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Abstract 

Hundreds of millions of single cells ha v e been analyzed using high-throughput transcriptomic methods. T he cumulativ e kno wledge within these 
datasets provides an exciting opportunity for unlocking insights into health and disease at the le v el of single cells. Meta-analyses that span diverse 
datasets building on recent advances in large language models and other mac hine-learning approac hes pose e x citing ne w directions to model 
and extract insight from single-cell data. Despite the promise of these and emerging analytical tools for analyzing large amounts of data, the sheer 
number of dat asets, dat a models and accessibility remains a challenge. Here, we present CZ CELLxGENE Discover ( cellxgene.cziscience.com ), 
a data platform that provides curated and interoperable single-cell data. Available via a free-to-use online data portal, CZ CELLxGENE hosts a 
growing corpus of communit y-contributed dat a of over 93 million unique cells. Curated, standardized and associated with consistent cell-level 
met adat a, this collection of single-cell transcriptomic data is the largest of its kind and growing rapidly via community contributions. A suite of 
tools and features enables accessibility and reusability of the data via both computational and visual interfaces to allow researchers to explore 
individual datasets, perform cross-corpus analysis, and run meta-analyses of tens of millions of cells across studies and tissues at the resolution 
of single cells. 
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ntroduction 

ells have been the focus of scientific study for centuries
nd represent the fundamental unit of life ( 1 ). Biology and
edicine have long histories of systematically observing, de-

cribing and classifying cells and the anatomical structures
hat they reside in using assorted methodologies. With each
ave of technological innovation comes the discovery of new

ell types or states, but also an equally important expansion
f knowledge that defines the features of previously described
ells in greater detail. 

The goal of clarifying the molecular nature of cells has now
ome within reach due to advances in single-cell measure-
ent technology and concerted community efforts ( 2 ,3 ). Over

he past 5–10 years, research communities have mobilized for
rojects that span different tissues and organisms, deploying
ncreasingly robust assays and pursuing large-scale character-
zation of cells that include the Human Cell Atlas (HCA) ( 2 ),
ly Cell Atlas ( 4 ), Tabula Sapiens ( 5 ), the Human BioMolecu-

ar Atlas Program (HuBMAP) ( 3 ) and many more. These com-
unities have generated a wealth of data that describe how

ells vary across organisms, tissues, sex, age and ancestries. 
The unique characteristics of single-cell data, including the

arge number of individual measurements captured compared
o other modalities (e.g. microarray, bulk RNA sequencing),
mpose requirements for curation and annotation. These chal-
enges and requirements are not easily met using existing
epositories. Several solutions arose due to these unique re-
uirements, offering access to individual datasets and some
arger specialized collections, such as the Lung Gene Expres-
ion Analysis portal ( 6 ), Allen Brain Map ( 7 ) and the Single-
ell Portal ( 8 ). Built-for-purpose portals enable rapid publi-

ation of studies and dissemination of unique biological fea-
ures in specific datasets but lack the scalability and standard-
zation needed for efficient meta-analysis. Even in the pres-
nce of such portals, efforts to explore or (re)analyze many
atasets face a requirement to first standardize across individ-
al data portals and resources, with only an estimated 25%
f publicly available datasets providing the cell-level metadata
eeded for reuse ( 9 ). Data interoperability is a particularly im-
ortant challenge for both individual users and the broader
ommunity to realize the promise of single-cell biology both
ow and in future applications that involve training models
r assembling integrated references. 
To address the need for standardized, interoperable and

penly available single-cell matrices, we have developed Chan
uckerberg CELLxGENE Discover (pronounced CZ CELL
by GENE Discover). This rich platform pairs data and tools
that enable scientists to find, download, explore, analyze
and publish standardized single-cell datasets. The platform is
open-source and free to use. Contributions of data are wel-
come from the scientific community and are not confined to a
single consortium or funder. It serves as a centralized hub that
promotes collaboration across researchers, labs and consortia.
CZ CELLxGENE is differentiated from other single-cell data
portals by its enforcement of a standardized schema for gene,
cell, assay and donor metadata that evolves to address contrib-
utor requirements. This standardization provides the foun-
dation for CZ CELLxGENE’s easy-to-use visual interfaces.
Additionally, CZ CELLxGENE curators work jointly with
data contributors on their submissions, rather than pull data
from other public repositories or allow for automated submis-
sion. This collaborative approach ensures an accurate repre-
sentation of the data, avoids different interpretations of the
standards and results in richer metadata. CZ CELLxGENE
serves only matrix-formatted data and metadata, which pre-
cludes the submission of raw sequence data. This allows for
the open sharing of studies that may require controlled access
for identifiable sequence data and enables increasingly equi-
table science for rapid insight into data without the imme-
diate need for data reprocessing. CZ CELLxGENE Discover
builds on the earlier work CZ CELLxGENE Annotate that
enabled exploration, analysis and annotation of large-scale
single-cell datasets but is optimized for dissemination and re-
analysis ( 10 ). 

CZ CELLxGENE is a suite of tools and features designed to
address the challenges of compiling, curating and using data
from across a diverse ecosystem. These challenges informed
the development of scalable infrastructure, visualizations and
interoperability of single-cell transcriptomic data. Specific fea-
tures are built around datasets and collections that allow users
to filter among data and download them along with standard-
ized metadata in multiple formats. Features within CZ CEL-
LxGENE, such as ‘Explorer and Gene Expression’, provide
easy-to-use no-code web-based visualizations of data from a
given dataset or collection and give users the ability to more
dynamically explore questions across datasets. Finally, Cen-
sus is an Application Programming Interface (API) and data
object hosted by CZ CELLxGENE that enables efficient ac-
cess and custom slices thereof for programmatic access and
computational use cases. 

Together, these features leverage both visual and computa-
tional interfaces to allow researchers in the single-cell com-
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munity and beyond to rapidly explore individual datasets as
analyzed and published by the original authors and to cre-
ate corpus-wide views, summaries and meta-analyses of tens
of millions of cells across studies. CZ CELLxGENE has been
adopted as a primary data-sharing platform for small research
labs and large consortia like BRAIN Initiative ( 11 ), Human
Tumor Atlas Network (HTAN) and HCA. The data available
in CZ CELLxGENE has continued to grow at a steady and im-
pressive rate over the last 3 years (Figure 1 A). As of 1 October
2024, the platform hosts over 1550 datasets and 169.3 mil-
lion cells (93.6 million unique cells), unlocking a new power
for any researcher to ask and answer biological questions to
clarify off-target effects of drugs across organs, identify unique
marker genes or interrogate gene expression across cell types
for all major human and mouse organs. 

Results 

CZ CELLxGENE data is uni ver sally standardized to 

a minimal data schema 

Single-cell transcriptomic datasets from a large number of lab-
oratories, institutions and consortia are available via websites
and portals ( 12 ). Each portal serves the needs of its dataset,
but typically fails to enable collective use. This presents a bar-
rier to downstream use of the data and queries that run across
many datasets. To address this challenge, we defined require-
ments and standards for a minimal schema that reflects widely
used terms aimed at enabling corpus-wide searches, filtering of
data and data analyses. Our driving motivation was to enable
dynamic integration and queries of all the data or a subset of
cells of interest to a biologist. 

A minimal cell-level schema 

Metadata is critical for the reuse of data but often incon-
sistently captured or represented in single-cell datasets. We
sought to define a schema that enabled data integration by
defining a core set of metadata fields and ontologies. Inte-
gration enables the compilation of datasets into atlases and
has become a core computational task within single-cell biol-
ogy ( 13 ,14 ). It allows for the inference of multi-modal mea-
surements, cell type prediction and cross-species analysis that
underpins insights into a wide array of biological questions
as well as the ambitions of community efforts to integrate
individual datasets into references ( 15 ). Community input—
including feedback from members of HTAN ( 16 ), HuBMAP
( 3 ) and HCA ( 4 )—to develop standards in line with the key
information frequently utilized by meta-analysis studies to
properly integrate data or to identify biological variables cor-
related with gene expression ( 17–19 ). To avoid deterring or
inhibiting data submission and adoption, we limit the schema
to 11 required fields considered most valuable for data inte-
gration and reuse. The resulting requirements were encoded
into a minimal, versioned schema that all submitted data must
adhere to and be validated against during the submission pro-
cess (Figure 1 B, Supplementary Table S1 ). 

The required fields represent attributes that are often vari-
able within or across studies and are often identified as strong
covariates correlated with gene expression variation within
cells ( 20 ,21 ). Similar to previous experimental data coordi-
nation efforts, established ontologies and other community
resources are used for standardization wherever possible for
consistency and to improve the filtering capabilities of datasets 
( Supplementary Table S2 ) ( 22–24 ). 

To fully capture gene count information for each dataset,
a layer of raw data, meaning non-normalized mapped reads,
is required for submission of data from all transcriptomic as- 
says to fulfill common computational reuse cases ( 25–27 ). The 
corpus-wide availability of raw counts enhances data acces- 
sibility by openly serving reusable data products for studies 
with controlled access sequence data and prevents compu- 
tational resources from being used towards re-alignment for 
cases where the original alignment will suffice. 

CZ CELLxGENE does not recluster or perform analyses on 

individual datasets. As a result, at least one two-dimensional 
embedding, such as Uniform Manifold Approximation and 

Projection (UMAP), t-Distributed Stochastic Neighbor Em- 
bedding (tSNE), Principal Component Analysis (PCA), etc., is 
required to facilitate dataset visualization within the Explorer 
interface (see the ‘Scalable tools allow biologists to explore,
query and analyze CZ CELLxGENE data’ section). Impor- 
tantly, CZ CELLxGENE allows for multiple embeddings, en- 
abling the sharing and exploration of diverse data representa- 
tions. 

Metadata for a given dataset is not constrained to CZ CEL- 
LxGENE’s minimal schema; it is extensible and allows for 
the submission of additional metadata that contributors con- 
sider valuable. In the case of coordinated efforts or consor- 
tia, the system fully supports additional fields that have been 

standardized across studies to encourage and enable meta- 
analysis. The full schema specifications have been adopted by 
multiple consortia, including the HCA, BRAIN Initiative and 

Kidney Precision Medicine Project ( 28 ), and are available to 

the research community to support interoperability with cur- 
rent and future efforts ( Supplementary Table S1 ). 

Schema evolution 

Schema evolution is anticipated given the advancement in data 
generation techniques and data analysis technology, especially 
in a rapidly advancing scientific field like single-cell biology.
We designed the minimal schema to be supportive of changes 
and review the data corpus every 6 months for opportunities 
to make it increasingly comprehensive and standardized. With 

each schema update, previously submitted data are migrated 

to meet the new schema, even if that requires re-curation (see 
the ‘Materials and methods’ section). These data migrations 
ensure that all datasets are consistently described by the most 
current standards at all times, and users will have consis- 
tent filtering and integration experiences independent of when 

a given dataset was submitted. The full CZ CELLxGENE 

schema changelog is available ( Supplementary Table S1 ). 

Submission workflow 

CZ CELLxGENE welcomes data contributions meeting 
the current submission criteria ( Supplementary Table S1 ) 
from any individual contributor, laboratory or institution.
Upon request from data contributors via email to cellx- 
gene@chanzuckerberg.com, a dedicated curation team creates 
a new private Collection, defined as a group of datasets that 
are part of a study or publication, with a contributor-provided 

title, description, contact, associated consortia or projects, as 
well as any external URLs ( Supplementary Table S2 ). To en- 
able collaboration and journal reviewer access without reg- 
istration, the curation team provides the contributor with a 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1142#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1142#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1142#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1142#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1142#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1142#supplementary-data
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Figure 1. Description of CZ CELLxGENE schema and data curation efforts. ( A ) The total number of unique cells available on CZ CELLxGENE now 

surpasses 93 million cells. ( B ) All data on CZ CELLxGENE conforms to a standard metadata schema. The schema requires raw counts (e.g. mapped but 
unnormalized) as part of data submission. Required met adat a covers 10 generally available categories that are completed for each sample and cell to 
increase reusability for downstream analyses. An additional met adat a category, not shown in the figure above, is the is_primary_data field. This field is 
used to mark each observation as ‘primary’ exactly one time throughout the corpus so that cross-corpus aggregations can a v oid redundant observations 
in their analysis. 
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RL to their new Collection. This URL is permanent and will
ot change when the Collection is made public such that con-
ributors do not need to update their manuscript or other text
here the URL is referenced. This URL is also obscure such

hat until the Collection is made public, the URL is only view-
ble by the contributor and anyone they share the URL with.
Z CELLxGENE does not include any alignment, cluster or
nnotation pipeline so all requirements, including cell popu-
ation labels, must be provided by the contributor based on
heir own analysis. Once a dataset fulfills the schema require-
ents, it is uploaded to the Collection as an H5AD file in
nnData format ( 29 ). Upon upload, the AnnData object is
pdated with human-readable gene symbols and ontology la-
els based on the submitted identifiers. A Seurat object is then
reated from the updated AnnData using sceasy ( 30 ). Both
ormats are made available to consumers for download to
nable reuse in a variety of downstream single-cell analysis
oolchains. In addition, an internal format for visualization in
xplorer is produced. Gene symbols and ontology labels are
apped consistently throughout the data corpus via a specific
ntology release version defined in the schema for each com-
unity resource. 
Additional details on the data submission process are

vailable on the CZ CELLxGENE documentation pages
 Supplementary Table S1 ). 

ommunity resource for standardized cell resolved 

easurements 

Z CELLxGENE hosts the largest curated collection of pub-
icly available single-cell data, with data obtained from both
ingle cells and single nuclei across 449 tissues and 40 unique
ssay types transcriptomics (Figure 2 A–C). The CZ CEL-
xGENE schema and underlying architecture have been de-
igned for extensibility to new modalities and growth of the
ata corpus. Current data is primarily single-cell transcrip-
omic, although CZ CELLxGENE accepts additional modali-
ies to support the growing number of studies that incorporate
 multitude of assays and co-assays (Figure 2 B). New data will
equire ongoing evolution of refined human cell types and tis-
ues in a standardized, structured way by leveraging and con-
ributing to the Cell Ontology ( 31 ), Human Ancestry Ontol-
gy ( 32 ) and UBERON ( 33 ). 
Of the 93+ million unique cells available in the data cor-
pus, 63% of the total cells in the corpus are human, 32% are
mouse and < 5% are from other species (Figure 2 C). Of the
human data, ∼62% is defined as coming from healthy donors,
and the remaining 38% span 132 unique diseases. While CZ
CELLxGENE data corpus remains the largest publicly avail-
able single-cell data resource, significant data deficiencies ex-
ist in many tissues and systems across both mouse and human
(Figure 2 D). When considering the comprehensiveness of hu-
man data available in the data corpus, samples from female
tissue donors are slightly more numerous across the data cor-
pus, and diverse ethnicities and age groups are grossly under-
represented, with the majority of data coming from adults of
European or Unknown ethnicity (Figure 2 E–G). It should be
noted that CZ CELLxGENE’s data schema requirements pro-
vide the ability to assess the comprehensiveness and deficits of
CZ CELLxGENE data corpus across metadata categories. 

Navigating the CZ CELLxGENE data corpus 

CZ CELLxGENE provides two main ways to interactively
browse data: the Collections and Datasets pages. The Collec-
tions page allows users to view all Collections, defined as the-
matic groups of data, typically grouped by a publication, in the
data corpus and filter by metadata categories. If a Collection
has a publication DOI, then its author information, journal
and publication date are retrieved from the Crossref service to
filter by Publication Date or Publication. Each collection also
provides contributor and provenance information including
contact, narrative description and an association with a con-
sortium if appropriate. From the Collections page, one can
view high-level attributes of the data contained within each
collection [e.g. organism (s), tissue (s) and disease (s)], and a
short citation of the associated publication, if one is present. 

The Datasets page allows for viewing and filtering all
datasets in the data corpus by the same metadata as the
Collections page, plus cell and gene counts, and provides
access to the downloadable files and Explorer visualization
for each dataset. Clicking on a Collection title from either
search page will direct users to the corresponding Collec-
tion page where one can view the Collection information and
a Dataset table that provides summary metadata for each

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1142#supplementary-data
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Figure 2. CZ CELLxGENE data corpus across various metadata categories. ( A–C ) A breakdown of total unique cells in CZ CELLxGENE by suspension 
t ype, modalit y and organisms showing the majority of data a v ailable in CZ CELLxGENE is generated from human and mouse tissue using 10X Genomics 
transcriptomic assa y s. Data is a v ailable across additional modalities (e.g. non-10 × transcriptomic assa y s, spatial transcriptomics, epigenomic and 
multimodal dat a t ypes, are supported if they meet the minimal schema requirements) and species (e.g. Macaca mulatta , Pan troglodytes and others) are 
supported if they meet the minimal schema requirements. (D) A breakdown of the total unique cells across all major organ sy stems f or both mouse and 
human a v ailable in CZ CELLxGENE. ( E–G ) A summary of human dat a across self-reported ethnicit y, de v elopment al st age and sex. 
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ataset in the Collection as well as file and visualization ac-
ess ( Supplementary Figure S1 ). 

calable tools allow biologists to explore, query 

nd analyze CZ CELLxGENE data 

 universal view of atlas data represents an important next
tep to encourage greater insight from the immediate users of
he data and wider sections of the scientific community. The
reponderance of tissue and multi-organ atlases provide am-
le data but raise a myriad of challenges related to interop-
rability, data format and the ability of computational tools
o quickly query 10s or 100s of millions of cells. CZ CEL-
xGENE addresses several challenges associated with data
ggregation and standardization to enable researchers with
ide ranges of expertise to visualize, explore, access and reuse

ingle-cell data. Currently, we provide three main tools: Ex-
lorer, Gene Expression and Census, all of which utilize stan-
ardized data to lower the bar for integration as well as allow
mmediate exploration of biological insights. 

xplorer allows interactive exploration and analysis
f individual single-cell datasets up to 4 M cells 

he majority of single-cell visualization portals rely on pre-
omputed values that limit interactive features on datasets and
enerally are tuned to host datasets of 250–500k cells ( 30 ).
ortals have struggled to keep up with the growth of dataset
ize, now reaching the order of millions of cells per study (Fig-
re 3 A) ( 34 ,35 ). As the field scales, and perhaps importantly,
s more integrated datasets become available, it is critical to
ave the ability to dynamically visualize and perform basic
nalysis functions on millions of cells. Explorer, a feature of
Z CELLxGENE, is a visualization platform that allows re-

earchers to dynamically explore, compute and query individ-
al datasets for up to 4.3 million cells in < 1 min (see the ‘Ma-
erials and methods’ section). 

With Explorer, researchers can explore gene expression by
isualizing individual genes or groups of genes (Figure 3 A, in-
et); performing differential gene expression (W elch’ s t -test);
dentifying marker genes; and visualizing continuous (e.g.
MI count) and categorical (e.g. cell type) cell metadata. Ex-
lorer offers a dynamic interface that allows users to rapidly
xplore co-variation and trends that are not typically captured
r presented in pre-computed interfaces. Users can facet these
isualizations based on gene expression, metadata and the em-
edding itself. The combinatorial nature of these affordances
acilitates arbitrary comparisons through cross-filtering, sub-
etting and coloring subpopulations of the data (Figure 3 A). 

ene Expression allows gene expression queries 

cross the corpus of data 

n immediate opportunity of single-cell atlases is to offer re-
earchers the ability to interrogate the expression of genes
cross cell types in a specific biological context, such as tissue,
isease, ancestry, sex and developmental stage. To meet this
eed, we developed Gene Expression, an interactive tool with
n intuitive visual interface to explore gene expression across
ll RNA datasets hosted on CZ CELLxGENE that meet assay
nd quality criteria (see the ‘Materials and methods’ section).

Gene Expression displays heat map visualization of mes-
enger RNA levels across cell types and tissues. For any given
ell type and gene, the dot color represents the average gene
xpression of all cells annotated accordingly. The size of each
dot represents the percentage of cells within the cell type that
express that gene (Figure 3 B). This visualization reveals high-
level differences in expression patterns across cell types and
tissues. The combination of these metrics in a grid of [ cell
types by genes ] allows researchers to make qualitative assess-
ments of gene expression between user-defined subsets of cell
types and tissues. Researchers can filter by tissue, publication,
sex, self-reported ethnicity and disease to tailor their results
to a subset of the data they are interested in or deem most
relevant. The Group By functionality reports gene expression
for cell types stratified by the selected category (i.e. sex, self-
reported ethnicity and disease), further enabling researchers
to identify gene expression that define and differentiate cell
types in different biological contexts (Figure 3 C). 

Gene Expression provides an aggregated view of 
cell types’ transcriptional states and marker genes 

Gene Expression’s underlying data is a concatenation of
single-cell transcriptomic sequencing data, normalized with
log pseudocounts and filtered for quality (see the ‘Materials
and methods’ section). We then (i) aggregate this normalized
data and (ii) generate marker genes. 

Aggregation partially mitigates batch effects 

Single-cell transcriptomic data suffers from batch effects
which distort biological signal when comparing between
datasets. Despite many advances in methods development for
data integration, the current state-of-the-art methods produce
output in a lower-dimensional space than the original count
matrix, making them unsuitable for our application. Thus,
our simple pre-processing pipeline uses log transformed pseu-
docounts to normalize each cell’s gene expression data, but
this does not aim to eliminate batch effects between datasets.
However, we wanted to understand the extent to which simply
aggregating (averaging) these normalized values across many
cells and datasets is able to partially mitigate these batch ef-
fects. 

To directly quantify this, we used a repeated measures Anal-
ysis of Variance (ANOVA) analysis to assess the extent to
which average gene expression vectors of several cell types
vary between datasets and assays. For both marker genes and
housekeeping genes, our results show that for most cell types,
we do not have sufficient evidence to say that there are signif-
icant differences between the average gene expression values
across covariates (Figure 4 ). We also found that log normaliza-
tion further reduces batch effects ( Supplementary Figure S2 ).
This suggests that batch effects are at least partially miti-
gated by aggregation and log normalization compared to raw
counts; however, users should be advised that the displayed
values may still be affected by batch effects, especially for rare
cell types. 

Gene Expression provides computationally derived 

marker genes for most cell types 

Marker genes are widely used in single-cell analysis but are
inconsistently annotated for many cell types, especially across
different tissue contexts. Gene Expression provides computa-
tionally derived marker genes for nearly every cell type, spe-
cific to each tissue context. To evaluate these, we estimated the
sensitivity of a t -test (which is the basis of the Gene Expres-
sion marker gene pipeline; see the ‘Materials and methods’
section) in recalling marker genes from HuBMAP for 127 cell

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1142#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1142#supplementary-data
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Figure 3. CZ CELLxGENE features Explorer and Gene expression enable interactive analysis of single-cell datasets. ( A ) A UMAP of all 483 152 cells in 
the Tabula Sapiens dataset a v ailable on Explorer visualized by the expression of MT-RNR1, a gene that encodes for an ribosomal RNA responsible for 
regulating insulin sensitivity and metabolic homeostasis ( 36 ). UMAPs can be visualized based on metadata categories, including cell type and other 
met adat a categories, or by the expression of one or multiple genes, as shown above. ( B ) A heatmap generated using Gene Expression visualizing the 
mean gene expression of specific genes across and within all tissues and cell types present in the data corpus, where the quantity of cells used for 
calculating the mean gene expression is indicated in the leftmost column of the heatmap under ‘cell count.’ The gene expression is displayed using two 
visual elements: color, representing the mean gene expression and size, signifying the proportion of cells in each cell type or tissue expressing the 
respective gene. ( C ) A heatmap generated using the Group By feature demonstrates the variation in gene expression among different cell types 
according to sex. Group By allows researchers to group mean gene expression values by specific met adat a values, including, sex, disease and ethnicity. 
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ypes from 14 tissues ( 37 ). Cell type selection was based on
ata availability; where two cell types were colinear in the
ell Ontology, we removed the more basal type. We found an
verage recall of 33% (Figure 5 ). The probability of observ-
ng this level of sensitivity by chance for each cell type ranges
rom P = 0.00–0.04; the moderately low sensitivity values are
ikely influenced by the fact that the HuBMAP dataset we use
s our ‘ground truth’ includes annotations from a variety of
ifferent assay types and are quite noisy. Marker genes can
e identified and visualized in the Gene Expression interface
 Supplementary Figure S3 ). 

ensus provides efficient programmatic access to 

Z CELLxGENE data for flexible exploration and 

eanalysis 

 central goal of the CZ CELLxGENE effort is to ensure ro-
ust programmatic access to a corpus of interoperable data
or reuse and atlas-level analysis and modeling. To support
his, we developed a global view of the data, termed Census,
s a service composed of a cloud-hosted data object hosted at
mazon’s Open Data registry along with Python and R pack-
ges for efficient computing and access to non-spatial tran-
criptomic data available in CZ CELLxGENE (see the ‘Mate-
ials and methods’ section). 

Many tools that are widely used for analysis, or even
eta-analysis, are not designed to operate on datasets of this

cale ( 38 ). There are a myriad of existing computational an-
lytical tools and methods available to the community ( 39–
2 ), many of which have made significant advancements to-
ards increasing scalability around data access and analy-

is. For example, for R users, Seurat V5 ( 43 ) introduced a
ew paradigm to perform memory- and compute-costly pro-
esses on subsets of a dataset, while performing light-weight
rocesses on full datasets. Similarly, for Python users, Ann-
ata introduced on-disk representations of data while incor-
orating state-of-the-art parallel computing via Zarr ( 44 ) and
ask ( 45 ), respectively. While these tools are increasing the

cale to which computational biologists can access and an-
lyze data, many of these solutions are still limited to only
illions of cells and more importantly, lack of interoperabil-

ty between R and Python. To fill this gap, and in particular,
o allow interoperable and scalable data access beyond 10s
nd 100s of millions of cells, we co-developed TileDB-SOMA
 Supplementary Table S1 , see the ‘Materials and methods’ sec-
ion). This API is intentionally designed for data access at scale
hile maintaining interoperability with the existing computa-

ional tools in the single-cell ecosystem. TileDB-SOMA was
hen used to build Census – a large data object hosted in the
loud with initial data covering all RNA non-spatial transcrip-
omic data from CZ CELLxGENE. 

Through its cloud-based platform, Census offers efficient,
ow-latency access for larger-than-memory slices of CZ CEL-
xGENE data, which users can access through Python and R
PIs by performing queries based on cell or gene metadata

Figure 6 ). Census is interoperable across existing single-cell
oolkits as query results can be exported to Seurat, AnnData
r SingleCellExperiment objects. Notably, Census offers in-
eroperability with basic language structures: from Python, it
an export data to PyArrow objects ( 46 ), SciPy sparse matrices
 47 ), NumPy arrays ( 48 ) and Pandas data frames ( 49 ). From
, Census can export data to R Arrow objects, sparse matrices
(via the Matrix package) and standard data frames and dense
matrices. 

Importantly, TileDB-SOMA allows Census to interact with
CZ CELLxGENE data in an out-of-core fashion via its
iterable-based streaming capabilities (see the ‘Materials and
methods’ section). Concretely, this means that data can be
queried, processed and analyzed in data chunks of fixed size.
Algorithms can then be adapted to work on an incremental
basis; particularly any computation that can operate indepen-
dently on per-cell or per-gene data can be easily implemented
in this manner. Computations that require random access to
the full query result or multiple passes through the data can
be redesigned as an on-line algorithm ( 50 ). In Census, we have
already deployed out-of-core implementations for some com-
monly used computations in single-cell, including incremen-
tal mean and variance calculation, and the ability to identify
highly variable genes, all of which can now be executed in a
regular 8 GB memory laptop across 65 million cells and > 60
000 genes. These out-of-core functionalities are available in
the Census Python package ( Supplementary Table S1 ). 

Modeling of single-cell data at scale is an important as-
pect of Census, as well as the broader single-cell field, given
its demonstrated uses for in silico experimentation ( 51 ,52 ),
data integration and annotation ( 53 ,54 ), cell state prediction
( 55 ,56 ) and clinical applications ( 57–59 ). PyTorch ( 60 ) is one
of the most popular machine learning frameworks in single-
cell, with notable models built using the PyTorch library in-
cluding scvi-tools, Geneformer ( 61 ) and scGPT ( 62 ). To al-
low existing and new machine learning models to be trained
on Census-scale data, we implemented PyTorch iterable data
loaders that work natively with Census via TileDB-SOMA.
Leveraging the modular design of the PyTorch libraries, the
Census data loaders can be easily utilized in new and exist-
ing model training pipelines, allowing models to be trained
on Census-scale data using readily available computing re-
sources. 

Initial datasets included in Census were generated using
non-spatial RNA technologies, contain cells from human
or mouse, provide raw counts and utilize only standard-
ized cell and gene metadata as described in the CZ CELLx-
GENE dataset schema description above. New data is reg-
ularly added to Census and more details on current inclu-
sion criteria can be found within Census Documentation
( Supplementary Table S1 ). 

Discussion 

CZ CELLxGENE provides an interoperable and dynamic
community resource that supports a diversity of biological
and computational applications. Diverse use cases are enabled
by a uniquely large, multi-organ and consistently curated data
resource. Within the CZ CELLxGENE platform, this data re-
source is served in a variety of ways that enable rapid and
dynamic exploration at the dataset and corpus level. Exam-
ples of use include clarifying the mechanism by which ag-
ing can drive B-cell lymphoma ( 63 ) and identified signaling
gene sets involved in small cell lung cancer ( 64 ). The stan-
dardized data from CZ CELLxGENE has enabled the devel-
opment of new computational tools including UniCell: De-
convolve Base (UCDBase), a pre-trained, interpretable, deep
learning model to deconvolve cell type fractions and predict
cell identity across transcriptomic datasets ( 65 ); scTab, a cell

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1142#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1142#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1142#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1142#supplementary-data
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Figure 4. ANO V A on a v erage normaliz ed gene e xpression v alues. R esults f or one-w a y repeated measures ANO V A scores conducted on marker and 
housekeeping genes in five different cell types. Results show that for most cell types, we do not have sufficient evidence to say that there is a 
statistically significant difference between the average normalized gene expression values among covariate values [9 / 10 and 6 / 10 P values for ln 
(CPM + 1) for dataset_id and assay P val = 0.05, aggregated over marker and housekeeping genes]. 

Figure 5. Recall of marker genes: comparison between raw counts, quantile normalization and log transform normalization. Each point represents the 
sensitivity of marker gene recall for a specific cell type and tissue, as compared to canonical marker genes from HuBMAP. 
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Figure 6. Ov ervie w of Census frame w ork. Census is built upon the TileDB-SOMA frame w ork to enable computational scientists to e x ecute comple x 
and specific queries across o v er 65 million cell measurements compiled from 900+ datasets spanning human and mouse organs a v ailable in CZ 
CELLxGENE using Census. L e v eraging out-of-core processing, SOMA provides the API and data model to facilitate the storage, retrie v al and analysis of 
datasets e x ceeding memory capacity. T he standardiz ed schema required b y the dat a port al enables users to eff ortlessly query and e xport an y segment 
of the e xtensiv e 65+ million cell dataset for in-depth analysis using Python and R. 
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ype prediction model ( 66 ); and CSeQTL, a tool for mapping
ell type-specific gene expression quantitative trait loci ( 67 ). 

Compilation and standardization of single-cell transcrip-
omic datasets reduces barriers to meta analysis. CZ CEL-
xGENE’s cell-level schema is important for this work as

t enables corpus-wide analysis but also user-defined subset-
ing of the data to related collections of cells that span mul-
iple datasets. For example, we developed the Gene Expres-
ion interface to enable researchers to quickly identify com-
utationally computed marker genes for over 900 cell types
nd begin to understand the expression of a gene of inter-
st. Gene Expression does not fully correct for batch effects
ut is well suited for many use cases. Normalization with
og-transformed scaled pseudocounts meets the scalability re-
uirements for processing large datasets efficiently, allowing
or the iterative addition of new cells without necessitating
 full re-run of normalization processes. It also successfully
tabilizes variance for visualization purposes while providing
 complete count matrix of expression values (rather than
ow-dimensional representations). These findings collectively
upport the suitability of log transform normalization for the
ene Expression tool so long as users are aware of its short-

omings. 
Deep learning and generative modeling provide an excit-

ng opportunity to address many of these challenges ( 61 ,62 ).
 recent demonstration of the power of CZ CELLxGENE
ata is on its application to train scGPT, a generative pre-
rained model, on 33 M cells, which the authors used for
ell-type annotation, multi-batch integration, multi-omic in-
egration, genetic perturbation prediction and gene network
nference. Other forms of global representations that utilize
Z CELLxGENE are delivering value for scientists seeking

o contextualize their data against large reference collections
 68 ). Currently, models trained on CZ CELLxGENE Census
data are available, and regularly retrained as the data corpus
grows, for downstream use. However, users do not have the
ability to directly interact with models via the hosted web in-
terface. Workflows, such as cell type prediction, projecting a
new dataset onto the reference corpus and alignment of un-
analyzed modalities, still require downloading an embedding
and working outside of the platform. Future work is exploring
opportunities to expand access to models and provide a richer
exploration experience of datasets within CZ CELLxGENE.
Given the potential utility that models provide across many
tasks, we envision future work that will enrich the experience
of exploring datasets hosted in CZ CELLxGENE but also the
potential of enabling users to explore newly generated data
not yet hosted in the platform. 

As the single-cell biology field continues to evolve, it is crit-
ical that data portals and resources provide a consistent, re-
liable framework, while also adapting to the emerging tech-
nologies and the trajectory of the field. To this end, ongoing
work includes updating all CZ CELLxGENE features (Gene
Expression, Marker Genes, Census) to present data that is de-
rived from the same versioned snapshot of Portal data. Addi-
tionally, there is a need to further validate the normalization
methods used across the corpus. Importantly, the field has ac-
knowledged the importance of spatial information in the con-
text of single-cell biology ( 69 ,70 ), and ongoing work in both
CZ CELLxGENE Explorer as well as Census seeks to support
these efforts and technologies. Finally, we recognize the ongo-
ing importance of new modalities beyond dissociated RNA
and have begun to provide support for a growing array of
data modalities. 

In summary, the CZ CELLxGENE platform not only en-
ables data sharing and data reuse through its standardized
schema and curation pipeline but also allows researchers
across expertise to access and visualize the largest single-cell
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Table 1. Sequencing assa y s included in Gene Expression normalized data 
object 

Assay EFO ontology term ID 

sci-RNA-seq EFO:0010550 
10 × 3 ′ v1 EFO:0009901 
10 × 5 ′ v1 EFO:0011025 
10 × 3 ′ v2 EFO:0009899 
10 × 5 ′ v2 EFO:0009900 
10 × 3 ′ v3 EFO:0009922 
10 × 3 ′ transcription profiling EFO:0030003 
10 × 5 ′ transcription profiling EFO:0030004 
10 × technology EFO:0008995 
Seq-Well EFO:0008919 
Drop-seq EFO:0008722 
CEL-seq2 EFO:0010010 

 

would include ‘B cells’ and all its other descendants. 
dataset to date, with over 90 million cells across 449 tissues.
Critically, the Census has unlocked a new potential for bio-
logical insights at scale and provides a low-friction bridge be-
tween single-cell biology and the machine learning commu-
nity. Given the rapid advances in the field of Machine Learn-
ing and Artificial Intelligence, we anticipate that many addi-
tional applications of large language models and modeling ap-
proaches will be powered by Census and the CZ CELLxGENE
suite of tools while encouraging deep biological studies that
leverage insight from millions of cells resolved measurements
presented in an easy-to-use platform. 

Materials and methods 

Performant visualization and analysis for up to 4 

million cells via explorer 

To achieve unparalleled efficiency, Explorer is engineered to
incorporate numerous state-of-the-art tools and protocols. At
the heart of its memory efficiency lies the use of TileDB Em-
bedded ( https:// tiledb.com/ products/ tiledb-embedded/ ) as its
data storage engine, a powerful, out-of-core solution for man-
aging massive multi-dimensional array data. It excels at stor-
ing and accessing large and sparse datasets, making it an ideal
choice for handling single-cell RNA sequencing data. 

We utilized FlatBuffers to compress and quickly transfer
large chunks of cell metadata and gene expressions to clients.

Categorical metadata is integer-encoded, and gene expres-
sions are digitized to maximize compressibility. 

To optimize the performance of differential expression, we
engineered a custom implementation of Roaring Bitmaps, an
efficient encoding method used for compressing postings lists,
which contain cell indices in user requests. This algorithm and
numerous other optimizations in the backend allow for the in-
teractive comparison of populations of up to 1.5 million cells
in under 60 s. 

Finally, we built a custom renderer in WebGL, a JavaScript
API for rendering high-performance graphics, to efficiently
render millions of points in the cell embeddings and respond
with minimal latency to user interaction. 

Data processing and normalization for Gene 

Expression 

Note that the following reflects the normalization approach
and mar k er gene pipeline as of the time of writing (October
2023); as we are always seeking to improve our tools, please
see the online documentation for any changes. 

Removal of duplicate cells 
Some data on CZ CELLxGENE is duplicated due to indepen-
dent submissions, for example, meta-analysis versus original
data. All data submitted on Discover is curated to indicate
whether any cell is the primary data. Only cells demarcated as
primary data are included in the processing steps below. 

Removal of low co ver age cells 
Any cell that has < 500 genes expressed is excluded, which
filters out about 8% of all data and does not eliminate any
cell type in its entirety. This filter reduces noise in the gene
expression estimates. 
Removal of cells based on sequencing assay 
Only cells from sequencing assays that measure gene expres- 
sion and do not require gene-length normalization are in- 
cluded (Table 1 ). 

Data normalization 

We chose to normalize raw counts from this dataset to log- 
transformed scaled pseudocounts (‘log transformation’) based 

on requirements that we established to meet a general use case 
of enabling scientists to explore gene expression across all eli- 
gible datasets in the corpus: it is a minimal, interpretable ma- 
nipulation of the data; it is scalable to millions of cells; and it 
stabilizes the variance to a smaller range, suitable for visual- 
ization and rapid exploration. 

Read counts are normalized using the ln (CPTT + 1) trans- 
formation of raw counts, where CPTT is Counts Per Ten 

Thousand. 
Normalized matrices from multiple datasets of the same tis- 

sue are concatenated along the gene axis. 

Removal of noisy ultra-low expression values 
After applying normalization, any gene / cell combination 

counts less or equal than 3 are set to missing data. This al- 
lows for removal of noise due to ultra-lowly expressed genes 
and provides a cleaner visualization. 

Summarization of data in heatmap 

For each gene / cell type combination, the average ln 

(CPTT + 1)-normalized gene expression among genes that 
have a non-zero value is visualized by the dot color. The per- 
centage of cells of any given cell type that express the gene of 
interest is visualized by the heatmap dot size, with the abso- 
lute number of cells expressing the gene found in parentheses.
These numbers are calculated after the removal of low cover- 
age cells. 

Expression and cell count rollup across descendants in the Cell 
Ontology 
The Cell Ontology is a hierarchical tree structure that repre- 
sents the relationship between cell types. For example, the cell 
type ‘B cell’ is a descendant of the cell type ‘lymphocyte’. For 
a particular cell type, the Cell Ontology is used to sum up the 
expression values and cell counts of cells labeled as that cell 
type as well as those labeled as its descendants. In the afore- 
mentioned example, the average expression of ‘lymphocyte’ 

https://tiledb.com/products/tiledb-embedded/
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data. 
This roll-up operation accounts for the fact that different
atasets may have labeled their cells with different levels of
ranularity. It provides a more robust measure of the average
xpression of low-granularity cell type terms, such as ‘secre-
ory cell’ or ‘lymphocyte’. 

ata-generated marker genes 

or each of the cell types available in the data corpus, we use
 W elch’ s t -test on the normalized values to compare the aver-
ge expression of each gene in the cell type of interest against
ach other cell type in the same tissue. For each gene, we can
ake the 10th percentile of effect sizes across all these cell type
omparisons as the reported effect size. However, for small
umbers of comparisons, the 10th percentile can be a noisy
etric. To improve its robustness, we bootstrap the distribu-

ion of effect sizes, taking the 10th percentile of each replicate,
nd averaging all replicates to get the final effect size. We re-
urn the 25 genes with the top effect sizes. 

It is important to note that some methodological decisions
ere made to balance accuracy with efficiency and scalability.
or example, we use a t -test to perform differential expression,
hich is a simple and fast test. However, it may not be as ac-

urate as more sophisticated (and computationally intensive)
tatistical tests. Differential expression values were calculated
sing normalized and log-transformed values instead of raw
ounts. Applying secondary filters to the data (like disease,
thnicity, etc.) does not update the returned marker genes; en-
bling dynamic calculation of marker genes for arbitrary pop-
lations of cells in arbitrary subsets of the data may be a di-
ection for future development. 

iological validation of CZ CELLxGENE 

ormalization methods 

1. Batch effects analyses 

Note that the batch effect analyses used a scaling factor of
 000 000 – rather than 10 000 – for the log transformation
f scaled pseudocounts normalization. 
ANOVA on average normalized gene expression values

cross covariates 
We computed a one-way repeated measures ANOVA treat-

ng the average gene expression value of a particular gene as
he dependent variable and the covariate as the independent
ariable. Average gene expression values were computed by
xcluding normalized gene expression values of 0. We looked
t five different cell types and compared values across marker
enes and housekeeping genes. Since there are genes that do
ot appear across all covariate values, the system design was
nbalanced. Our null hypothesis H 0 was that there is no sig-
ificant difference between the average normalized gene ex-
ression values across covariate values. For most cell types,
he P values obtained were > 0.05, which means that we did
ot have sufficient evidence to reject the null hypothesis. We
sed the pingouin package to compute the scores. We looked
t Dataset ID and Sequencing Assay as potential covariates. 

2. Marker gene sensitivity 

We selected 127 cell types across 14 tissues which had both
anonical marker genes available in HuBMAP and raw count
ata available in CZ CELLxGENE: Gene Expression data cor-
us. We then normalized the raw counts for each tissue using
either ln (CPTT + 1) or quantile normalization. Using these
normalized values, we then computed marker genes for each
of these cell types using the methods described above; how-
ever, we used a Student’s t -test instead of W elch’ s simply based
on the availability of this method in scanpy rather than requir-
ing the full production pipeline for the validation study. 

TileDB-SOMA development for census 

We worked in collaboration with TileDB to develop a technol-
ogy for efficient and scalable single-cell data handling. Our ef-
forts resulted in the abstract API specification, SOMA (‘Stack
of Matrices, Annotated’) () and its Python and R implementa-
tions via TileDB-SOMA. 

TileDB-SOMA was then used as the foundation to build
Census for efficient programmatic access to CZ CELLxGENE
data. SOMA provides an API and data model for single-cell
data to store and access larger-than-memory datasets by pro-
viding query-ready data management for reading and writing
at low latency and cloud scale. 

The data model behind the SOMA specification is flexible
and extensible, and it is inspired by existing single-cell data
formats, notably AnnData. It can accommodate multiple mea-
surements from derivative views (e.g. spatial and non-spatial
data) and embeddings of sparse and dense data, along with
both observation (e.g. cells) and feature (e.g. genes) axis an-
notations. Importantly the flexibility of the SOMA data model
allows for representations beyond the single-dataset paradigm
and enables managing single-cell data from multiple modali-
ties (e.g. RNA, spatial, epigenomics) across joint or disjoint
observations. 

SOMA’s data model provides fundamental building blocks
that can be composed into an arbitrary structure for a par-
ticular use case. These building blocks include: (i) Collections
that act as containers for other SOMA data types; (ii) Exper-
iments that are specialized collections to meaningfully group
single-cell data measurements and allow for observation- and
feature-based queries; (iii) Measurements that are specialized
collections of single-cell data from a shared molecular mea-
surement (e.g. RNA or protein); (iv) Data Frames that pro-
vide multi-column tables; and (v) Multi-dimensional Arrays
(Sparse and Dense) to represent the multi-dimensional nu-
meric data. 

Leveraging this model, Census data is packaged into mul-
tiple Experiments, one per organism ( Homo sapiens and Mus
musculus , currently). Each experiment contains a Measure-
ment for RNA data and an ‘obs’ Data Frame for cell meta-
data and annotations. The Measurement contains a ‘var’ Data
Frame for gene metadata and a Collection of ‘X’ (expres-
sion data) layers. Currently, two layers are provided: one for
RNA transcript raw counts and one for library-size normal-
ized counts (Figure 6 ). Census data is packaged into multiple
Experiments, one per organism ( H. sapiens and M. muscu-
lus , currently). Each experiment contains a Measurement for
RNA data and an ‘obs’ Data Frame for cell metadata and an-
notations. The Measurement contains a ‘var’ Data Frame for
gene metadata and a Collection of ‘X’ (expression data) lay-
ers. Currently, two layers are provided: One for RNA tran-
script raw counts and one for library-size normalized counts.
An additional top-level Collection of summary information
Data Frames provide a profile of the contents of the Census
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All query results are returned to the client via an iteration
pattern that streams the data to the client incrementally, limit-
ing the size of the data that must be handled at any given time
to a fixed size ‘chunk’. 

import CellxGene_census as cc 
import tiledbsoma as soma 
census = cc.open_soma () 
experiment = census[‘census_data’][‘homo_sapiens’] 
axis_query = soma.AxisQuery

(value_filter = ‘tissue_general == ‘lung”) 
with experiment.axis_query (measurement_name = ‘RNA’, 
obs_query = axis_query) as query: 
# Iterate over X data, returning ‘chunks’ of PyArrow tables
for table in query.X (‘raw’).tables (): 
# PyArrow table can be converted to a Pandas DataFrame,

e.g. 
df = table.to_pandas () 
# Do something with df 
print (df) 
# Iterate over X data, returning ‘chunks’ of COO Matrices
for coo_matrix in query.X (‘raw’).coos (): 
# Do something with coo matrix 

print (coo_matrix) 
In many cases, algorithms can be easily adapted to work

with this incremental data access pattern. In particular, any
computation that can operate independently on per-cell data
should easily accommodate the SOMA API. However, compu-
tations that require random-access to the full query result or
multiple passes through the data may need to be redesigned as
an on-line algorithm. For example, computation of variance
can be performed using W elford’ s online algorithm ( 71 ). 

The SOMA specification is currently implemented by
TileDB-SOMA, a Python and R client library that leverages
TileDB ( 71 ) as its underlying database technology. By provid-
ing SOMA as a specification and TileDB-SOMA as one possi-
ble implementation , we aim to encourage the single-cell com-
munity to adopt the specification more broadly. 

TileDB is an embedded database that enables a server-less
architecture for accessing data stored in the cloud. TileDB’s
support for cloud data storage means that it is highly opti-
mized to minimize network latency and accomplishes this via
use of indexing and compression techniques. As the Census is
currently hosted on AWS S3, access to its data is effectively
limited only by a user’s network bandwidth and compute re-
sources. The TileDB querying engine supports efficient multi-
dimensional slicing (i.e. fast reads), which naturally supports
querying for Census data over the obs and var axes. CZI’s
single-cell team had previously employed TileDB technology
for other CZ CELLxGENE applications, including Explorer
and Gene Expression. 

Data availability 

All source code for CZ CELLxGENE tools can be found
at https:// github.com/ orgs/ chanzuckerberg/ repositories?&q=
cellxgene . CZ CELLxGENE data can be accessed at https:
// CellxGene.cziscience.com/ collections . Gene Expression data
can be downloaded from the CZ CELLxGENE documen-
tation site. The data and code used to assess the normal-
ization methods behind CZ CELLxGENE: Gene Expression
can be found at https:// github.com/ chanzuckerberg/ cellxgene- 
manuscript-2023 . 
For additional questions, please contact cellx- 
gene@chanzuckerberg.com. 
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Supplementary Data are available at NAR Online. 
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