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In brief

This study introduces an artificial

intelligence (AI) system using local-global

multimodal fusion graph neural networks

for depression diagnosis. The system

integrates functional and structural

neuroimaging with health records,

demonstrating state-of-the-art

performance in diagnosing depression

and its subtypes. Built and validated on

large-scale, multi-center cohorts with

2,442 participants, the system reveals

abnormal brain regions and connectivity

patterns, along with digital structural

features in depression patients. This

advance contributes to the pursuit of

objective diagnostic markers and better

clinical diagnosis.
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THE BIGGER PICTURE Major depressive disorder (MDD) presents a multifaceted challenge to global mental
health, given its intricate etiology involving social, psychological, and biological determinants. There is a lack
of definitive diagnostic markers, and doctors therefore rely heavily on subjective methods to diagnose indi-
viduals. Interest in artificial intelligence (AI)-powered diagnostic methods is increasing because of their po-
tential to offer a more comprehensive and objective evaluation. Current AI methods, however, often neglect
the complex interplay of functional, structural, and demographic factors that characterizeMDD. They seldom
integrate insights from both in-depth brain region analysis and broad population-level associations. More-
over, there is a lack of strategies that can interpret AI models and identify diagnostic markers. There is, there-
fore, an urgent need to improve network architectures, develop effective multimodal fusion strategies, and
enhance model interpretability.
SUMMARY
This study developed an artificial intelligence (AI) system using a local-global multimodal fusion graph
neural network (LGMF-GNN) to address the challenge of diagnosing major depressive disorder (MDD),
a complex disease influenced by social, psychological, and biological factors. Utilizing functional MRI,
structural MRI, and electronic health records, the system offers an objective diagnostic method by inte-
grating individual brain regions and population data. Tested across cohorts from China, Japan, and
Russia with 1,182 healthy controls and 1,260 MDD patients from 24 institutions, it achieved a classifica-
tion accuracy of 78.75%, an area under the receiver operating characteristic curve (AUROC) of 80.64%,
and correctly identified MDD subtypes. The system further discovered distinct brain connectivity patterns
in MDD, including reduced functional connectivity between the left gyrus rectus and right cerebellar
lobule VIIB, and increased connectivity between the left Rolandic operculum and right hippocampus.
Anatomically, MDD is associated with thickness changes of the gray and white matter interface, indi-
cating potential neuropathological conditions or brain injuries.
Patterns 5, 101081, December 13, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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INTRODUCTION

Major depressive disorder (MDD) is one of the most common

psychiatric disorders, inflicting severe symptoms that may

significantly impact a person’s physical and mental well-being,

social functioning, and quality of life.1 This disorder epitomizes

the quintessential features of depressive disorder, characterized

by persistent and profound sadness, loss of interest or pleasure,

and other cognitive and physical disruptions. These symptoms,

persisting for a minimum of 2 weeks, as defined by standard

diagnostic criteria, not only underscore the distinct characteris-

tics of MDD but also highlight its significance as a focal point in

clinical research and intervention. The number of MDD patients

worldwide has increased by approximately 18% in the past

decade, and currently, an estimated 185 million people suffer

from the disease.2 Unfortunately, this growing epidemic often re-

mains shrouded or invisible, with sufferers facing stigmatization

and exclusion. They frequently endure their plight in isolation

rather than seeking assistance. Without proper treatment, the

disease can get worse and last longer. In severe cases, it could

lead to self-harm or suicide.3,4 Therefore, the early and precise

diagnosis of MDD is vital in preventing severe outcomes and

minimizing financial and emotional burdens.

The diagnosis of MDD follows a structured clinical evaluation

process, primarily guided by the Diagnostic and Statistical

Manual of Mental Disorders, Fifth Edition (DSM-5)5 and Interna-

tional Classification of Diseases, 11th Revision (ICD-11)6

criteria. This process typically involves a clinical interview to

assess mental health history and symptomatology; the use of

diagnostic scales such as the Hamilton Depression Scale

(HAM-D),7,8 the Beck Depression Inventory (BDI),9 and Patient

Health Questionnaire-910 to quantify symptom severity; the

exclusion of other potential causes for depressive symptoms;

and the evaluation of symptom duration and frequency. This

approach, however, depends inherently on the subjective judg-

ment of clinicians and self-reported measures from depression

scales. As a result, it is fraught with challenges, including low

detection rates, high misdiagnosis risk, and unsatisfactory

levels of accuracy.11

Recent advances in neuroimaging research have elucidated

the intricate structural and functional alterations in some brain re-

gions associated with MDD. Structural studies have converged

to implicate the prefrontal cortex and anterior cingulate in the pa-

thology of MDD, with evidence of genetic variants, neuroinflam-

matory markers, reduced neurogenesis, and gray matter volume

(GMV) alterations in these regions.6,12 Additionally, hippocampal

atrophy and thinner cortical gray matter have been observed in

the orbitofrontal cortex, anterior and posterior cingulate, and in-

sula in MDD patients, suggesting potential structural disconnec-

tivity.13,14 Despite these findings, the effect sizes for structural

brain differences are generally small, and their predictive value

at the individual level remains limited.12 Functionally, MDD is

characterized by altered connectivity within the salience

network, frontoparietal network, and default mode network.6,15

Notably, the salience network, which includes the amygdala

and anterior cingulate cortex, tends to show increased activity

in response to emotional stimuli, suggesting a hyperresponsive

emotional processing system.16–18 Concurrently, the default

mode network, implicated in self-referential thoughts and rumi-
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nation, often exhibits altered connectivity, which may contribute

to the cognitive and affective symptoms of MDD.15,19 Addition-

ally, the frontoparietal network, critical for several higher-order

cognitive processes, is frequently found to be hypoactive,

potentially underlying the executive dysfunction observed in

depression.20,21

Despite these findings, the underlying pathophysiology of

depression remains largely elusive, and there are currently no

internationally recognized effective molecular or imaging bio-

markers, hampering research in both its diagnosis and treat-

ment. In this context, it is appealing to establish an objective

and quantitative system for the automatic diagnosis of MDD

and further guide the uncovering and understanding of patholog-

ical mechanisms and markers of depression.

Existing research underscores the critical role that neural cir-

cuits play in both causing and characterizing brain disor-

ders.22,23 As a commonly used non-invasive imaging technique,

MRI serves as an effective tool for examining brain structure and

functionality. Resting-state functional MRI (rs-fMRI) and struc-

tural MRI (sMRI) are two commonly used modalities for investi-

gating brain function and anatomy, respectively. rs-fMRI mea-

sures brain activity by detecting changes associated with

blood flow, revealing disrupted functional brain activities in psy-

chiatric disorders. At the same time, sMRI is adept at revealing

finer anatomical information due to its high spatial resolution,24

providing an effective tool for assessing anatomical alterations

in the brain. Additionally, clinical information such as gender,

age, and education can provide valuable information for the

diagnosis of depression at the demographic level. The fusion

of these multimodal data is expected to provide more compre-

hensive information for the diagnosis of MDD.

A majority of current MDD diagnosis methods based on MRI

data adhere to the following pipeline: (1) feature engineering,

including feature selection using either pre-trained weights, sta-

tistical analysis,25 or prior knowledge, and feature reduction via

clustering-based or decomposition-based techniques; (2) dis-

ease diagnosis based on the selected features, using classifiers

such as support vector machine,26–28 Gaussian process classi-

fier,29 decision tree,30,31 Naive Bayes,25 and emerging deep

learning models.32,33 Nevertheless, such traditional approaches

have some intrinsic shortcomings. On the one hand, coarse and

empirical feature extractionmay lead to suboptimal performance

in subsequent stages of classification. On the other hand, these

methods failed to adequately capture the topological information

of the brain network, which is essential for understanding func-

tional connectivity and signal transmission across various brain

regions.

Graph neural networks (GNNs) represent data as graphs

composed of nodes and edges and iteratively update the repre-

sentations of nodes by exchanging information with their neigh-

bors through pairwise message passing. Recent studies have

successfully employed GNN in investigating mental disorders,

including Alzheimer disease (AD),34–36 autism spectrum disorder

(ASD),37,38 and MDD.39,40 The correspondence between graph

structure and brain anatomy, alongside the similarity between

the message-passing mechanisms and the physiological func-

tions of the brain, highlights the potential of GNN to more effec-

tively retrieve the underlying information of the brain from MRI

images.
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Generally, GNN-based methods for mental disease diagnosis

can be divided into two categories: regional GNN methods and

subject GNN methods. Regional GNN methods recognize re-

gions of interest (ROIs) in the brain as nodes and links between

different ROIs as edges, thus turning disease diagnosis into a

graph-level classification task.41–43 These approaches offer a

fine-grained analysis of brain regions, as defined by the ROIs,

and their interactions. For instance, specific brain regions asso-

ciated with emotional regulation, such as the amygdala and pre-

frontal cortex, are often treated as nodes. The construction of

edges based on neural connections or functional correlations

between these regions allows for a detailed analysis of local

brain circuitry. This fine-grained approach is highly effective in

capturing disease-related local brain regions and biomarkers,

enabling precise identification of neural abnormalities related

to the etiology of depression. However, it may overlook the in-

ter-individual relationships and variations that could influence

the manifestation of the disorder. In contrast, the subject GNN

methods incorporate the population aspect of mental disorders,

thus turning disease diagnosis into a node-level classification

task. In these methods, each node corresponds to an individual

and each edge encodes the relationship between two subject

nodes evaluated by imaging data (e.g., MRI, computed tomogra-

phy) or demographic data (e.g., age, gender, acquisition site,

educational attainment).39,40 Here, the integration of diverse de-

mographic and imaging data provides a broader perspective. By

considering the relationships between individuals, these

methods can identify population-level patterns and trends that

might be associated with the occurrence and development of

depression. However, the graph modeling method used in this

approach may limit interpretability and pose challenges in spe-

cific biomarker extraction.

In the realm of clinical application, the two methods exhibit

distinct focal points. Regional GNNmethods are tailored to an in-

dividual-centric perspective, diagnosing diseases by conducting

a granular examination of the signal characteristics and func-

tional connectivity features within discrete brain regions. Subject

GNN methods adopt a population-based perspective, aiming to

achieve diagnostic objectives through the integration and

comparative analysis of the features of the study subject with

those of similar individuals within the larger population. In

essence, regional GNN and subject GNN can be likened to

symptomatic diagnosis and epidemiological diagnosis, respec-

tively, mirroring the two fundamental paradigms of medical diag-

nostics. The combination of regional and subject GNN methods

offers the potential to leverage the strengths of both methods for

a better understanding of the etiology and quantitative diagnosis

of depression.

From a mechanistic standpoint, the differences between

regional and subject GNNmethods reflect varying levels of gran-

ularity in understanding depression. Regional GNN methods

offer insights into the local, intracranial dynamics, providing a

window into the direct physiological correlates of depression.

Subject GNN methods, however, shed light on the interplay be-

tween individual differences and environmental factors, illumi-

nating the complex web of influences that contribute to themani-

festation of depression.

In the context of advancements in machine learning, regional

GNN and subject GNN methods drive the development and
innovation of algorithms in distinct and complementary direc-

tions. Regional GNN methods push the boundaries of graph-

based learning by requiring models that can handle intricate

and variable graph structures. Subject GNN methods challenge

the field by demanding algorithms with the capacity to incorpo-

rate varying data types and capture the nuanced relationships

within a population graph.

In summary, the current GNN-based approaches for mental

disease diagnosis, namely regional GNN and subject GNN, offer

complementary perspectives in understanding and diagnosing

depression, indicating the potential for integrating Regional

GNN and Subject GNN into a local-global network structure.

This fusion is expected to enhance our understanding of the eti-

ology of depression, improve diagnostic accuracy, and advance

machine learning techniques in mental health diagnostics.

Regarding graph structure, recent research has revealed that

the topological information within fMRI-based graphs is crucial

to the performance of a GNN on MDD classification.44 However,

in many studies, the graph structure is initialized in a rudimentary

manner. The construction of local graphs based on MRI data

typically begins with the selection of a brain atlas that defines a

set of ROIs as nodes. Then, the fMRI blood-oxygen-level-depen-

dent (BOLD) signal series of each ROI is extracted for generating

edges. Finally, the edge weights are calculated between each

node pair using metrics such as Pearson correlation and partial

correlation. Despite its prevalence in the existing litera-

ture,38,43,45 this method features two flaws. First, the simple

linear correlation ignores the temporal dynamics of fMRI signals,

which play a vital role in reflecting brain activity and connectivity.

Second, the constructed graph remains static during model

training and fails to be optimized according to the target task.

Given these limitations, the performance of GNNs is often less

than optimal. Therefore, it is necessary to find a method that al-

lows the graph structure defined by the adjacencymatrix and the

network parameters to train jointly, facilitating the dynamic

adaptation of graph structure and active learning.

To synthesize the merits of the regional (local) and subject

(global) GNN methods mentioned above while mitigating their

limitations, and to construct a flexible and reasonable graph

structure with features in multimodalities, a local-to-global multi-

modal fusion GNN (LGMF-GNN) was proposed for the objective

quantitative diagnosis of MDD. Specifically, a local ROI GNN is

utilized to generate graph-level embedding from the time series

signal of various brain ROIs described by rs-fMRI. Then, a global

subject GNN further fuses local functional connectivity features

described by the above local embedding, anatomical features

from sMRI, and demographic features from non-imaging data

into a unified space. A final diagnosis that leverages the local-

global andmultimodal comprehensive information is then gener-

ated. By transitioning from regional brain graphs to subject

graphs, this framework facilitates the extraction of individualized

fine-grained features and the integration of multimodal data at

the population level, culminating in a synergistic improvement

and a progressive methodology for intelligent diagnosis.

This study involves large-scale, multi-center datasets

collected from 24 institutions in 3 nations. Model development

and internal validation were conducted using the Japanese Stra-

tegic Research Program for the Promotion of Brain Science

(SRPBS) and REST-meta-MDD datasets, which include a total
Patterns 5, 101081, December 13, 2024 3



Table 1. Demographic and clinical characteristics of included

multi-site participants

Dataset and variable

Depressive

disorder Healthy control

Anding

sample size, N 196 177

age, y, mean ± SD 29.22 ± 8.40 27.63 ± 6.96

female sex, N (%) 148 (75.5) 116 (65.5)

episode status

first episode, N (%) 93 (47.4) –

recurrent, N (%) 96 (49.0) –

unknown, N (%) 7 (3.6) –

medication status

drug naive, N (%) 169 (86.2) –

treated, N (%) 16 (8.2) –

unknown, N (%) 11 (5.6) –

duration of illness,

months, mean ± SD

5.00 ± 5.21 –

education, y, mean ± SD 15.69 ± 2.62 16.48 ± 2.75

SRPBS

sample size, N 229 228

age, y, mean ± SD 43.05 ± 13.49 44.07 ± 14.89

female sex, N (%) 104 (45.4) 142 (62.3)

BDI-II, mean ± SD 27.43 ± 14.14 –

REST-meta-MDD

sample size, N 814 756

age, y, mean ± SD 34.45 ± 11.61 34.64 ± 13.18

female sex, N (%) 519 (63.6) 446 (59.0)

episode status

first episode, N (%) 404 (49.6) –

recurrent, N (%) 208 (25.6) –

unknown, N (%) 202 (24.8) –

medication status

drug naive, N (%) 300 (36.9) –

treated, N (%) 221 (27.1) –

unknown, N (%) 293 (29.3) –

duration of illness,

months, mean ± SD

39.44 ± 61.40 –

HAM-D, mean ± SD 21.17 ± 6.54 –

education, y, mean ± SD 11.95 ± 3.38 13.56 ± 3.42

OpenNeuro

sample size, N 21 21

age, y, mean ± SD 32.04 ± 9.38 33.81 ± 8.49

female sex, N (%) 17 (81.0) 15 (71.4)

BDI-R, mean ± SD 25.11 ± 10.09 4.5 ± 4.64

HAM-D, Hamilton Depression Scale; BDI-II, Beck Depression Inventory-

Second Edition; BDI-R, Beck Depression Inventory-Russian versions.
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of 2,027 individuals, achieving a 10-fold cross-validation (CV)

area under the receiver operating characteristic curve (AUROC)

of 80.64% ± 5.74% and a leave-one-subject-out cross-valida-

tion (LOSO CV) AUROC of 73.71% ± 4.12%. External indepen-

dent testing was performed using the Anding and OpenNeuro
4 Patterns 5, 101081, December 13, 2024
datasets, achieving AUROCs of 72.91% and 70.30%, respec-

tively. In comparison with the state-of-the-art (SOTA) methods

like BrainGNN on the identical dataset, the proposed model

showed improvements of at least 5.46% in accuracy and

7.60% in AUROC. Furthermore, through in-depth interpretation

research, we identified a collection of potential biomarkers that

describe relational features in MDD patients, such as functional

alterations in brain regions like the prefrontal cortex and hippo-

campus and structural alterations described by GMV and white

matter volume. Our study paves the way for an objective quanti-

tative diagnosis of MDD. All the data and code have been made

accessible to the public.

RESULTS

Data acquisition
This study employed four datasets comprising MDD patients

and healthy controls (HCs), as outlined in Table 1. The SRPBS

dataset (229MDDs vs. 228 HCs) and the REST-meta-MDD data-

set (814 MDDs vs. 756 HCs) were used for training and internal

validation, while the Anding dataset (196 MDDs vs. 177 HCs)

and the OpenNeuro dataset (21 MDDs vs. 21 HCs) were used

for external independent testing. Collectively, these datasets

incorporate data from 2,242 participants, each providing a com-

plete set of information across three modalities: fMRI, sMRI, and

demographic characteristics.

Hierarchical graph structure for MDD diagnosis from
both individual and population perspectives
Previous studies have often been limited to a single perspective

when making the diagnosis, which results in suboptimal diag-

nostic performance and inadequate explanations of the underly-

ing mechanisms. The LGMF-GNN was proposed for accurate

and interpretable MDD diagnosis. LGMF-GNN generates the

diagnosis by integrating information from both individual and

population levels, as well as multiple data modalities that reflect

brain structural and functional status (illustrated in Figure 1.).

Specifically, our method employs two complementary sub-

models: the ROI GNN and the subject GNN. The ROI GNN cap-

tures local brain information by representing the brain as a region

of interest (ROI) graph, where brain regions serve as nodes and

their functional interactions serve as edges. This sub-model fo-

cuses on the localized individual brain region-level perspective.

Conversely, the subject GNN analyzes the embedding informa-

tion among subjects from the global perspective by operating

on the subject graph. In this graph, subjects and their relation-

ships are represented as nodes and edges, respectively, and

the edge weights are calculated based on the similarity of func-

tional, anatomical, and demographic information. This sub-

model adopts the population-level perspective. By integrating

these sub-models and diverse data modalities, the LGMF-GNN

achieves robust and precise MDD diagnoses.

In our proposed local-global model, the initial step is con-

structing ROI graphs for learning high-quality subject brain em-

beddings. A learnable adjacency matrix is derived by analyzing

the ROI BOLD time series (see Figure 1B and the section ‘‘local

ROI GNN’’ in the methods section for details). The node attri-

butes are defined as the corresponding columns of the functional

connectivity matrix obtained from rs-fMRI images. To generate
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an ROI graph representation, a graph convolutional network

(GCN) with the attention mechanism is implemented in the local

ROI GNN to aggregate information across ROIs with emphasis.

As shown in Figure 1B, a regional embedding is generated by

the gated recurrent unit (GRU) encoder based on the BOLD

time series. Then, the graph generator takes the embedding as

input and outputs a learnable adjacent matrix for each subject.

Subsequently, the GNN predictor applies the attention mecha-

nism to the learned graph structure and node features to acquire

the local graph embeddings and local classification results. The

local embeddings are then employed as the initial functional

node features of the global subject GNN. To extract features

from T1 MRI images and demographic data, we designed the

global-local transformer (GLT) encoder and pairwise association

encoder (PAE) to encode the raw anatomical and demographic

data of each individual into one-dimensional feature vectors

(see Figure 1B and the section ‘‘feature extraction’’ in the

methods section). In the subject GNN, features from functional,

anatomical, and demographic data are modeled as node attri-

butes of the three subject graphs (illustrated in Figure 1B). In

the population view, the modality-specific (MS)-GCN block is

designed to generate modal-specific representations, while the

modality-common (MC)-GCN block is designed to distill a

modal-common representation. The multimodal (M)-Attention

block refines these representations to produce the final repre-

sentation, which contains the most important and expressive in-

formation from all three modalities. Finally, a multi-layer percep-

tron (MLP) serves as a classifier to produce the final global

prediction. An enriched elucidation of the model structure can

be obtained from the methods section.

Performance on the SRPBS dataset
We evaluated the prediction performance of the proposed sys-

tem as an MDD vs. HC binary classification task using five met-

rics: accuracy (ACC), the area under the receiver operating char-

acteristic curve (AUROC), precision, recall, and F1-score. We

evaluated the diagnostic capabilities of the local and global net-

works separately by examining the single-perspective diagnosis

result of the two models on the SRPBS dataset. This dataset

contains 229 MDDs and 228 HCs from six sites (Table 1). For

the local ROI GNN, we partitioned the brain into ROIs using

both automated anatomical labeling (AAL) and Craddock200

(CC200) brain atlases and conducted separate experiments for

each. For the global subject GNN, we compared the 10-fold

CV results obtained both with and without the inclusion of struc-

tural features derived from the T1 sMRI images. The independent

performances of the two models are detailed in Table 2–1. When

local ROI GNN and global subject GNN operate independently,

the model’s performance, as indicated by ACC and AUROC, ex-

hibits a variation of less than 2%. We have also conducted an

ablation study to assess the role of the ROI GNN module, and

the experimental results are shown in Table S13.
Figure 1. Objective quantitative depression diagnosis system

(A) Workflow of the diagnosis system.

(B) Framework of LGMF-GNN. (i) Feature extraction and graph initialization. Fea

initialize the functional graph, structural graph, and demographic graph. (ii) The hi

each subject based on the ROI graph and ROI BOLD signals of each individual. G

different modalities to obtain the final prediction result. (iii) Detailed network stru
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Furthermore, we conducted a 10-fold CV on local and global

networks in a two-stage fashion. Specifically, we incorporated

the embedding obtained by the local ROI GNN into the global

model for the construction of the functional subject graph, thus

linking the local network with the global network as the two-

stage trained LGMF-GNN. To optimize the mode of local-global

feature fusion and multimodal fusion, six experiments were de-

signed, differing in the inclusion of structural modality (T1

sMRI) and the composition of functional-state node features.

Three such composition modes were introduced: correlation,

embedding, and concatenation. In the correlation (Corr in Ta-

ble 2-2 in Figure 2B) mode, the flattened functional connectivity

matrixes were set as node features of the functional graph. In the

embedding (Emb in Table 2-2) mode, the local ROI GNN embed-

dings were set as node features of the functional graph. In the

concatenation (Concat in Table 2-2) mode, the concatenation

of the flattened functional connectivity matrixes and local ROI

GNN embeddings was set as node features. For each functional

feature configuration, we examined the performance of the

model with and without the inclusion of structural modality, re-

sulting in six experiments: Corr+Demo, Corr+Demo+T1, Emb+

Demo, Emb+Demo+T1, Concat+Demo, and Concat+Demo+T1.

The results of the experiments are shown in Table 2-2. It can be

seen that the concatenation feature fusionmethod and the inclu-

sion of T1modality features significantly improved the classifica-

tion performance (t test p = 0.55, <0.001, <0.01 in the three

groups).

Subsequently, we jointly trained local and global networks in

an end-to-end manner, speculating that this approach may

enhance the embeddings generated by the local network to bet-

ter fit the downstream global network. The obtained AUROCs

are depicted in Figure 2C. The proposed model achieved an

AUROC of 78.85% ± 5.50% when trained in two-stage mode

and an AUROC of 80.64% ± 5.74% when trained in end-to-

end mode (for more detailed results, refer to Table S1). The

M-Attention block of the subject GNN is used to apply attention

mechanisms between three MS embeddings and one MC

embedding to allocate different levels of attention to different

modalities. The attention scores of different modalities learned

during the fusion process can reflect their importance in the

diagnosis of depression. The attention scores of the three MS

embeddings were functional (0.3148), demographic (0.1598),

and structural (0.1367), in descending order. Notably, the MC

embedding that contains information about all three data modal-

ities achieves the highest attention score (0.3887). We also con-

ducted ablation experiments to explore the role of different data

modalities, and the experimental results are shown in Table S14.

Performance on the larger and more complex REST-
meta-MDD dataset
The REST-meta-MDD dataset is more intricate than the SRPBS

dataset, which contains 814MDDs at different disease stages as
tures were extracted from the data of the three modalities and further used to

erarchical LGMF-GNN structure. Local ROI GNN generates the embedding for

lobal subject GNN aggregates multiple information from the subject graphs of

cture of local ROI GNN. (iv) Detailed network structure of global subject GNN.
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Figure 2. Performance on the SRPBS and REST-meta-MDD dataset

(A) Performance of ROI GNN and Subject GNN separately.

(B) Boxplot of AUROC of two-stage trained LGMF-GNN under different feature fusion and multimodal fusion methods. Three different groups represent different

compositions of the functional state feature, and different colors represent different multimodal fusion methods. The t test shows that the addition of T1 modality

significantly improves the AUROC of the model.

(C) 10–Fold CV ROCs of two-stage and end-to-end trained LGMF-GNN.

(D) LOSO CV ROCs of two-stage and end-to-end trained LGMF-GNN.
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well as 756HCs (Table 1). The dataset also contains patients with

different MDD subtypes, including first-episode MDD and recur-

rent MDD, and some were scanned while the patient was on an-
tidepressants. Such a dataset would more closely mirror real-

world clinical scenarios while presenting increased analytical

challenges. Additionally, data collection across 16 distinct sites
Patterns 5, 101081, December 13, 2024 7
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introduces pronounced ‘‘site effects.’’46 These effects arise from

differences in the MRI equipment or scanning procedures used

at different imaging sites, leading to variations in imaging results

or data. Site effects can obscure features of interest in neuroi-

maging and decrease statistical power, undermining the credi-

bility and generalizability of the system. Following prior experi-

ments, we conducted a 10-fold CV on the REST-meta-MDD

dataset in the end-to-end training mode using all three modal-

ities. The performance of the proposed system is shown in Fig-

ure 2C and Table S2.

To further investigate the impactof site effectsonmodel training

and generalization performance, we conducted 10-foldCV on the

single-site data of the 20th cohort (S20) in the REST-meta-MDD

dataset and the 6-site data of the SRPBS dataset using the two-

stage trained LGMF-GNN,without specifically addressing site ef-

fects. The results of these evaluations are presented in Table S3.

The analysis revealed a marked decline in system performance in

multi-site scenarios compared to single-site scenarios, with ACC

dropping by 22.90%and AUROCby 27.08%, This decline under-

scores the substantial impact of site effects on the proposed

model, detrimentally affecting its performance. We conducted a

thorough evaluation and discussion on the site effects in the

‘‘The evaluation of site-effect’’ section of supplemental experi-

mental procedures, where we proposed solutions from the per-

spectives of data processing, system design, and training strate-

gies. Although our proposed system cannot achieve similar

performance in multi-site scenarios as in single-site scenarios,

the five strategies (detailed in ‘‘methods for suppressing site ef-

fects and data enhancement and ablation study’’ in the supple-

mental experimental procedures) presented proved effective in

suppressing site effects and mitigating performance loss. In the

six-site scenario, these strategies facilitated a 9.73% reduction

in performance loss, elevating the accuracy to 78.75% from

69.02%, as documented in Table S16.

Performance across MDD subtypes and under
medication influence
Beyond the fundamental classification between MDDs and HCs,

we further tested the capabilities of the proposed system by dis-

tinguishing between HCs and more specific MDD subtypes.

Specifically, we divided the MDD patients in the REST-meta-

MDD dataset into a ‘‘first-episode drug-naive’’ (FEDN) subset

and a ‘‘recurrent’’ (RECU) subset. We then assessed the ability

of the system to distinguish between HCs and these two MDD

subtypes. The results indicated that the system accurately differ-

entiated FEDN patients from HCs with a classification accuracy

of 75.13% (AUROC: 76.73%), and RECU patients were distin-

guished from HCs with an accuracy of 74.05% (AUROC:

72.28%). When differentiating between FEDN and RECU pa-

tients, the classification accuracy was 76.92% (AUROC:

68.89%). For more detailed results, refer to Tables S4–S7. These

results suggest that themodel exhibits a slightly lower diagnostic

accuracy for the RECU MDD subgroup compared to the FEDN

MDD subgroup when distinguishing from HCs, but it still main-

tains its robustness.

We also investigated the impact of medication on the model’s

diagnostic performance. The analysis was feasible only for the

REST-meta-MDD dataset as it provides detailed medication in-

formation. We compared the model’s AUROC for drug-naive
8 Patterns 5, 101081, December 13, 2024
(n = 300) and treated (n = 221) MDD patients against HCs. The

AUROC for the drug-naive group was marginally larger than

that for the treated group, indicating a slightly better diagnostic

performance for the former. However, the difference was mini-

mal, with a difference of only 0.02, which underscores the

robustness of the proposedmodel against medication status. Vi-

sual representations in Figures 4A–4C provide further insight into

the output of the model for both groups. The density plots indi-

cate that medication status impacts the distribution of predicted

disease probabilities, with the treated group showing higher

density in the lower probability range, suggesting symptommiti-

gation, whereas the drug-naive group exhibited a higher density

in the higher probability range, reflecting more pronounced

symptoms.

In summary, the proposed model demonstrates robust diag-

nostic capabilities across different MDD subtypes, with only

slight variations in accuracy observed. Medication status ap-

pears to have a nuanced effect on the output of themodel, which

aligns with clinical expectations, further validating the ability of

the model to capture intrinsic disease patterns.

Generalizability on the external independent Anding and
OpenNeuro datasets
We evaluated the generalization performance of the proposed

system on the Anding and OpenNeuro datasets. The Anding da-

taset is an external independent dataset containing 196 MDDs

and 177 HCs from Anding Hospital, China (Table 1). The partic-

ipants in this dataset belong to the same population as the

training set, namely the Asian population. All the participants

had refrained from any medication treatment for 2 weeks before

data collection. The dataset includes both FEDN and RECU

MDD cases, which could effectively test the generalization ability

of the system. The OpenNeuro dataset is an external indepen-

dent dataset that includes 21 patients with depressive disorder

and 21 HC participants (Table 1). Diverging from the previous

three datasets derived from the Asian population, this dataset

contains individuals from the European population, who exhibit

relatively less severe depressive symptoms. The utilization of

the OpenNeuro dataset as an external independent test

set allows for a rigorous assessment of the system’s generaliza-

tion performance under more challenging conditions.

For the external independent test procedure, the system was

trained on the consolidated SRPBS and REST-meta-MDD data-

sets and tested on the Anding and OpenNeuro datasets, respec-

tively. Finally, the system achieved an ACC of 69.97%, an

AUROC of 72.91%, and an F1-score of 71.57% on the Anding

dataset. On the OpenNeuro dataset, the system attained an

ACC of 69.05%, an AUROC of 70.30%, and an F1-score of

71.11%. The external independent test results on the Anding da-

taset show that while the ACC and AUROC of the comparison

models dropped to less than 60%, LGMF-GNN still achieved

an ACC of 69.97% and an AUROC of 72.91% (for more detailed

results, refer to Tables S8 and S9). These results demonstrate a

good generalization performance of the proposed system.

Comparison experiments and cross-site generalization
capabilities
To evaluate the generalization ability of LGMF-GNN, we con-

ducted LOSOCV on the SRPBS and REST-meta-MDD datasets,



ll
OPEN ACCESSArticle
as exhibited in Figure 2D. The ROCs indicate that although the

performance decreased when the model was trained and tested

on cross-site data, the system still achieved an overall good per-

formance, with an LOSO CV AUROC of 73.33% ± 5.70% and

75.57% ± 9.45% on the SRPBS dataset and the REST-meta-

MDDdataset, respectively. To further validate the proposed sys-

tem, LGMF-GNN is compared to SOTA GNN models for brain

disease diagnosis. Specifically, we assessed the performance

of LGMF-GNN against traditional GCN,47 graph isomorphism

network (GIN),48 and graph attention network (GAT)49 and

popular brain GNNs, namely BrainGNN,38 edge-variational

graph convolutional network (EV-GCN),50 local-to-global

graph neural network (LG-GNN),51 contrastive graph pooling

(ContrastPool),52 phenotypic edge relational graph attention

network (pRGAT),53 multi-scale adaptive multi-channel fusion

deep graph convolutional network (MAMF-GCN),39 specificity-

aware federated graph learning (SFGL),54 causality-inspired

graph neural network (CI-GNN),55 and interpretable graph neural

networks for connectome-based brain disorder analysis

(IBGNN).56 Among these, BrainGNN, SFGL, CI-GNN, and

IBGNN are local-view methods based on graph-level classifica-

tion of ROI graphs; EV-GNN, pRGAT, and MAMF-GCN are

global-view methods based on node-level classification on pop-

ulation graphs; and LG-GNN and ContrastPool are local-to-

global methods. Comparing our proposed method with these

approaches will demonstrate its advantages. A comprehensive

introduction to each method used for comparison, including

the specifics of their implementation and the chosen hyperpara-

meter configurations, is detailed in the comparison experiments

section of the supplemental experimental procedures and

Tables S10.1–S10.12.

The results of 10-fold CV are shown in Figures 3A–3D, in which

our system, LGMF-GNN, exhibited optimal performance for

MDD diagnosis. The system achieved an increase in ACC of at

least 3.65% and an increase in AUROC of 5.39% in the

SRPBS dataset. Moreover, it generated at least a 4.20% in-

crease in ACC and a 5.18% rise in AUROC on the REST-meta-

MDD dataset, surpassing the results of previously mentioned

models. In contrast, other methods were significantly affected

by site effects and failed to produce accurate classifications,

with ACC hovering at approximately 70% (for more detailed re-

sults, refer to Tables S11 and S12). Except for MAMF-GCN, all

other tested methods exhibited an AUROC of less than 75%.

The t-distributed stochastic neighbor embedding (t-SNE) plots

in Figure 3E visually depict the embedding outputs at each layer

of MS-GCN. It is evident that as the number of layers increases,

the embeddings of the same class become more clustered,

while the distinction between two clusters of different classes

becomes more pronounced. This observation suggests that

Snowball GCN effectively mitigates the issue of oversmoothing,

which often arises when the number of layers in GNN increases.

We believe this is one of the key factors contributing to the supe-

rior performance of the proposedmodel compared to other GNN

networks.

System calibration and its association with self-test
depression scale score
In addition to generalization ability, we also assessed the calibra-

tion of the proposed system. The proposed LGMF-GNN ex-
hibited good calibration because of its close agreement with

the observed probabilities of MDD, as evaluated in the calibra-

tion curve (Figure 4D). A close examination of both the calibration

curve and prediction results histogram revealed a marked

distinction between the model trained under the two-stage

mode and the end-to-end mode. The latter tends to provide a

more decisive diagnostic outcome, as most predicted probabil-

ities fall within the 0–0.1 and 0.9–1.0 range of bins. Furthermore,

the two ends of the calibration curve of the end-to-end trained

model are closer to the optimal calibration line, indicating that

the disease risk is not significantly underestimated or overesti-

mated. To further explore the relationship between the predic-

tion results of the system and the severity of depression, we con-

structed boxplots between model prediction probability of

illness, and participants’ self-assessed BDI score (Figure 4E).

According to the BDI-II criteria, a self-rating score of 0–13 is

diagnosed as minimal, 14–19 as mild, 20–28 as moderate, and

29–63 as severe depression. Notably, the median self-test

scores of patients in different predicted probability buckets fall

in different partitions. This observation suggests that the system

not only accomplishes the binary classification task between

HCs and MDDs but it also possesses the capability to estimate

the severity of depression.

System interpretation
This paper proposes a system that can assist physicians not only

in diagnosing MDD but also offer references and guidance for

exploring the underlying mechanisms and biomarkers of MDD.

Diverging from the majority of methods that build a fixed graph

structure based solely on the correlation between BOLD signals

to focus only on either the individual or the population perspec-

tives,38,44 our proposed system incorporates learnability for the

brain functional connectivity matrix, which can be optimized

through local and global tasks. This feature provides a new entry

point for interpreting the learning outcomes of the network—that

is to say, we believe that the functional connectivity matrix

learned by the network, through both the HC group and the

MDD patients, can reflect the differences in brain function and

structure between these two groups.

To measure this difference, for the functional modality, the

average functional connectivity matrix of HCs obtained from

network learning was subtracted from the average functional

connectivity matrix of MDD patients to obtain the heatmap

shown in Figure 5A, which we refer to as the differential func-

tional connectivity matrix. The positive values in the matrix

represent the enhanced functional connections of MDD pa-

tients compared with HCs, while the negative values imply

diminished functional connections. The absolute value indi-

cates the magnitude of the difference. We identified the top

five enhanced and diminished functional connections based

on their magnitudes. Figures 5B and 5C present the differential

functional connections filtered using the system, along with

their corresponding ROIs. The top five enhanced functional

connections include left Rolandic operculum-right hippocam-

pus, right precentral gyrus-left hippocampus, right precentral

gyrus-right hippocampus, right Rolandic operculum-right hip-

pocampus, and left Rolandic operculum-right Rolandic oper-

culum. The top five diminished functional connections are left

gyrus rectus-right cerebellum lobule VIIb, right cerebellum
Patterns 5, 101081, December 13, 2024 9
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Figure 3. Comparison with other GNN methods

(A) ROCs comparison of different models on the SRPBS dataset.

(B) Histogram comparing the results of the proposed model and the SOTA models across various evaluation metrics in the SRPBS dataset. The histogram

displays the mean performance metrics for each model, with error bars denoting the standard error of the mean.

(C) ROCs comparison of different models on the REST-meta-MDD dataset.

(D) Histogram comparing the results of the proposed model and the SOTA models across various evaluation metrics on the REST-meta-MDD dataset. The

histogram displays the mean performance metrics for each model, with error bars denoting the standard error of the mean.

(E) t-SNE plots of the embeddings generated by each layer of the MS-GCN block.
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lobule VIIb-right cerebellum lobule VIII, right cerebellum lobule

VIIb-left cerebellum lobule X, right cerebellum lobule VIIb-right

cerebellum lobule X, and right cerebellum crus II-right cere-

bellum lobule VIIb.

To gain insight into the brain regions that contribute the most

to MDD diagnosis, we investigated the node degrees acquired
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from the absolute differential functional connectivity matrix.

Based on statistical analysis from this matrix, we selected the

top 10 brain regions with the largest degree to include as

many potential markers as possible (Figure 5C). The selected

brain regions are the right cerebellum lobule VIIb, right hippo-

campus, left Rolandic operculum, left gyrus rectus, left



Figure 4. System calibration and association

with self-test score of depression scale

(A) The ROC of drug-naive MDD vs. HC and treated

MDD vs. HC on the REST-meta-MDD dataset.

(B) Boxplot of prediction probabilities output by

LGMF-GNN for drug-naive and treated patients.

The ‘‘ns’’ notation in the plot signifies that the p-

value derived from the t-test is greater than or equal

to 0.05, indicating no statistically significant differ-

ence of model prediction probabilities between the

two patient groups.

(C) Density plots of prediction probabilities output

by LGMF-GNN for drug-naive and treated patients.

(D) Calibration curve of two-stage and end-to-end

trained LGMF-GNN.

(E) Boxplot of system prediction probability and

participants’ Beck Depression Inventory (BDI) self-

rating scale scores.
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cerebellum lobule X, right precentral gyrus, right gyrus rectus,

left cerebellum lobule X, right cerebellum lobule VIII, right Ro-

landic operculum, and right cerebellum crus II, which include

five cerebellar and five cerebral regions. Notably, these regions

correspond to those involved in the differential functional con-

nectivity analysis, which adds weight to our findings. We pro-

vide a detailed discussion of the functional and structural alter-

ations that have been identified in these brain regions in MDD

patients in Table S17.

For the sMRI analysis, we extracted 1,209 dimensional radio-

mic feature vectors from the GMV and white matter volume im-

ages, which encompass 93 radiomic characters. To determine

the factors that contribute most to the diagnosis of MDD, we

experimented by assessing the impact of specific radiomic char-

acteristics on model performance. Specifically, we masked the

93 radiomic characters one by one during the test stage

and identified the top five significant characters (e.g.,

GLCM_MaximumProbability, FirstOrder_Uniformity) that led to

the greatest decrease in model performance. We asserted that

these selected characters have the most significant impact on
P

model performance and thus are highly

effective in depression diagnosis. Detailed

descriptions of these five characters and

their implications for depression diagnosis

are provided in Table S18.

The results obtained through the inter-

pretation of our system demonstrate

consistency with previous research find-

ings, while also presenting statistically

significant and reproducible discoveries

that contribute additional knowledge to

the field. Prior studies have indicated

that depression pathogenesis entails

dysfunctional neural circuits that regu-

late emotions, self-reflection, reward

processing, and cognitive control.

Abnormal functional connectivity in re-

gions such as the precentral gyrus20

and the hippocampus57–59 have been

found. However, structural magnetic
resonance studies have revealed that during the acute phase

of first-episode depression, a reduction in hippocampal,

insular, prefrontal cortical, and orbitofrontal volume is com-

mon.60 Notably, half of the abnormal brain regions in MDD pa-

tients specified by the model interpretations in this paper are

located in the cerebellum. Historically underexplored beyond

motor functions, the cerebellum is now recognized for its sig-

nificant role in emotional and cognitive management. Liu

et al.61 found a correlation between abnormal cerebellar func-

tional connectivity and depression in adults. Their research re-

vealed that MDD patients exhibited markedly reduced cere-

bellar functional connectivity relative to both the default

mode network (mainly consisting of the ventral medial pre-

frontal cortex and posterior cingulate/supraoccipital gyrus)

and the executive control network (primarily involving the su-

perior frontal cortex and orbitofrontal cortex). Xu et al.62 found

that emotional memory and the severity of depressive symp-

toms are associated with structural changes in both the pos-

terior and anterior gray matter regions in the cerebellum in

MDD sufferers.
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Figure 5. Abnormal functional connectivity

in MDD patients obtained from the learnable

functional connectivity matrix

(A) The average functional connectivity matrix of

the MDD and HC groups learned by LGMF-GNN

and the differential functional connectivity matrix

(MDD-HC).

(B) The top five enhanced functional connections

and the top five weakened functional connections

shown in BrainNet Viewer.

(C) The top 10 abnormal brain regions shown in

BrainNet Viewer.

(D) Subject graphs of functional, anatomical, and

demographic modalities. ‘‘D’’ represents MDD,

‘‘B’’ represents HC, the different colors of nodes

represent different sites, and the thickness of

edges represents the strength of correlation be-

tween individuals.
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DISCUSSION

In this study, we approached the depression diagnosis task from

an individual-to-population perspective and facilitated an objec-

tive and quantitative diagnosis by effectively integrating multiple

modalities, including functional, structural, and demographic in-

formation through a local-global multimodal fusion network. The

interaction between individual brain regions and population

graphs offers abundant referential information for disease diag-

nosis, improving the system classification performance and

contributing to learning task-driven brain functional connectivity

matrix. This, in turn, improves the interpretability of the system

and provides innovative ways of analyzing disease mechanisms.

Moreover, the GNN provides a powerful tool for high-quality

fusion of multimodal and heterogeneous data, which offers

multi-dimensional information for disease diagnosis. Data from

various modalities offer different advantages, each contributing

to a more holistic understanding of the disease.

We conducted our experiments on large multi-center datasets

involving 2,442 participants from 24 sites. The results of 10-fold

CV demonstrated that the system could effectively distinguish

healthy individuals from MDD patients, achieving an ACC of

78.85% ± 5.50% and an AUROC of 80.64% ± 5.74% on the
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SRPBS dataset. Meanwhile, on the

REST-meta-MDD dataset, it recorded an

ACC of 71.34% ± 1.50% and an AUROC

of 73.67% ± 2.67%. In the MDD subtype

classification task, our system achieved

similar performance in the HC vs. FEDN

and HC vs. RECU classification tasks,

with an ACC of 75.13% ± 3.16% and

74.05% ± 4.34%, respectively. This indi-

cates the robustness of the proposed sys-

tem. Furthermore, the system maintained

a stable performance even in the chal-

lenging task of classifying FEDN and

RECU subtypes, with an ACC of

76.92% ± 8.94%, demonstrating both

expertise in diagnosing depression as a

whole and a significant capability to clas-
sify subtypes within, which caters to actual clinical needs. The

correlation between the predictive outcomes of the system

and the patients’ BDI self-assessment scores has shown that

the diagnostic outputs of the system can accurately indicate

the severity of depressive symptoms. The results of the LOSO

CVdemonstrated that the system effectively overcame the prob-

lems caused by site effects and exhibited strong generalization

ability. The comparative experiments of LGMF-GNN with

SOTA methods on various datasets also confirm this point.

The application of GNNs in diagnosing psychiatric disorders

such asMDD and in pinpointing affected brain regions has under-

gone a surge in recent times. However, several challenges persist,

including oversmoothing issues, a singular perspective, and

limited interpretability.63–67Our approach alignswith and expands

upon the current insights into MDD diagnostic models, empha-

sizing the advantages of both local and global perspective-based

GNN depression diagnostic models. By developing a local-global

network architecture, enhanced by sophisticated network mod-

ules and optimized training strategies, the proposed method not

only synthesizes the benefits of existing methodologies but it

also builds upon them. It offers a comprehensive global perspec-

tive through thepopulationgraph,while simultaneouslypreserving

thedetailed informationof individualbrain regions for thediagnosis



ll
OPEN ACCESSArticle
of MDD. Comparative experimental results have demonstrated

that the LGMF-GNNproposed in this paper achieves superior per-

formance compared to current advanced local, global, and local-

globalGNNmethods.Moreover, in linewith thecontemporaryshift

toward multimodal integration in artificial intelligence (AI)-based

depression diagnostic approaches,68–70 the multimodal fusion

strategy introduced in this studyadeptly addresses the complexity

of MDD by integrating various data sources. This approach signif-

icantly reduces the constraints inherent in single-modal data anal-

ysis found in current diagnostic models. Consequently, it offers a

more nuanced and comprehensive insight into the diverse mani-

festations of the disease, enhancing our understanding of its het-

erogeneity and complexity.

Finally, through interpretation studies, we proposed a set of

biomarkers, including abnormal brain functional connections

and anatomical structures that can provide valuable insights

for the MDD diagnosis from both functional and anatomical per-

spectives. These works make up for the deficiency of interpret-

ability of MDD diagnostic models, providing alternative methods

and perspectives for the interpretation of these models.

In conclusion, interpretable, end-to-end learning with a hierar-

chical graph structure can promote objective and quantitative

diagnosis of MDD and has the potential to identify its underlying

mechanism.

System generalization ability
Generalizing across multiple sites poses a significant challenge

for a neuroimaging-based classifier due to different MRI scan-

ners, acquisition parameters, and participant instructions. This

knotty problem of site effects was also present in our study: three

public multi-site datasets and one private dataset were used,

involving 24 sites, 1,182 patients with MDD, and 1,260 HCs.

The performance of the system in single-site and multi-site sce-

narios shown in Table S3 indicates that the site effects have a

significant negative impact on model training and testing. There-

fore, to mitigate this interference and improve the generalization

performance of our system, we utilized the ComBat method to

harmonize the data across sites (detailed in the ‘‘methods for

suppressing site effects and data enhancement and ablation

study’’ in the supplemental experimental procedures) during

the data preprocessing stage. Additionally, our system design

incorporates site information into demographic characteristics

by learning and suppressing site differences through a demo-

graphic graph. Finally, the adversarial training method and

domain migration loss were designed to encourage LGMF-

GNN to disregard the interference factors introduced by site ef-

fects and focus on the features that are themost relevant to clas-

sification. The ablation results of the loss functions are shown in

Table S15. Although the LOSO CV performance of the model is

lower than that of a 10-fold CV when dealing with data from un-

familiar sites, it still demonstrates good classification perfor-

mance and generalizability. The experimental results indicate

that the methods employed in suppressing site effects are effec-

tive and outline a meaningful direction (Table S16). These ap-

proaches may serve as a reference for future multi-site research.

Multimodal fusion
Taking advantage of the high modeling flexibility of GNN, the

proposed system successfully achieved a high-quality fusion
of the three data modalities: functional, structural, and demo-

graphic. As shown in Figure 2B, the addition of the T1 modality

provided essential anatomical insights, considerably enhancing

the diagnostic accuracy for MDD. Concerning the features of

functional modality, we experimentedwith three fusionmethods,

and our findings suggest that concatenating correlation features

and local network embeddings resulted in the most optimal per-

formance. This is because the concatenation form not only re-

tains the original shallow features but it also incorporates more

abstract high-order features extracted by the local ROI GNN

network.

We visualized the subject graph constructed based on the

threemodalities in Figure 5D. In this visualization, ‘‘D’’ represents

MDD, ‘‘B’’ represents HC, while the various node colors corre-

spond to distinct imaging sites. Additionally, the thickness of the

edges represents the strength of inter-individual correlations.

Both the HC group and the MDD patient group have nodes

with significantly larger degrees (marked in red border) in the

functional and structural graphs, representing typical individuals

of each group. The sMRI images of the patients corresponding to

the eight MDD nodes with the highest degree in the structural

subject graph are presented in Figure S7, providing an anatom-

ical characterization of the ‘‘typical MDD patients.’’ In Figure 5D,

it can be seen from the graph that edges with larger weights

often exist between individuals within the same category, help-

ing to summarize the general characteristics related to a single

category. In the demographic graph, nodes within the same

site are more densely connected, promoting effective communi-

cation of information. In contrast, nodes from different sites are

sparsely connected by edges among only a few individuals in

each site. These edges (marked in red) build a pathway that fa-

cilitates site harmonization.

In conclusion, the graphs of the three modalities perform

distinct functions within the network, each providing unique

and vital information. The M-Attention block of the subject

GNN learns the attention score of each modality during the

fusion process. Based on the attention scores, the importance

of the three modalities for depression diagnosis in descending

order was functional (0.3148), demographic (0.1598), and struc-

tural (0.1367). It is worth noting that consistent with our system

design, the MC embedding that includes information from all

three modalities obtains the highest attention score (0.3887),

underscoring its pivotal role.

Hierarchical graph learning
Based on the hierarchical network, the interaction between local

and global perspectives enhances the diagnosis performance of

LGMF-GNN. In Figures 2C and 2D, we compared the ROC curve

of the 10-fold CV of the system obtained through two-stage

training and end-to-end training. The system obtained through

end-to-end training achieved a higher AUROC, supporting the

effect of the hierarchical structure. Furthermore, upon compari-

son of the calibration curve and the histogram, we recognized

that the end-to-end trained model tends to give a firmer diag-

nosis, and the predicted probability is better aligned with the

prevalence rate. This also demonstrates the collaborative opti-

mization of local and global networks.

The advantages of hierarchical network structure can be sum-

marized into three primary aspects. First, the fine-grained brain
Patterns 5, 101081, December 13, 2024 13



ll
OPEN ACCESS Article
region information provided by the local network and the global

population information provided by the global network can be

collaboratively optimized in the network training stage, providing

more comprehensive information for disease diagnosis. Second,

the addition of the global network allows for more flexibility in the

fusion of multimodal information, which is achieved by

combining the three subject graphs of different modalities. Third,

the local network enables the learnability of the functional con-

nectivity matrix, thereby improving the interpretability of the sys-

tem. Meanwhile, the local network also provides better feature

vectors for nodes in the global graph. These enhancements

hold promise for broader applications beyond MDD diagnosis,

potentially extending to the study of other brain diseases or

neurological conditions, such as ASD and AD.

Findings about the underlying mechanisms of
depression obtained through interpretation
Through the interpretation of the system, from the perspective of

functionality, we discovered abnormal brain functional connec-

tions and functional alterations of brain regions in MDD patients.

From the perspective of structure, we identified anatomical

structural alterations in brain gray matter and white matter as de-

noted by imaging radiomics characters. In Table S17, we present

a detailed literature review that showcases the findings of exist-

ing studies on the brain regions identified through interpretable

analyses in this paper.

Among the discovered abnormalities, functional abnormalities

in the hippocampus, precentral gyrus, and the Rolandic opercu-

lum are confirmed by more existing research results. In depres-

sion analysis, the hippocampus has always been a key focus.

Several studies have shown significant functional and structural

abnormalities in patients with depression compared to HCs.

Functionally, patients with MDD had increased functional con-

nectivity between the right anterior hippocampus and lingual gy-

rus, while functional connectivity between the right posterior hip-

pocampus and the right inferior frontal gyrus was diminished.71

Moreover, reduced functional connectivity was observed be-

tween the right hippocampus and the bilateral medial superior

frontal gyrus,72 accompanied by a decrease in the node strength

of the right hippocampus cornu ammonis 3/4, suggesting weak-

ened brain-wide connectivity.73 There are also studies showing

that the MDD group exhibited significantly weaker connectivity

of the right hippocampal subregional networks with the temporal

cortex (extending to the insula) and basal ganglia but showed

increased connectivity of the right subiculum to the bilateral

lingual gyrus.74 Additionally, with the aging of patients with

depression, the functional connectivity between the right ante-

rior hippocampus and the left postcentral gyrus tends to in-

crease.75 Structurally, hippocampal volume reduction is evident

even in the early stages of MDD,76–78 affecting both first-episode

patients79 and adolescents.80 This reduction is also observed in

patients with depression and bipolar disorder, affecting both

GMV and white matter volume in the right hippocampus.81

The changes in the precentral gyrus in depression have also

received attention. Compared to HCs, patients with depression

have a higher regional cerebral blood flow and greater activation

in the right precentral gyrus.82,83 Non-anxious depression pa-

tients show reduced functional connectivity between the right

precentral gyrus and the right centromedial/laterobasal nu-
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cleus.84 In the somatic depression group, the regional homoge-

neity (ReHo) and amplitude of low-frequency fluctuations (ALFF)

in the bilateral precentral gyrus are significantly lower than the

pure depression group.85

The performance of the Rolandic operculum in depression is

also noteworthy. In FEDN patients with depression, the func-

tional connectivity of the left Rolandic operculum is enhanced.86

In patients with late-onset RECUdepression, the ReHOof the left

Rolandic operculum gyrus is higher.87 Alterations of ALFF in the

right Rolandic operculum have also been identified.88,89 In addi-

tion, structural alterations in the right Rolandic operculum have

been observed to correlate with depressive symptoms in pa-

tients suffering from post-stroke depression.90

Some of our findings, however, such as the functional alter-

ations in the cerebellum and abnormal functional connectivity

between cerebral and cerebellar regions, represent fresh contri-

butions from this study with a large sample size. The role of the

cerebellum in depression is increasingly recognized in research.

For instance, in terms of function, connectivity studies have re-

vealed diminished cerebral and cerebellar coupling in lobules

VI and VIIA/B with prefrontal, posterior parietal, and limbic re-

gions in MDD patients.91 Compared with HCs, patients with

MDD exhibit significantly increased ReHo values in the right cer-

ebellum crus II.92 Structurally, studies have indicated increased

graymatter density (GMD) in the right cerebellum VIII of MDD pa-

tients, alongside reduced gray GMVs in the right and left cere-

bellum VIII and X, which correlate with depression severity as

measured by BDI scores.62 Despite these advances, the explo-

ration of functional connectivity between cerebral and cerebellar

regions in depression remains underdeveloped. Our interpret-

able results underscore the imperative for more in-depth investi-

gation in this direction.

This study’s findings delineate both functional and anatomical

abnormalities associated with the cerebellum and cerebral re-

gions, offering valuable contributions to the advancing field of

depression research. Our interpretations fortify current research

on MDD-related alterations in regions such as the prefrontal cor-

tex and stimulate inquiry into underexplored areas, particularly

the role of the cerebellum in the etiology and progression of

depression.

Clinical application and advantages
The LGMF-GNNmodel introduced in this paper is an end-to-end

approach that automates the construction of ROI graphs and

subject graphs, enabling an objective and quantitative diagnosis

of depression. This innovation holds significant promise for its

application in clinical settings. Hospitals can utilize medical re-

cords and imaging data from previous patients and healthy indi-

viduals to establish ROI graphs and subject graphs, thereby

creating a comprehensive graph case library. Upon the arrival

of a new patient or research subject, the hospital only needs to

collect their MRI scans and basic demographic information,

such as gender, age, and education level. The LGMF-GNN can

then automatically construct the ROI graph and integrate the

new subject into the population graph as a new node. During

the model inference phase, the local ROI GNN module performs

fine-grained feature extraction and fusion from an individual

perspective. Meanwhile, the global subject GNN module facili-

tates automated message passing and comparison between
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the new individual and the case nodes in the hospital’s local case

library within the latent space. This results in node-level classifi-

cation, providing an objective and quantitative diagnosis of

depression and outputting the probability of illness for the newly

included subject. Additionally, the model can identify the most

similar past cases from the case library based on the edge

weights of the subject graph, offering interpretability.

Clinical practitioners can continue to use their customary diag-

nostic procedures, but they can now complement their decision-

making process with the quantitative probability predictions pro-

vided by the LGMF-GNN, as well as the most similar cases

selected from the case library. This integration enhances the

objectivity and quantification of clinical diagnosis. It is note-

worthy that the diagnostic framework based on LGMF-GNN is

scalable and shareable. The population graph constructed via

LGMF-GNN serves as an anonymized, lightweight case library.

In this library, patient data such as fMRI, sMRI, and demographic

information are stored, updated, and maintained as nodes with

highly abstracted feature vectors. Leveraging federated

learning, multiple hospitals across different regions can share

and integrate their population graphs, thereby establishing a

larger-scale case library. This deep feature-based sharing signif-

icantly reduces the risk of patient privacy breaches. With the

collaboration of more hospitals and the accumulation of data

over time, the population graph will continue to grow and

strengthen, offering more precise diagnoses and more reliable

insights into the underlying mechanism of MDD.

The lifetime prevalence rate of depression in the population is

roughly 1 in 5.17,93–95 Currently, studies are focusing on training

and validating depression diagnostic models on unbalanced da-

tasets and trying to reduce the interference of unbalanced data

distribution on model training and generalization.25,96 To assess

the performance of LGMF-GNN on unbalanced datasets, we

constructed a validation set with an MDD:HC ratio of 1:4 using

the bootstrap method. LGMF-GNN was then validated using

this set. The experimental setup and results are presented in

Table S24 of the supplemental information. Despite the perfor-

mance degradation in scenarios with unbalanced class distribu-

tion, LGMF-GNN still achieved performance comparable to that

of the current methods.

Improving and future work
The local-global GNN architecture, along with the multimodal

fusion strategy and the multi-site harmonization techniques, has

demonstrated its effectiveness in enhancing diagnostic perfor-

mance. The conceptual framework we have established is inher-

ently versatile. The strategy of leveragingGNNs for local-global in-

formation integration and multimodal data fusion is a promising

approach that warrants exploration in other diagnostic domains.

We identify three main limitations of LGMF-GNN and propose

potential solutions for future work. First, an important distinction

of our study from previous works is the local-global hierarchical

graph learning strategy. However, this hierarchical structure also

brings new limitations and challenges. In the subject graph, we

include all individuals in one graph. With large datasets, the pro-

cess requires excessive computing and storage resources,

posing greater challenges to model training and generalization

ability. Employing graph sampling methods like GraphSAGE97

and FastGCN98 could mitigate these resource demands and
enhance the scalability and adaptability of the model to new

data. Second, overfitting and site effect mitigation also remain

concerns in multi-site data analysis. Although we have already

proposed and utilized several methods, such as ComBat, adver-

sarial training, and domain migration loss, to suppress site ef-

fects in this paper, the generalization of our system is still

affected as the number of data sites increases. To address this

issue, more neuroimaging data harmonization and domain

migration methods need to be developed. Third, the network

failed to provide sufficient interpretability of structural modality

features extracted from T1 MRI, and this study did not delve

deeply into the changes in the fine and exact anatomical struc-

ture of MDD patients compared with HCs. Further refinement

of T1MRI structural feature extractionmethods could yield richer

anatomical insights for MDD diagnosis.

We are currently collaborating with Beijing Anding Hospital

and several other medical centers to clean and process the

data of 9 million clinical records frommore than 1 million individ-

uals in the Beijing-Tianjin-Hebei mental health big data platform.

We are contributing to the development of the China Brain Plan

2030 data platform for mental health disorders. These efforts are

expected to facilitate amore comprehensive validation and long-

term progress of the proposed system. We will also proactively

release our large-scale multimodal datasets, pushing AI-assis-

ted quantitative MDD diagnosis and treatment to a deeper level.

EXPERIMENTAL PROCEDURES

Data acquisition and preprocessing

Dataset Introduction

Anding dataset. The dataset acquired from Anding Hospital, China contains

the raw fMRI and sMRI scanning results and clinical records of 196 MDD pa-

tients and 177 HCs (Table 1). Data collection was conducted using standard-

ized scanners and parameters. TheMDD patients include both those with their

first episode of depression and those with recurrent depression. The enroll-

ment process for this dataset was carefully controlled. Only MDD patients

who had previously been medicated but had refrained from taking medication

for at least 2 weeks before data collection were included. Functional images

were acquired using the gradient-echo echo-planar imaging sequence, and

200 volumes were collected, with a total scan time of 6 min 40 s. The scan pa-

rameters of the functional images were as follows: repetition time (TR) =

2,000 ms; echo time (TE) = 30 ms; number of slices = 33, interlaced axial scan-

ning; slice thickness/gap = 3.5/0.7 mm; flip angle (FA) = 90�; matrix = 643 64;

field of view (FOV) = 2003 200 mm2; and voxel size = 3.133 3.13 3 4.2 mm3.

T1 structural images were acquired using the magnetization-prepared rapid

acquisition gradient echo sequence, and the scan parameters were as follows:

TR = 2,530 ms; TE = 1.85 ms; number of sagittal slices = 192; slice thickness =

1 mm; FA = 15�; matrix = 256 3 256; FOV = 256 3 256 mm2; and voxel size =

13 1 3 1mm3. The diagnoses were established by senior psychiatrists based

on the DSM-IV criteria for MDD, utilizing the Mini-International Neuropsychi-

atric Interview (MINI) diagnostic interview as the assessment standard.

SRPBS dataset. The SRPBS dataset99 is a dataset collected and released by

the SRPBS project. Neuroimaging data and demographic information from

457MDD patients and HC participants were collected at six sites. Each partic-

ipant underwent a single rs-fMRI session, a structural MRI session, and an

optional field map session. Six scanners from three manufacturers (Siemens,

Philips, and GE) were used to produce these neuroimaging data. A coherent

protocol was designed and used for rs-fMRI. Detailed imaging parameters

used at each site for rs-fMRI and T1 structural MRI are summarized in

Table S19. Diagnosis of MDD was conducted site specifically. At sites 2, 3,

4, and 5, affiliated with Hiroshima University, diagnoses were made by expert

clinicians based on the DSM-IV-Text Revision or DSM-5 criteria, with confir-

mation via the MINI at the time of study participation. At Kyoto University’s

site 6, MDDdiagnoses were determined using the Structured Clinical Interview
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for DSM (SCID). Site 8, which is associated with the University of Tokyo, diag-

nosed psychiatric disorders using DSM-IV criteria. HCs were screened for

psychiatric disorders using the MINI.

REST-meta-MDD dataset. In the REST-meta-MDDproject,19,100 16 research

groups from 16 hospitals in China agreed to share data fromMDDpatients and

matched HCs from studies approved by local institutional review boards. The

project contributed 1,570 subjects in total—814 MDDs and 756 HCs. The

participating groups first preprocessed fMRI images with a standardized pro-

tocol at local hospitals and then shared the final fMRI indices and brain matters

segmented from T1 sMRI along with demographic (age, sex, and education)

and clinical information (e.g., FEDN/RECU, medication usage, illness severity).

Detailed imaging parameters used at each site for rs-fMRI and T1 structural

MRI are summarized in Table S20. The diagnostic labels for the dataset

were derived from the study cohorts as provided by the contributing hospitals.

OpenNeuro dataset. The OpenNeuro dataset101 involved 21 patients who

suffer from DDs and 21 HCs from a single center in Russia, providing raw

fMRI and sMRI images as well as demographic information for each subject.

The fMRI study was carried out in the International Tomography Center, Novo-

sibirsk, using a 3-T Ingenia scanner (Philips). Functional imaging scans were

acquired using the following parameters: TR = 2,500 ms; TE = 35 ms; voxel

size 23 23 5 mm3; and fat suppression mode. The reference anatomical im-

age was obtained by the T1w three-dimensional (3D) turbo field echo method

with a voxel size of 13 13 1mm3. The instruction for participants was to lie still

with eyes closed for 6 min. The diagnostic criteria for depression are based on

the ICD-10,102 which encompasses mild depression (F32.0), moderate

depression (F32.1), and dysthymia (F34.1). Notably, the severity of all three

depressive disorders in this dataset is lower than that of MDD (F33.0). The final

diagnosis was made at the multidisciplinary clinic Pretor and the International

Institute of Psychology and Psychotherapy. None of the patients received an-

tidepressants. Additionally, both groups were equivalent in terms of gender,

mean age, and intelligence level (as measured by Raven’s Coloured Progres-

sive Matrices).

Finally, a total of 2,442 participants (1,260 depressive disorder patients vs.

1,182 HCs) from 24 sites (6 sites from SRPBS, 16 sites from REST-meta-

MDD, 1 site from Anding, and 1 site from OpenNeuro) were included in our

analysis. This study was approved by the institutional review boards at the

respective institutions and was conducted in accordancewith the ethical stan-

dards of the Helsinki Declaration. Informed consent was waived for this retro-

spective study, as no protected health information was used. Detailed demo-

graphic and clinical characteristics of the study population are shown in

Table 1. The category and site distribution of the SRPBS and REST-meta-

MDD datasets are detailed in Tables S21 and S22.

Data Preprocessing

Rs-fMRI preprocessing. Each rs-fMRI scan was pre-processed using Data

Processing & Analysis for (Resting-State) Brain Imaging (DPABI).103 We first

discarded the first five time points and corrected all volume slices for different

signal acquisition times. Then, the time series of images for each subject were

realigned. After realignment, individual structural imageswere co-registered to

the mean functional image. To remove the nuisance signals, the Friston

24-parameter model and global signal regression104 were referenced to

regress out head motion effects from the realigned data. The DARTEL tool

was used to transform the functional data from the individual native space to

the MNI space. Further, spatial smoothing and temporal filtering were per-

formed to reduce noises.

T1w MRI preprocessing. For the SRPBS, Anding and OpenNeuro datasets

with raw whole brain T1 sMRI provided, the skull-stripped T1wMRI can be ob-

tained after the rs-fMRI preprocessing with the DPABI tool. The T1 image was

then affine registered to the Montreal Neurological Institute (MNI) atlas by

FSL’s Functional Magnetic Resonance Imaging of the Brain’s Linear Image

Registration Tool tool,105 which has a voxel size of 13 13 1 mm3. To remove

the black boundaries, the dimension of the 3D brain volume is center cropped

into a size of 140 3 170 3 140 mm3. Additionally, GMV and white matter vol-

ume images were obtained for the three datasets through voxel-based

morphometry (VBM) using the SPM tools in the DPABI toolbox. VBM provides

an automated quantitative analysis of the distribution of gray and white matter

to detect differences in brain tissue concentration for each voxel (e.g., GMD).

To include voxel-wise volume changes, the GMD is then modulated by multi-

plication with the Jacobian determinant (JD). The JD is derived from the non-
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linear deformation field needed to transform each subject brain to a given tem-

plate brain. The modulated GMD is then multiplied with the voxel volumes and

is interpreted as GMV.106 GMV and white matter volume in SPM can provide

insight into the changes and differences in brain anatomy and can be used

to identify biomarkers of brain diseases.

Data exclusion and quality control. Stringent data exclusion and quality con-

trol measures were implemented to ensure the integrity of the datasets used in

this study. Criteria for exclusion included age, image quality, head motion,

spatial correlation, site-specific characteristics, and duplicate entries. The

specific criteria and the number of subjects excluded based on these criteria

for each dataset are detailed in the ‘‘data cleaning and quality control’’ section

of the supplemental experimental procedures and Figures S1–S4). Thesemea-

sures were crucial for minimizing biases and ensuring the high quality of the

analyzed data.

Feature Extraction

rs-fMRI feature extraction. Previous research has confirmed the correlation

between blood flow levels in the brain and neural activity in the brain.107 There-

fore, the BOLD signal series reflects the changes in the activity levels of each

ROI over time. It is one of the important indicators for studying brain function.

We chose the widely used revised AAL108 and CC200109 brain atlases for ROI

definition. The AAL brain atlas is a commonly used brain atlas that divides the

human brain into 116 regions, including 90 regions in the brain and 26 regions

in the cerebellum, and assigns a label to each region to help researchers iden-

tify and distinguish different brain regions. The CC200 brain atlas is a more

complex brain atlas that divides the human brain into 200 regions. Both brain

atlases are derived by analyzing and processing a large amount of brain imag-

ing data and using MRI technology to measure the connectivity and organiza-

tion of each region and have been used to study neurological and psychiatric

disorders such as AD, Parkinson disease, and ASDs.

Based on the ROI defined by the AAL and CC200 brain atlases, the average

BOLD signal within each ROI was extracted using the DPABI tool. Since the rs-

fMRI data in the dataset were collected based on different scanners and pro-

tocols, the length of the extracted ROI BOLD signals was different. To align the

data for subsequent extraction of temporal features, the extracted ROI BOLD

signals were truncated using a sliding windowwith a certain windowwidth and

step size to obtain a time series of equal length. The Fisher Z-transform has

been applied to standardize the time series of each ROI. We measured the

functional connectivity between brain regions by the Pearson correlation of

ROI BOLD signals to form an initial functional connectivity matrix.

T1-sMRI feature extraction. For the SRPBS dataset, we used a global-local

transformer to extract anatomical features from the preprocessed image

patches since it provided the whole raw T1-sMRI images. The optimization

task is designed as brain age prediction, which correlates with anatomical

structure and avoids information leakage for MDD diagnosis. The feature

map mGLT ˛Rn3d before the fully connected layer is extracted as each sub-

ject’s anatomical feature vector, where n is the number of ROIs and d is the

length of the feature vector for each ROI. However, the REST-meta-MDD data-

set does not provide raw T1-sMRI data, but only contains structural image

data of segmented gray matter, white matter, and cerebrospinal fluid volume

images. Previous neuroimaging studies have shown that the GMV and white

matter volume are correlated with depression.110 Therefore, the radiomics fea-

tures were extracted from the whole four datasets using PyRadiomics.111 We

extracted a 1,209-dimensional radiomics feature vector from each subject’s

GMV and white matter volume images respectively, yielding a 2,418-dimen-

sional anatomical feature vector for each subject. Every 1,209-dimensional ra-

diomics feature consists of 93 radiomics metrics extracted from the original

images and 12 derived images (e.g., Laplacian of Gaussian filtering and

wavelet transform). For details on feature extractor settings, see Figure S5.

Controlling for nuisance variables. Site effects112 are important confounding

factors that cannot be ignored in MRI-based imaging studies. The datasets

used in this study are collected from multiple institutions using different scan-

ners and protocols. The SRPBS dataset was collected from six different sites

using different protocols, and the REST-meta-MDD dataset involves 16 co-

horts from different hospitals, leading to series site effects. The nuisance vari-

ables caused by the heterogeneous scanner manufacturers, different acquisi-

tion protocols, and instructions to participants are difficult to remove even with

a unified image preprocessing pipeline. To reduce the effects of unwanted

nuisance variables, we applied the ComBat harmonization,113 a multivariate
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mixed linear regression model, on rs-fMRI-derived connectivity measures (see

the ‘‘methods for suppressing site effects and data enhancement and ablation

study’’ section in the supplemental experimental procedures for specific im-

plementation details). According to Figure S6, this method can successfully

regress out site effects while avoiding over-correction on important biological

variance.

Model architecture and training

An overview of the proposed method is illustrated in Figure 1. The model

mainly consists of a local ROI GNN and a global subject GNN. Each subject’s

ROI signals and initial functional connectivity matrix were fed into the ROI GNN

to generate an embedding and a refined functional connection matrix. Then,

subject graphs with different modalities were constructed based on the brain

embedding generated by ROI GNN, with different atlases for each subject, T1

features, and the non-imaging data (e.g., age, sex, data acquisition site, years

of education), respectively. The global subject GNN is performed on this graph

for node classification to obtain the disease state prediction for each subject.

The specific structure of the network and themethod of graph construction are

described in detail in the following sections.

Local ROI GNN

Network structure. As shown in Figure 1B, the local ROI GNNmainly consists

of three components: (1) a GRU regional time series encoder, (2) a graph

generator based on regional time series embedding, and (3) a GNN predictor

to generate the graph level embedding and the local prediction.

GRU regional time series encoder. BOLD signal has been widely used in

brain disease diagnosis and research. However, traditional BOLD signal en-

coding methods such as Pearson correlation or partial correlation failed to

capture the temporal order. As a variant of the widely used time series signal

encoder LSTM (long short-term memory), bidirectional GRU (bi-GRU) has a

simpler structure and is able to obtain complete time series information by

calculating and combining forward and backward signals. Therefore, we

chose bi-GRU as the time series encoder to achieve lightweight frameworks

and fit the low temporal resolution of the BOLD signal. Specifically, for an input

BOLD time series X ˛Rn3t of a subject, where n is the number of ROI and t is

the length of the time series, the GRU encoder generates a regional embed-

ding for each ROI, he = EncoderðxÞ;he ˛Rn3d, where d is the output size of

the GRU encoder.

Graph generator. The graph generator is designed to generate a flexible

graph structure based on the encoded time series feature he. Since the graph

structure is expressed by the adjacent matrix A, a learnable graph structure

can be generated as A = softmaxðhehTe Þ$n. We enhanced the edge weight

with the number of ROIs (nodes) to avoid too-small variance of the edge

weights and ensure the sparsity of the graph. The learnable graph structure

A can be regularized by the downstream prediction task.

GNN predictor. For the graph predictor, we adopted a three-layer GCN

model, and the concatenation aggregation with attention mechanism was

employed to transform and propagate node features and structure informa-

tion on the constructed graph. The node feature Fp of node p was initialized

as a vector of Pearson correlation coefficients to all ROIs. Specifically,

the k-th GCN layer is defined referring to GCN proposed by Kipf and

Welling114 as:

Hk
l = s

�
GCN

�
Hk� 1

l ;A
��

= s
�
D� 1

2AD� 1
2Hk� 1
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(Equation 1)

where D is the diagonal matrix, A is the adjacent matrix derived from the graph

generator, andWt is a trainable weight matrix of the k-th layer, which is a two-

layer MLP in our implementation. H0
l = F. The final embedding of the whole

graph is calculated through concatenating node embedding weighted by the

attention score.

HlG = concat
�
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l
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(Equation 2)
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�
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�
$n (Equation 3)

Finally, another MLP layer is employed for class prediction by
by = MLPðBatchNorm1DðHlGÞÞ: (Equation 4)
Global subject GNN

Graph construction. In subject graphs, an individual is modeled as a node in

the graph, and the edges between nodes reflect the connections between in-

dividuals. Three types of subject graphs are constructed based onmedical im-

aging and non-imaging data, as shown in Figure 1B. The first type is the func-

tional subject graph, denoted as Gf = ðVf ;Ef ;Wf Þ. Similarities between graph

embeddings generated by local GNNof two subjects are extracted to generate

this k-nearest graph, which models the correlation of functional brain activity

among different individuals. The second type is the anatomical subject graph,

denoted as Gs = ðVs;Es;WsÞ. This is a k-nearest graph based on the similar-

ities of the anatomical structure of the brain reflected by T1 sMRI features. The

third type is the demographic subject graph, denoted asGd = ðVd;Ed;WdÞ. In
this graph, the relationship of subjects is evaluated by non-image discrete data

such as age and sex.

For Gf , the calculated functional feature embedding HG is first taken as the

feature of the corresponding node. Then, the edge weight Wf based on the

cosine similarity of node features is calculated, and K pairs of nodes with

top K edge weights are selected to construct a k-nearest neighbors (KNN)

graph. Gs is constructed in a similar way, with the feature vector extracted

from T1w MRI as the node feature. For the Gd , inspired by EV-GCN,50 a PAE

is used to determine the weights between subjects vsi and vsj based on addi-

tional information provided by non-imaging data vector h.Wdði; jÞ is defined as

Wdði;jÞ =
cosðMLPðhiÞ;MLPðhjÞÞ+1

2 , where cos denotes the cosine similarity between

two input vectors.

Network structure. The global subject GNN is designed to be a multimodal

fusion network with three MS-GCN blocks to extract the unique feature of

each data modality, an MC-GCN block to fuse common information shared

by all data modalities and a multimodal attention block (M-Attention) to

achieve efficient information integration.

Snowball GCN. Li et al.115 have clarified that GCN is essentially a type of Lap-

lacian smoothing, which computes the new features of a vertex as the

weighted average of itself and its neighbors. A k-layer GCN block will aggre-

gate information from k-hop neighbors. However, stacking multiple layers of

GCN will cause the oversmoothing problem, in which case, the features of

vertices from different clusters are mixed and indistinguishable. Due to these

limitations, most GCNs are no deeper than four layers,116 which makes it

hard to aggregate information comprehensively on the subject graph with

more than 2,000 nodes. To mitigate the impact of this problem, the present

study used the snowball GCN block proposed by Zhao et al.117 as the basic

GCN block. The main idea of this block is connecting multi-scale feature infor-

mation in the hidden layer with a densely connected graph network to obtain

richer representations of each node. The structure of snowball GCN is as

follows:

H0
g = X; (Equation 5)
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HgG = normalizeðLpCWcÞ (Equation 8)

where n is the number of snowball GCN layers, Wl ;Wn;Wc are trainable ma-

trixes, H0
g;H

1
g;.;Hl

g are extracted features, HgG is the global subject-graph

embedding of one specific modality, and p˛ f0; 1g. When p = 0; Lp = I;

when p = 1;Lp = L = D� 1
2AD� 1

2, which means that we project C back onto

the Fourier basis. This is necessary when graph structure encodes a great

deal of information.

MS-GCN block. TheMS-GCN is applied to extract MS embeddings, which is

defined as follows:

Hf
s = SnowballGCN

�
Xf ;Af

�
= SnowballGCN

�
HlG;A

f
�
; (Equation 9)

Hs
s = SnowballGCNðXs;AsÞ; (Equation 10)

Hd
s = SnowballGCN

�
Xd ;Ap

�
; (Equation 11)
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where Xf ;Xs;Xd are node features for rs-fMRI, sMRI, and demographicmodal-

ities, respectively, and Hf
s;H

s
s;H

d
s are the MS representations. The weights of

the three snowball GCN networks are independent of one another, making it

possible to extract unique features more effectively.

MC-GCN block. Although each modality and brain atlas has a specific

data structure and semantic information, it is impossible to completely

decouple the different types of data. For the same task, data from different

modalities tend to contain some common information. Extracting this

shared information not only helps to summarize high-quality features for

solving the final problem but it also avoids redundancy in multimodal infor-

mation fusion. To achieve this target, we add MC-GCN to the model, which

shares the weight matrix between different modes when performing snow-

ball GCN.

Hf
c = SnowballGCN

�
Xf ;Af

�
= SnowballGCN

�
HlG;A

f
�

= normalize
�
LfpCfWcs

�
;

(Equation 12)

Hs
c = SnowballGCNðXs;AsÞ = normalizeðLspCsWcsÞ; (Equation 13)

Hd
c = SnowballGCN

�
Xd ;Ad

�
= normalize

�
LdpCdWcs

�
; (Equation 14)

where Hf
c;H

s
c;H

d
c are the MC representations for rs-fMRI, sMRI and demo-

graphic modalities, respectively, and Wcs is the shared trainable matrix. By

sharing weights in this way, MC features can be filtered out. In this experiment,

we selected three modalities and two brain atlases for the experiment, and

the resulting common embeddings are denoted as HfAAL
c ;HfCC200

c ;Hs
c;and Hd

c .

The final common embedding is obtained by the weighted sum of the four

Hc = aHfAAL
c + bHfCC200

c + gHs
c + eHd

c , where a; b;g; and e are hyperpara-

meters measuring the importance of each MC embedding. In the implementa-

tion, we set a; b;g; and e to be equal and sum to 1 to pay equal attention to all

modalities.

M-attention block. The contribution of different modes of information

to the final diagnosis varies with the target disease. To apply more

attention to the effective modes and make the less important modes

only play an auxiliary role, we use the attention mechanism on four

specific embeddings, HfAAL
s ;HfCC200

s ;Hs
s; and Hd

s ; and one common embed-

ding, Hc:

afAAL; afCC200; as; ap; ac = Attention
�
HfAAL

s ;HfCC200
s ;Hs

s;H
d
s ;Hc

�
(Equation 15)

ei = Tanh
�
WaiH

i
S + bi

�
(Equation 16)
ai =
expðeiÞ

expðefAALÞ+ expðefCC200Þ+ expðesÞ+ expðedÞ+ expðecÞ; i ˛
�
fAAL; fCC200; s;d; c

�
(Equation 17)
After obtaining the attention score, the final embedding can be calculated by

combining the representation and the weight as follows:

H = afAALH
fAAL
s + afCC200H

fCC200
s + asH

s
s + apH

d
s + acHC (Equation 18)

Objective function

The overall objective function of LGMF-GNN contains three kinds of loss terms

as follows:

L = Lcls + Lspecific + Lcommon + Ldomain (Equation 19)

Classification loss. We chose cross-entropy loss as the classification loss

function. It should be noted that the proposed model can make predictions

in both local and global stages, so the classification loss is a weighted sum

of the two parts:
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Lcls = Lclsglobal + lLclslocal ; (Equation 20)

where l is the weight hyperparameter of the local classification loss. In our

implementation, we set l to 0.2 to ensure that the global classification loss

plays a dominant role in the overall optimization process.

Modality independence loss. As mentioned above in the network structure

section, we hope to extract features that are independent and shared be-

tween modalities separately. However, our extractor is based on the same

structure. To facilitate the separation of MS and MC embeddings, we

impose the modality-independence constraint on them. Specifically, the

Hilbert-Schmidt independence criterion118 is used to measure the dissim-

ilarity of the two sets of embedding distributions:

HSICðHs;HcÞ = ðm � 1Þ� 2trðKcRKsRÞ ; (Equation 21)

K
�
Hi ;Hj

�
= <f

�
Hi
�
;f

�
Hj
�
> ; (Equation 22)

R = I � 1

m
eeT ; (Equation 23)

where I is the unit matrix, e is a column vector with all values of 1, f is a

kernel function that maps the input to reproducing kernel Hilbert space, and

<> denotes the inner product of the inputs. In this way, we obtain the loss

function:

Lspecific = HSIC
�
HfAAL

s ;Hc

�
+ HSIC

�
HfCC200

s ;Hc

�
+ HSIC

�
Hs

s;Hc

�
+ HSIC

�
Hd

s ;Hc

�
:

(Equation 24)

Modality similarity loss. To extract the modality-shared features, we de-

signed the MC-GCN block, which is a snowball GCN with shared weights.

Apart from themodel structure design, themodality similarity constraint is pro-

posed to further encourage the similarity of MC embeddings across modal-

ities. Specifically, the L2-norm is calculated between normalized embeddings

of different modalities:

Nc = Hc$H
T
c (Equation 25)

Lcommon = kNf
c � Np

ck
2
+ kNf

c � Ns
ck

2
+ kNd

c � Ns
ck

2 (Equation 26)

Domain migration loss. To alleviate site effects during the training stage, the

domain adversarial training strategy was used, and a domain migration loss

was designed to reduce the difference between the generated embeddings
in the source and target domains. The adversarial training is achieved with a

site classifier and a gradient inversion layer, and domain migration loss is de-

signed based on the central moment discrepancy (CMD) distance. Thus, the

total domain loss is defined as:

Ldomain = Lsite + LCMD

where Lsite is the cross-entropy loss between the site prediction result of the

site classifier and the real site label. LCMD is the CMD distance between the

source and target domain. More detailed information can be found in

the ‘‘domain adversarial training’’ and ‘‘domain migration loss’’ sections of

the supplemental experimental procedures.

Implementation details

The proposed LGMF-GNNwas implemented in Python 3.7 and PyTorch 1.12.1

on an NVIDIA TITAN RTX GPU. The Adam optimizer was used with a learning
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rate of 1e�2 and halved every 100 epochs. We allowed the model to run for at

most 800 epochs for all experiments. Based on the experimental results and

analysis presented in Table S23 and ‘‘the impact of brain atlases onmodel per-

formance’’ section of the supplemental experimental procedures, we ulti-

mately used the AAL brain atlas for brain ROI definition, model training, and

interpretable research. The parameters a;b;g, and e, which govern themodality

weights in the final common embedding Hc, were assigned equal values to

sum to 1, ensuring balanced consideration across all modalities. The weight

hyperparameter l of the local classification loss was fixed at 0.2 to prioritize

the global classification loss in the overall optimization. Grid searches were

performed to determine the hyperparameter k, representing the number of

neighbors in the KNN population graph construction, and n, indicating the

number of layers in the snowball GCN. The optimal values for these parame-

ters were found to be k = 10 and n = 9. A comprehensive discussion and

detailed results concerning hyperparameter selection are provided in

Figures S8 and S9 and the ‘‘hyperparameter selection’’ section of the supple-

mental experimental procedures.

Methods for interpretable research on the model

Interpretation of the functional modality

Interpretability experiments for the functional modality were conducted on the

combined dataset from the SRPBS and REST-meta-MDD studies, which pro-

vided a sufficient sample size to ensure the statistical power of our findings.

The local ROI GNN is designed to construct a learnable adjacency matrix by

capturing the deep and dynamic temporal feature correlations of the ROI

BOLD signals. This matrix was optimized for both local and global tasks.

Consequently, the trained LGMF-GNN can predict an adjacency matrix based

on the input fMRI ROI signals. This predicted matrix not only encompasses

deeper temporal features but it also integrates demographic and anatomical

constraints, surpassing traditional matrices that rely solely on Pearson corre-

lation coefficients. By analyzing these learned adjacency matrices, or func-

tional connectivity patterns, from the HC and MDD groups, we can elucidate

the underlying mechanisms of the functional states of MDD.

During model training, we conducted 10-fold CV experiments on the SRPBS

and REST-meta-MDD datasets, which means each sample in the dataset was

added to the training set nine times. We used the model obtained from each

fold to perform inference on the training set corresponding to that fold and saved

the functional connectivitymatrix obtained by local ROI GNNduring inference. In

this way, for each sample in the dataset, we obtained nine learned functional

connectivity matrices. These functional connectivity matrices are subsequently

averaged to produce a single functional connectivity matrix for each sample.

Then,weutilized the diagnostic labels indicatingwhether each samplewas diag-

nosed with MDD to split the dataset into two groups: HC and MDD. We sepa-

rately averaged the learned functional connectivity matrices for all samples

within each group. This resulted in the average functional connectivity matrices

for the HC andMDD groups, as depicted in Figure 5A. The differential functional

connectivity matrix (MDD-HC) is obtained by subtracting these two matrices.

The interpretability of the variation of functional connectivity between HC

and MDD was based on the differential functional connectivity matrix. Specif-

ically, we extracted the row and column coordinates corresponding to the five

maximum and minimum values in the matrix. The functional connections be-

tween brain regions indexed by these coordinates represent the enhanced

and weakened FCs in MDD compared to HC. The interpretability of the most

contributive brain regions was based on the differential functional connectivity

matrix after taking absolute values. By summing the rows of this matrix, we ob-

tained the degree of each node, with a higher degree indicating a greater dif-

ference in functional connections associated with that brain region between

the MDD and HC groups. Thus, we selected the 10 nodes with the highest de-

grees as the most diagnostically informative brain regions.

Interpretation of the anatomical modality

For anatomical modality, the analysis was conducted on the SRPBS dataset.

Following the steps outlined in the data processing section, we obtained a

1,209-dimensional feature vector as input for the anatomical modality, encom-

passing 93 radiomic characters that characterize the anatomical properties of

the brain tissue. To identify the key radiomic characters contributing to the

diagnosis of MDD, we employed a feature-masking strategy to assess the

impact of a specific radiomic character on model performance. Specifically,

using the model trained with 10-fold CV for inference, we masked, or set to
zero, the elements corresponding to the vector position of each radiomic

feature during the inference process. This yielded the average performance

across the 10-fold CVs after masking. The performance of the model was

measured by the AUROC. By comparing the average inference AUROC of

10-fold CV results obtained from LGMF-GNN with unmasked inputs to those

withmasked inputs, we evaluated the performance loss of each radiomic char-

acter. We identified the top five radiomic characters with the greatest perfor-

mance loss as the most contributive to diagnosis.
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