evolution of new paradigms in population genet-
ics, such as in vitro quantitative trait locus studies ( 47 ,48 ),
we are positioned to explore the effects of genetic variants
in rare cell types and unravel the molecular basis of com-
mon genetic diseases. Additionally, we aim to incorporate a
broader range of cell phenotypes, including response, migra-
tion and stress states, to serve a wider research community.
Future plans also include expanding our analysis pipelines
and visualization methods to enhance the functionality of
xQTLatlas. 

Data availability 

xQTLatlas is freely accessible to users with no registration
needed at http:// www.hitxqtl.org.cn/ . All the datasets curated
can be downloaded from xQTLatlas website for the purpose
of research. 

Supplementary data 

Supplementary Data are available at NAR Online. 
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