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Abstract 

By processing and abstracting diverse omics datasets into associations between genes and their attributes, the Harmonizome database enables 
researchers to explore and integrate knowledge about human genes from many central omics resources. Here, we introduce Harmonizome 3.0, a 
significant upgrade to the original Harmonizome database. The upgrade adds 26 datasets that contribute nearly 12 million associations between 
genes and various attribute types such as cells and tissues, diseases, and pathw a y s. T he upgrade has a dataset crossing feature to identify 
gene modules that are shared across datasets. To further explain significantly high gene set o v erlap betw een dataset pairs, a large language 
model (LLM) composes a paragraph that speculates about the reasons behind the high o v erlap. T he upgrade also adds more data formats and 
visualization options. Datasets are downloadable as knowledge graph (KG) assertions and visualized with Uniform Manifold Approximation and 
P rojection (UMAP) plots. T he KG assertions can be explored via a user interface that visualizes gene–attribute associations as ball-and-stick 
diagrams. Ov erall, Harmoniz ome 3.0 is a rich resource of processed omics datasets that are provided in several AI-ready formats. Harmonizome 
3.0 is a v ailable at https://maa y anlab.cloud/Harmoniz ome/. 
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Introduction 

As the volume and diversity of available omics datasets con-
tinues to expand, so does the need for platforms capable of
integrating and harmonizing them. Many such platforms ex-
ist, but most are limited in their breadth and depth. Although
omics datasets are well-structured, their integration is not triv-
ial. One critical step for data integration is the need to unify
identifiers and align ontologies. One solution to facilitate har-
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ommercial product, which limits reuse and integration into
ther tools. There is no free and open application program-
ing interface (API), and the database and datasets are not

vailable for download. Another leading platform is UniProt
 2 ). UniProt focuses specifically on proteins with emphasis
n the amino acid and DNA sequence, as well as the three
imensional structure of each protein. Protein information
s mainly from literature curation. However, UniProt is also
ross-referenced with 185 other databases that provide, for
xample, information about protein–protein interactions and
isease associations. Pharos ( 3 ) is another resource that pro-
ides aggregated knowledge about human genes and proteins.
he Pharos platform, created for the NIH Common Fund pro-
ram Illuminating the Druggable Genome (IDG), has aggre-
ated data from 83 resources with a focus on druggable tar-
ets from three protein families: G-protein coupled receptors,
on channels and protein kinases. The NCBI Gene database
 4 ) also integrates knowledge about genes for many organ-
sms with a focus on sequence and nomenclature. It has infor-
ation about protein-protein interactions, pathway and phe-
otype associations, and gene expression data gathered from
2 resources. Other relevant human gene-centric knowledge-
ases include Model organism Aggregated Resources for Rare
ariant ExpLoration (MARRVEL) ( 5 ), which integrates data

rom multiple similar sources with a focus on human genetics
nd genetic variants. Wikipedia and WikiGenes ( 6 ) also have
edicated gene pages with well-organized information in free
ext and tabular formats, for example, links to protein struc-
ure from the Protein Data Bank (PDB) ( 7 ), information about
athways, function, protein interactions, clinical significance,
hromosomal location and more. The Human Protein Atlas
HPA) ( 8 ) is another widely used repository with extensive
nd well-organized gene pages. 

Harmonizome is also an aggregator of omics knowledge
bout genes and proteins, with some unique features that set it
part. Launched in 2015 ( 9 ), the platform contains processed
ata from 79 diverse online resources. Data from these re-
ources is processed uniformly into 137 unique datasets that
ontain 83 472 718 associations between 379 691 biologi-
al and biomedical attributes and 58 400 mammalian genes.
ere, we describe a major upgrade to Harmonizome. The
armonizome 3.0 update expands the original knowledge-
ase with new features that include a chatbot interface pow-
red by a large language model (LLM), ability to cross pairs
f datasets and form hypotheses about highly significant over-
apping gene sets from dataset pairs, and a knowledge graph
KG) representation of the database with a user interface
UI) that visualizes associations as interactive ball-and-stick
iagrams. 

aterials and methods 

ataset processing and ingestion 

ue to the diverse nature of resources ingested into Harmo-
izome, unique processing scripts were developed for each re-
ource and dataset. For datasets with scored gene–attribute as-
ociations, tables were created with genes as the rows and at-
ributes as columns, with each table entry representing the
core of an association between a gene and an attribute. A
utoff value was established for each dataset to only keep the
op gene–attribute associations. For some datasets, z -scores
ere computed for each gene by taking the average and stan-
dard deviation of each row. These z -scores were used to de-
fine gene–attribute associations with different cutoffs for spe-
cific datasets. Specifically, if the origin of the dataset mea-
sured the expression of a gene or a protein across many con-
ditions, for example, expression levels across human tissues,
z -scores were computed. For datasets without gene–attribute
association values, associations were kept as an edge list. For
these datasets, the relationship between the genes and their at-
tributes are discrete, for example, membership in cell signaling
pathways or gene knockout mouse phenotypes. 

To ensure data integrity and consistency, we apply few ba-
sic rules. First, gene–attribute associations mostly come from
primary and reliable experimentally validated resources. We
do not take gene–attribute associations from other knowledge
aggregators, and do not include any predicted associations
from AI / ML applications. However, six datasets in Harmo-
nizome are labeled as ‘predicted’ associations. These datasets
include transcription factor binding motifs, predicted protein
domains, and predicted targets for microRNAs (miRNAs)
based on sequence matching. We also ensure that the database
is not overwhelmed by few resources that contribute most of
the associations. Importantly, the multi-omics resources must
cover the entire genome / proteome / transcriptome / epigenome
unbiasedly. We do not include resources that have a pre-
defined subset of the genome such as a specific protein family,
or data collected by a panel of predefined subset of the coded
genome. Finally, the sources only originate from humans, rats,
and mice. Data from other model organisms are excluded. 

To harmonize gene identifiers, all gene, protein, transcript,
and variant identifiers were converted to human NCBI Entrez
gene symbols. When appropriate, attributes were mapped to
community established ontologies and dictionaries. For exam-
ple, this was done for chemicals, drugs, anatomical structures,
cell types, cell lines, tissues, diseases, phenotypes and more.
To map attributes to their most appropriate identifiers in on-
tologies and dictionaries, we first used those selected by the
original datasets. If such mapping was not available, ontol-
ogy terms and identifiers were selected from community es-
tablished resources such as PubChem ( 12 ) for drugs and small
molecules, and Uberon ( 13 ) for anatomical structures. The
process of mapping attributes to relevant ontology terms var-
ied by dataset. A table of up-to-date and approved gene sym-
bols was obtained from the NCBI Gene database ( 4 ). A map-
ping file was created to convert synonymous gene symbols to
matching current gene symbols, as well as to common identi-
fiers for proteins, transcripts, and variants. This file was cre-
ated using available gene names mapping tools from NCBI ( 4 ),
Ensembl ( 10 ), UniProt ( 2 ) and the mouse genome informatics
(MGI) ( 11 ). To convert mouse gene symbols to their human
homologs, we utilized the NCBI Homologene and Ensembl
BioMart resources to create a mapping file that maps mouse
genes to their homologous human genes. Each dataset is made
available for download in various formats together with the
processing scripts. All these scripts are publicly available at the
Harmonizome dataset landing pages and on GitHub at: https:
// github.com/ MaayanLab/ HarmonizomePythonScripts . 

Visualization of datasets with UMAP 

To visualize Harmonizome datasets as UMAP plots ( 12 ), we
started with the gene set representation of each dataset. Terms
describing each gene set were converted into inverse document
frequency (IDF) vectors using the Scikit-learn library ( 13 ).

https://github.com/MaayanLab/HarmonizomePythonScripts
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Next, the vectors were converted into two-dimensional space
with UMAP using the default parameters for most datasets. 

Dataset crossing 

To create the dataset crossing feature, pairs of gene sets were
compared to find the most significant overlaps for each pair
of datasets. For each dataset pair, all gene sets from the corre-
sponding gene set libraries were crossed, computing the right-
tailed P -value from the Fisher’s exact test. A Jaccard index and
the number of overlapping genes for each pair of gene sets are
also reported. The gene set pairs are then ordered by ascend-
ing P -value, and the top 5000 gene set pairs are kept for each
pair of datasets. 

Chatbot and hypotheses generations of gene set 
overlaps with GPT-4o 

The Harmonizome 3.0 upgrade has a chatbot interface fea-
ture, and a dataset crossing hypothesis generation feature.
Both features utilize OpenAI’s API. The chatbot communi-
cates with an OpenAI assistant, which is defined with a spe-
cific system prompt to control its behavior. The assistant
uses the GPT-4o model with a temperature setting of 0.05
to mostly eliminate randomness. Several functions are pro-
vided to the assistant to define the formatting of answers and
for querying the Harmonizome database. The dataset cross-
ing hypothesis generation feature uses the chat completion
endpoint with a custom system prompt. The GPT-4o model
is used with max_tokens = 1024, temperature = 0.0, fre-
quency_penalty = 0.15 and presence_penalty = 0.15. Both
features use a shared backend API controller to handle re-
quests and responses from OpenAI. 

Knowledge graph user interface 

To develop a UI for interacting with the Harmonizome
datasets and ball-and-stick diagrams, each Harmonizome
dataset was converted into KG assertions. Once the data
was converted into assertions, it was ingested into a Neo4j
database. Once all the Harmonizome datasets were ingested
into Neo4j, we leveraged an original UI that we developed for
a separate project ( 14 ). The KG UI data visualization of ball-
and-stick diagrams is achieved with the Cytoscape.JS library
( 15 ). The KG UI receives the results from Cypher queries in
JSON format and converts these into nodes and links sub-
networks for visualization. The UI was customized to accom-
modate specific requirements unique to the Harmonizome 3.0
datasets such as icons, headers and footers, and tooltips. 

Results 

Added datasets and data resources 

The core Harmonizome 3.0 database currently contains 83
472 718 associations between 58 400 genes and their 379
691 attributes. The attributes are linked to ontologies and dic-
tionaries with additional metadata that describes each one of
the 79 resources. The 137 datasets created from the 79 re-
sources in Harmonizome 3.0 can be divided into six categories
based on their source type (Figure 1 A). These six categories
are disease or phenotype associations, genomics, physical in-
teractions, proteomics, structural or functional annotations,
and transcriptomics. There are 40 transcriptomics datasets,
23 structural or functional annotation datasets, 22 disease and
phenotype association datasets, 19 genomics datasets, 17 pro- 
teomics datasets, and 16 physical interaction datasets. Phys- 
ical interactions include drug–target interactions, substrates 
for kinases and phosphatases, protein–protein interactions,
metabolite–enzyme interactions, microRNAs and their direct 
targets, and viral–host protein–protein interactions. Similarly,
attributes associated with genes can be divided into nine 
groups (Figure 1 B). The Harmonizome database contains 159 

580 functional terms, phrases or references; 101 313 chemi- 
cals; 57 743 diseases, phenotypes or traits; 29 447 cell lines,
cell types or tissues; 21 207 genes, proteins or microRNAs; 11 

014 structural features; 7815 sequence features; 2873 molec- 
ular profiles; and 434 organisms. The number of attributes 
contributed by each resource follows a log-normal distribu- 
tion (Figure 1 C). Resources providing structural and func- 
tional annotation datasets make up the second largest dataset 
group but contribute many gene sets in each dataset forming 
the largest attribute group. The distribution of gene set sizes 
follows a multimodal distribution with peaks at common gene 
set length sizes (Figure 1 D). These peaks are likely due to ar- 
bitrary cutoffs set to limit or normalize set sizes, for exam- 
ple, the number of differentially expressed genes in large per- 
turbation experiments, or basal gene or protein expression in 

normal tissues and cell types. The number of gene sets that 
each gene appears in also follows a multimodal distribution 

(Figure 1 E). This could be a mixture of genes that are widely 
studied, genes that are highly expressed across cells and tis- 
sues, genes and proteins that commonly show high variability 
in their expression, longer and larger genes and proteins. The 
attributes present in the associations from each dataset fol- 
low a log-normal distribution (Figure 1 F). This distribution 

highlights the diversity of the resources in Harmonizome. The 
gene coverage of each dataset follows a bimodal distribution 

with a large peak between 10 000 and 25 000 genes (Fig- 
ure 1 G). The is likely because the proteomics and literature- 
based datasets are likely present at the lower level of coverage,
while the genomics and transcriptomics datasets cover all cod- 
ing genes. Overall, these statistical summaries provide intu- 
ition about how knowledge about human genes is distributed 

across Harmonizome data sources and processed datasets. 
Updating and expanding the Harmonizome database is cru- 

cial for the continued reuse of the most relevant omics re- 
sources. Toward this aim, 19 new and 7 updated datasets have 
been processed and ingested to expand and upgrade Harmo- 
nizome (Table 1 and Supplementary Table S1 ). These datasets 
contain nearly 12 million gene–attribute associations. The at- 
tributes of each of the new datasets fit into one of the fol- 
lowing groups: (i) cell line, cell type, or tissue; (ii) chemical; 
(iii) disease, phenotype, or trait; (iv) functional term, phrase,
or reference; or (v) gene, protein, or microRNA. The addi- 
tion of these new and updated datasets represents ∼132 000 

gene sets with an average set size of 74 genes per term. In ad- 
dition to providing the new and updated processed datasets 
for download in various formats, several additional features 
were added to each dataset landing page. Each new and up- 
dated dataset can be downloaded as a set of KG assertions,
and it is visualized as a Uniform Manifold Approximation 

and Projection (UMAP) ( 12 ) plot. To create the KG serial- 
izations, each dataset was organized into a set of node-edge- 
node relations (triples), where genes / proteins and their at- 
tributes constitute the nodes, and the association type became 
the relationship edges. These triples are provided in Resource 
Description Framework (RDF), JavaScript Object Notation 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1080#supplementary-data
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Figure 1. Summary statistics of datasets and attributes in Harmonizome 3.0. ( A ) Datasets belonging to each group. ( B ) Gene sets belonging to each 
attribute group. ( C ) Gene sets from each resource. ( D ) Distribution of gene set lengths. ( E ) Distribution of gene inclusion across gene sets. ( F ) 
Distribution of dataset attribute co v erage. ( G ) Distribution of dataset gene co v erage. 
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Table 1. Summary of datasets added to the Harmonizome 3.0 upgrade. Datasets are listed by attribute groups, relevant publication, attributes, genes, 
and the mean and range of gene set length. Additional attributes such as URLs and other information are provided in Supplementary Table S1 

Name PMID Attributes Genes 
Minimum gene set 

length 
Mean gene set 

length 
Maximum gene 

set length 

CellMarker Gene-Cell Type 
Associations 

36300619 7217 13 607 91 9 1169 

CCLE Cell Line Proteomics 31978347 375 8959 277 326 395 
DepMap CRISPR Gene 
Dependency 

34930405 1095 15 946 78 637 2999 

GTEx Tissue Gene Expression 
Profiles 2023 

32913098 54 17 369 1000 1000 1000 

GTEx TIssue-Specific Aging 
Signatures 

135 16 047 250 250 250 

HuBMAP Azimuth Cell Type 
Annotations 

31178118 1426 3560 3 10 12 

MoTrPAC Rat Endurance 
Exercise Training 

32589957 160 8833 1 78 4015 

Sanger Cancer Dependency 
Map Cancer Cell Line 
Proteomics 

35839778 949 8087 93 99 100 

Tabula Sapiens Gene-Cell 
Associations 

35549404 469 8184 100 100 100 

DeepCoverMOA Drug 
Mechanisms of Action 

36593396 874 7750 92 99 100 

GlyGen Glycosylated Proteins 31616925 1910 2231 1 11 808 
LINCS L1000 CMAP 
Chemical Perturbation 
Consensus Signatures 

35524556 23913 12 126 1 114 577 

MW Enzyme Metabolite 
Associations 

26467476 734 1050 1 7 215 

DisGeNET Gene-Disease 
Associations 

31680165 15709 15 960 1 42 9666 

DisGeNET Gene-Phenotype 
Associations 

6832 14 002 1 29 5592 

IMPC Knockout Mouse 
Phenotypes 

36305825 667 6763 1 55 1896 

MGI Mouse Phenotype 
Associations 2023 

25348401 10234 12 894 1 20 2016 

Gene Ontology Biological 
Process Annotations 2023 

30395331 12318 14 811 1 16 2029 

Gene Ontology Cellular 
Component Annotations 
2023 

926 11 089 1 45 5176 

Gene Ontology Molecular 
Function Annotations 2023 

3851 12 478 1 13 1412 

SynGO Synaptic Gene 
Annotations 

31171447 267 1593 1 15 291 

Wikipathways PFOCR 33168034 35464 13 173 3 9 324 
ChEA Transcription Factor 
Targets 2022 

31114921 757 17 962 9 1211 4897 

Kinase Library Serine 
Threonine Kinase Atlas 

36631611 303 5046 100 100 100 

KnockTF Gene Expression 
Profiles with Transcription 
Factor Perturbations 

31598675 566 17 964 1 94 200 

LINCS L1000 CRISPR 

Knockout Consensus 
Signatures 

35524556 5049 9551 201 249 250 

 

 

 

 

 

 

 

 

 

(JSON), and tab-separated values (TSV) file formats, creat-
ing a consistent serialization framework that can be used to
construct a gene-centric KG. The UMAP plots visualize each
attribute as a point in the UMAP projection ( Supplementary 
Figure S1 ). Points are colored by automated clustering com-
puted with the Leiden clustering algorithm ( 16 ). The IDF vec-
torized gene set libraries created from each dataset are used
to compute the UMAP coordinates and projections. Addi-
tionally, 545 new dataset pairs are visualized as hierarchi-
cally clustered heatmaps ( Supplementary Figure S3 ). Such
new heatmaps visualize the similarity of gene–attribute re- 
lationships across pairs of Harmonizome datasets. A sum- 
mary of features available for each dataset is provided in 

Supplementary Table S2 . 

Crossing pairs of Harmonizome datasets 

One of the advantages of abstracting and harmonizing omics 
datasets into the same format is the ability to combine these 
datasets to identify unexpected relationships. With the goal 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1080#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1080#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1080#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1080#supplementary-data
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f uncovering new and surprising attribute–attribute associa-
ions from across Harmonizome 3.0 datasets, we have added
 dataset pair crossing feature. Using this feature, pairs of
ene sets from two selected datasets can be examined for
ene set overlap. This enables users to find new significant
elationships between attributes from pairs of Harmonizome
.0 datasets (Figure 2 A). After selecting two available datasets
rom the dropdown menus, a table of the top gene set pairs (up
o 5000) sorted by the overlap P -values is displayed. Each row
ncludes the name and size of both gene sets, the Fisher’s exact
est P -value, the Jaccard index and the number of shared genes
ontributing to the overlap. Next to each row, there is also
n option to generate a hypothesis about the corresponding
air of gene sets with OpenAI’s GPT-4o LLM. When clicking
n this button, the descriptions of the gene sets, the top five
nriched terms of the overlapping genes computed using the
isher’s exact test with Enrichr ( 17 ), and the overlapping genes
re submitted to the LLM via API. The top five terms are
ept from the selected libraries listed below if these enriched
erms meet the Benjamini–Hochberg (BH) corrected P -value
f < 0.01. The LLM returns an abstract that contains a hy-
othesis that attempts to explain the reasons for the overlap.
o guide the hypothesis, the top five enriched pathways from
EGG ( 18 ), knockout mouse phenotypes from International
ouse Phenotyping Consortium (IMPC) ( 19 ), biological pro-

esses from the Gene Ontology ( 20 ) and terms from the GWAS
atalog ( 21 ), along with their respective enrichment scores,
re provided to the OpenAI API. In addition, the overlap-
ing genes can be examined by clicking the overlap number,
nd this invokes a window that shows the gene names. There
re also options to copy the genes to the clipboard or send
hem for enrichment analysis with Enrichr ( 17 ), Rummagene
 22 ) and RummaGEO ( 23 ). Altogether, by identifying signifi-
ant overlaps between gene sets from different Harmonizome
atasets users can generate novel hypotheses. 

se Case 1: Crossing serine / threonine kinase substrates with
ancer cell line knockouts from Achilles 
rotein kinases belong to one of the most successful families of
rug targets. Their role in controlling cell signaling pathways
n cancer, and the ability to selectively target protein kinases
ith small molecules, provide an alternative to chemotherapy

 24 ). As a result, identifying kinases that are dysregulated in
pecific cancer subtypes could potentially lead to new person-
lized targeted therapies. Here, we demonstrate how by us-
ng some of the newly added Harmonizome 3.0 datasets, and
he newly implemented datasets crossing feature, we can dis-
over specific kinase targets for specific subtypes of cancers.
y crossing the Kinase Library Serine Threonine Kinome At-

as ( 25 ) with the Achilles Cell Line Gene Essentiality Profiles
 26 ) datasets, we further prioritize protein kinases as targets
or specific cell lines ( Supplementary Video S1 ). By examining
verlapping proteins that are phosphorylated by specific pro-
ein kinases and at the same time lead to decreased cell line
tness following knockdown of the genes that encode these
roteins, we can identify regulatory cell signaling pathways
hat can be targeted in specific cell lines. The most significant
verlaps are visualized in a heatmap where red pixels indi-
ate crossings where the kinase substrates overlap with genes
hat increase cell line fitness when knocked down, while blue
ixels indicate overlaps where the substrates cause decreased
ell line fitness following knockdown (Figure 2 A). In order to
enchmark the predictions made by the gene set crossings, we
compared the overlapping genes of all crossings that have at
least one overlapping gene, ranked by P -value (Fisher’s exact
test), against known mutations in these cell lines as reported
in CCLE ( 27 ), COSMIC ( 28 ) and Klijn et al . ( 29 ). The cell-line
gene mutation profiles are available as processed datasets in
Harmonizome (Figure 2 B). We observe that the ranked over-
lapping sets contain genes with known mutations in the re-
spective cell lines. Next, we highlight three clusters of cell lines
and kinases to further examine the overlapping genes in these
clusters (Figure 2 C). In one of these clusters, the kinase sub-
strates that overlap with the knockdowns increases cell line
fitness, while the two other highlighted clusters contain kinase
substrates that overlap with gene knockdowns that decrease
cell line fitness. Within the first cluster, overlaps between two
acute myeloid leukemia (AML) derived cell lines and sev-
eral kinases from the Ca2+ / calmodulin-dependent protein ki-
nase (CAMK) family of kinases, and the checkpoint kinase
CHEK2, align with previous publications that showed that
these kinases are key drivers in AML ( 30–32 ). In the third clus-
ter, we identify overlaps between kinases involved in the trans-
forming growth factor beta (TGF- β) bone morphogenetic pro-
tein (BMP) signaling pathway, and cell lines derived from gas-
trointestinal carcinomas. Perturbations of this pathway have
previously been linked to the development of esophageal and
colorectal cancers ( 33 ,34 ). Overall, the presence of these con-
nections, which have been previously reported in the litera-
ture, suggest that other unstudied connections are real and
should merit additional investigation. To further validate such
hypotheses, the identified kinases could be knocked out, over-
expressed, or targeted by available small molecule kinase in-
hibitors. It should be noted that the crossing analysis identified
concentrated phosphorylation reactions between the kinases
and the genes that give rise to the kinases’ substrates, but the
effect of such phosphorylations is unclear. In other words, the
kinase activity may induce or inhibit proliferation, it is only
apparent that the kinase is likely involved in either of these
phenotypes. To determine the directionality, experimental val-
idation is warranted. 

Use Case 2: Crossing rat endurance e x ercise training signa-
tures with knockout mouse phenotypes 
For the second use case, we show how the crossing of gene
expression signatures induced by exercise in rats with genes
that induce specific phenotypes in mice when knocked out can
lead to interesting insights. Specifically, we crossed the Molec-
ular Transducers of Physical Activity Consortium (MoTr-
PAC) Rat Endurance Exercise Training dataset ( 35 ) with the
IMPC Knockout Mouse Phenotype dataset ( 19 ) (Figure 3 A;
Supplementary Text S1 and Supplementary Table S3 ). This ap-
proach identifies genes that either increase or decrease in their
expression following endurance exercise training in rats that
also induce adverse phenotypes when knocked out in mice.
In this instance, we investigated a cluster of genes that in-
crease in their expression due to endurance exercise in blood
following 1, 2 and 8 weeks of endurance exercise training
(Figure 3 B). We observe multiple significant connections with
metabolic and immune related processes, highlighting specific
pathways that are modulated by exercise training. Specifically,
several genes involved in metabolic and immune related phe-
notypes increase in their expression in the blood after pro-
longed aerobic exercise. Some of these genes have prior ev-
idence to be involve in the process based on surveying the
literature. For example, SLC25A16, a solute carrier family

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1080#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1080#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1080#supplementary-data
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Figure 2. Crossing the Kinase Library Serine Threonine Kinome Atlas dataset with the Achilles Cell Line Gene Essentiality Profiles dataset. ( A ) 
Hierarchically clustered heatmap showing the cosine similarity of kinases and cell lines based on the significance of their overlaps. Three clusters are 
identified for further examination. ( B ) Receiver Operating Characteristic (ROC) curves assesses the concordance of the overlapping genes of each 
crossing with known mutations in cell lines from the COSMIC, CCLE and Klijn et al . datasets from Harmonizome. ( C ) Subnetworks of the kinases and 
cell lines identified in each cluster. Red and blue lines indicate increased and decreased cell line fitness, respectively. Line width is proportional to the 
magnitude of -log( P -value). 
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Figure 3. Crossing the MoTrPAC Rat Endurance Exercise Training and IMPC Knockout Mouse Phenotypes datasets. ( A ) Hierarchically clustered heatmap 
showing the cosine similarity between rat endurance exercise training tissue samples and knockout mouse phenotypes based on the significance of 
their o v erlap. A cluster is identified f or further inspection. ( B ) Subnetw ork of clustered tissue samples, phenotypes and o v erlapping genes. Lines from 

the top bo x es to the genes indicate genes with increased expression following endurance exercise training, and lines to the boxes at the bottom depict 
the presence of a phenotype f ollo wing gene knock out. ( C ) Scatter plot comparing PubMed mentions for all genes appearing in the top o v erlaps betw een 
e x ercise tissue samples and knockout phenotypes. The PubMed mentions were derived by querying the PubMed API with the gene symbol, and the 
mentions were retrieved by querying the gene symbol with the terms ‘blood,’ ‘metabolism’ and ‘immune response’ to evaluate any known associations. 
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mitochondrial protein, is known to be involved in the accumu-
lation of coenzyme-A in the mitochondria, a process essential
for lipid metabolism ( 36 ). SLC25A16 expression is induced
after exercise, and this can be explained by the alteration it
causes to cholesterol metabolism and T-cell distribution when
it is knocked out in mice. The salt-inducible kinase 3 (SIK3)
is also associated with dysregulation of T-cell number when
knocked out in mice. Prior research demonstrated that SIK3
is involved in mTOR signaling ( 37 ) and this could be related
to an increase in protein synthesis needed in response to en-
durance exercise. Despite their involvement in immune and
metabolic processes, both SLC25A16 and SIK3 are relatively
understudied (Figure 3 C). Their presence in the most signifi-
cant overlapping set pairs, and the fact that these two genes
were identified in the blood after exercise, suggest that they
could potentially become biomarkers and potentially targeted
to mimic the beneficial effects of endurance exercise training.
It would be interesting to see if injecting SLC25A16 and SIK3
recombinant proteins, or targeting SLC25A16 and SIK3 with
antibodies, will impact exercising and sedentary rats’ mus-
cle composition and exercise capacity . Alternatively , target-
ing these two proteins in the same way in mouse models of
muscular dystrophies could be tested for potential beneficial
effects. 

The Harmonizome 3.0 chatbot 

LLMs recently emerged as a transforming technology with
many applications across domains including biomedicine.
With LLMs, it is now possible to develop high-quality inter-
active chatbots to interface with data using free text queries.
Particularly powerful is the ability of LLMs to interact with
structured databases to serve knowledge in response to text-
based queries from a user ( 38 ). Powered the by OpenAI’s GPT-
4o model, we have implemented a chatbot for Harmonizome
3.0. This is achieved by defining an Assistant through the Ope-
nAI API. To set up the Assistant, the LLM model is selected,
the system prompt that determines its behavior is defined,
and the external resources that are available to it are estab-
lished. To ensure reliability and reproducibility, we have set
up a chatbot that limits the scope of accepted inputs to rel-
evant queries, and uses a low temperature setting to reduce
the variability of responses. The Harmonizome backend API
controller class sends user messages to the Assistant, and then
the Assistant constructs and displays messages as responses
(Figure 4 and Supplementary Text S2 ). Besides providing a
text-based interface, the chatbot interface also has chips with
example queries to direct users about the potential and type
of questions that should be composed to receive useful re-
sponses. To ensure that the Harmonizome chatbot provides
accurate responses, we have implemented several functions
that facilitate the chatbot to query the Harmonizome database
and only use the resulting information when generating re-
sponses. Functions describe actions that the Assistant can se-
lect from based on their descriptions. The implemented API
controller processes function-calls that are returned from the
Harmonizome API. When a function call is received, the in-
formation is retrieved from the database and passed back to
the Assistant. The Assistant then processes the response and
incorporates it into the final output. In this way, we en-
sure that only relevant but comprehensive data are passed
to the Assistant, providing factual and reliable framework to
construct responses while limiting the potential for incorrect 
replies. 

The Harmonizome 3.0 Knowledge Graph 

As part of the Harmonizome 3.0 update, we have also de- 
veloped Harmonizome-KG, a platform to serve the serialized 

Harmonizome 3.0 datasets as interactive ball-and-stick sub- 
network diagrams. To achieve this, we converted all Harmo- 
nizome datasets into a format that can be ingested into Neo4j,
a commercial KG database. Next, we utilized a customiz- 
able web-based UI that we developed for a separate project 
( 14 ) to query the data in the KG database. The UI enables 
users to create customized subnetworks originating from one- 
and two-term searches. Subnetworks can be created by se- 
lecting a gene or an attribute, and at most five Harmoni- 
zome datasets. Nodes and links from multiple Harmonizome 
datasets can be added or removed to create customized views.
The two-term search requires a start and end node to cre- 
ate subnetworks. The query identifies the shortest paths be- 
tween the two input terms. To demonstrate the applications 
of the KG for a specific query, we constructed a subnet- 
work centered around the gene 3-hydroxy-3-methylglutaryl- 
CoA synthase 2 (HMGCS2). HMGCS2 encodes a ketogen- 
esis enzyme that has been linked to negative survival out- 
comes in mice when deleted ( 39 ). To explore drugs that may 
mimic the effects of exercise and counteract the effects of 
aging by preserving ketogenesis, we created a subnetwork 

from HMGCS2 and its associations with aging signatures 
from the GTEx Tissue-Specific Aging Signatures dataset, tissue 
samples from the MoTrPAC Rat Endurance Exercise Train- 
ing dataset, and chemicals from the LINCS L1000 Chem- 
ical Perturbation Consensus Signatures dataset (Figure 5 ).
We found several drugs (BRD-K93109423, BRD-K21356734,
BRD-K63270352, BRD-K25176380 and BRD-K01910220) 
that increase the expression of HMGCS2, opposite to its de- 
creased expression in aging bladder tissue and aligning with 

its increased expression in white adipose tissue following ex- 
ercise. To reproduce the subnetwork shown in the figure, a 
tutorial screen capture video was generated ( Supplementary 
Video S2 ). 

Discussion 

Harmonizome 3.0 integrates many published omics datasets 
to provide researchers a rich collection of features and at- 
tributes about mammalian genes. It provides uniformly pro- 
cessed datasets in various data structures for data analysis 
and reuse. Several additional datasets were introduced into 

the Harmonizome 3.0 release. In addition to new and up- 
dated datasets, new methods to interact with and visualize the 
harmonized and ingested data were implemented. Each Har- 
monizome dataset can be visualized with a UMAP that dis- 
plays the embeddings of gene sets from each dataset as points 
colored by automatically computed clusters. The Harmoni- 
zome datasets can be explored by interacting with the datasets 
via an interactive network visualization. The Harmonizome 
datasets were converted into a KG representation and stored 

in a Neo4j database. We have implemented an open-source UI 
to interact with the contents of this database. Another addi- 
tion to Harmonizome 3.0 is the dataset-crossing functional- 
ity. This feature enables users to find interesting overlaps be- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1080#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1080#supplementary-data
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Figure 4. Example from the Harmonizome 3.0 chatbot. The example query ‘What can you tell me about ST A T3?’ is selected to query the chatbot for 
information about the transcription factor ST A T3. The query is passed to the OpenAI Assistant through the backend Harmonizome API controller. The 
Assistant returns a function call to retrie v e inf ormation about the gene from the Harmoniz ome database. T he controller resolv es the function call and 
returns the rele v ant met adat a to the Assist ant as a tool output. The Assist ant reformats the gene’s met adat a into a human readable format and returns it 
to the API controller. The controller then renders the chat history for the user, providing the gene name, a description of its functions, NCBI Entrez Gene 
ID, encoded protein, and protein family. In the rendered response, gene symbols and names of resources and datasets in Harmonizome are hyperlinked 
to direct users to the respective Harmonizome pages to learn more about the topic. 

t  

e  

g  

l  

m  

t  

w  

i  

f  

u  

s  

w  

t  

p  

z  

b  

d  

i  

r  

r  

p  

e  

a  

fi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ween pairs of Harmonizome datasets. In addition to discov-
ring unexpected high overlap across dataset pairs, users can
enerate hypotheses about the reasons behind the high over-
ap between pairs of datasets using the OpenAI GPT-4o LLM
odel. Finally, the GPT-4o LLM model was utilized to create

he Harmonizome chatbot. The OpenAI Assistant framework
as utilized to enable the chatbot by defining the nature of

nteractions between users and Harmonizome. The chatbot
eature provides a new way to interact with Harmonizome
sing natural language. To ensure chatbot responses are con-
istent, within a limited scope, and are accurate, the chatbot
as given strict instructions to only reply with the data and

ools we provided to it. The application of LLMs to form hy-
otheses based on the dataset crossing feature of Harmoni-
ome attempts to minimize randomness and distorted facts
y keeping the temperature low. This also promotes repro-
ucibility. However, it can be argued that such restriction lim-
ts the opportunity for the LLM to be more creative. It was
ecently discussed that as LLMs improve, they also tend to
eason well based on false facts ( 40 ). This means that hy-
otheses generated by such LLMs may be convincing but sci-
ntifically wrong. LLMs, in general, perform well with cre-
tive tasks, but they struggle with separating real fact from

ction.  
Overall, by abstracting diverse omics datasets into associa-
tions between genes / proteins and their functional attributes,
the Harmonizome 3.0 datasets can be seemingly fused. Such
data fusion can directly pinpoint to new undiscovered biol-
ogy. In addition, by concatenating attributes of genes and pro-
teins from many resources, gene / protein functions can be pre-
dicted with Machine Learning. For example, we can predict
the knockout phenotypes in mice for genes not previously
knocked out. Similarly, we can predict pathway membership
and Gene Ontology (GO) terms for genes with no annota-
tions. Many other applications that build upon the processed
datasets available from Harmonizome 3.0 can be created. In
the future, we plan to make several improvements to Har-
monizome to further increase its functionality. We will con-
tinue processing and integrating new datasets, as well as up-
dating those already in the Harmonizome. We also intend to
further incorporate LLMs into various features of Harmoni-
zome. For example, we plan to have an LLM that will in-
terface directly Harmonizome-KG. As mentioned above, the
large collection of well annotated diverse knowledge about
genes and gene sets in Harmonizome can be used to predict
new knowledge about mammalian genes with Machine Learn-
ing methods. These predictions can be presented alongside ac-
cumulated knowledge from direct evidence. Altogether, these
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Figure 5. Screenshot from the Harmonizome 3.0 KG. The associations between genes and attributes are visualized as ball-and-stick diagrams. The 
queried gene (HMGCS2) is at the center of the subnetwork diagram. The attributes associated with HMGCS2 are from each selected Harmonizome 
3.0 dataset: GTEx Tissue Specific Aging Signatures, LINCS L1000 CMap Chemical Perturbation Consensus Signatures, and MoTrPAC Rat Endurance 
Exercise Training. Edges can have positive or negative effects. Associations from other datasets can be selected by clicking and on the resources’ icons. 
T he subnetw ork can be changed to use f orce-directed, hierarchical, or geometric la y outs. T he number of displa y ed associations can be adjusted using a 
slider. There are also options to view the subnetworks as a table, save the subnetwork in tabular format, export the subnetworks as an image, and view 

edge labels, and a figure legend. 
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mprovements will ensure that Harmonizome will continue
o serve as a unique and valuable resource for the biomedi-
al research community. 

ata availability 

he Harmonizome 3.0 database is available at: https:
/ maayanlab.cloud/ Harmonizome/ . The Harmonizome pro-
essed datasets are available in multiple formats at: https:
/ maayanlab.cloud/ Harmonizome/ download/ . The Harmoni-
ome data processing scripts are available at: https://github.
om/ MaayanLab/ HarmonizomePythonScripts . A snapshot of
he code of these processing scripts can be access from Zenodo
t: https:// doi.org/ 10.5281/ zenodo.13971451 . 

upplementary data 

upplementary Data are available at NAR Online. 
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