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Abstract 

Bac kgr ound: Cancer m utations ar e often assumed to alter pr oteins, thus pr omoting tumorigenesis. Howev er, how m utations affect 
pr otein expr ession—in addition to gene expr ession—has rar el y been systematicall y inv estigated. This is significant as mRNA and 

pr otein lev els fr equentl y show onl y moderate corr elation, dri v en by factors suc h as tr anslation efficiency and protein de gr adation. 
Pr oteogenomic datasets fr om large tumor cohorts provide an opportunity to systematically analyze the effects of somatic mutations 
on mRNA and protein abundance and identify mutations with distinct impacts on these molecular levels. 

Results: We conduct a compr ehensi v e anal ysis of m utation impacts on mRNA- and pr otein-lev el expr essions of 953 cancer cases with 

paired genomics and global proteomic profiling across 6 cancer types. Protein-level impacts are validated for 47.2% of the somatic 
expr ession quantitati v e trait loci (seQTLs), including CDH1 and MSH3 truncations, as well as other m utations fr om likel y “long-tail”
dri v er genes. Devising a statistical pipeline for identifying somatic protein-specific QTLs (spsQTLs), we reveal several gene mutations, 
including NF1 and MAP2K4 truncations and TP53 missenses showing disproportional influence on protein abundance not readily 
explained by transcriptomics. Cr oss-v alidating with data from massively parallel assays of variant effects (MAVE), TP53 missenses 
associated with high tumor TP53 proteins are more likely to be experimentally confirmed as functional. 

Conclusion: This study r ev eals that somatic m utations can exhibit distinct impacts on mRNA and pr otein lev els, underscoring the 
necessity of inte gr ating proteogenomic data to comprehensively identify functionally significant cancer mutations. These insights 
provide a fr amew ork for prioritizing mutations for further functional validation and therapeutic targeting. 

Ke yw ords: Pr oteogenomics, cancer m utations, pr otein expr ession, quantitati v e trait loci (QTL), variant effects 
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Introduction 

Cancer arises from the acquisition of mutations that confer se- 
lecti ve ad vantages. Most of these mutations are thought to affect 
cellular functions by regulating the expression of gene products.
For example, truncations can result in nonsense-mediated decay 
(NMD) [ 1 , 2 ], whic h pr otects eukaryotic cells thr ough degr ading 
pr ematur e termination codon (PTC) bearing mRNA [ 3 ]. Addition- 
all y, a fr action of cancer m utations may uniquel y affect pr otein 

abundance but not mRN A expression. Ho w ever, previous studies 
c har acterizing genomic mutations affecting mRNA versus protein 

le v els hav e focused on germline variants as expression quantita- 
tiv e tr ait loci (eQTL) [ 4–6 ]. While other cancer studies hav e c har- 
acterized the effect of somatic mutations on mRNA expression 

le v els [ 7–9 ], it r emains unclear how somatic m utations may af- 
fect protein abundance . T he gap of knowledge is critical given that 
mRNA and protein levels are only moderately correlated [ 10–13 ].
A myriad of factors, including cell state transition, signal delay,
translation on demand, and cellular energy constraint, can lead to 
discrepancies between mRNA and protein levels [ 14 ]. Understand- 
ing pr otein-le v el consequences of cancer m utations is critical in 

identifying functionally important mutations and revealing their 
downstr eam mec hanisms. 
Recei v ed: May 17, 2024. Revised: September 13, 2024. Accepted: December 5, 2024 
© The Author(s) 2025. Published by Oxford Uni v ersity Pr ess GigaScience. This is an
Attribution License ( https://cr eati v ecommons.org/licenses/by/4.0/ ), which permits 
the original work is pr operl y cited. 
In r ecent years, adv ances in mass spectr ometry (MS) tec hnolo-
ies have generated a wealth of global proteomic profiles of pri-
ary tumor cohorts, many of which also have concurrent ge- 

omic and transcriptomic profiling [ 15–20 ]. These proteogenomic 
atasets present ample opportunities to validate somatic muta- 
ions that show concordant impacts on downstream mRNA and 

r otein le v els. On the other hand, pr otein abundance may also be
niquely influenced by the efficiency of protein translation, trans- 
ort, and degradation. T hus , pr oteogenomic anal yses can r e v eal
 utations that dispr oportionall y impact pr otein abundances that
ay not be found using genomic analyses alone. 
Herein, we conducted a systematic analysis to decode the re-

ationship between somatic mutations versus mRNA and protein 

e v els using data fr om nearl y a thousand cases across 6 cancer
ypes in pr ospectiv e and r etr ospectiv e cohorts from the Clinical
roteomic Tumor Analysis Consortium (CPTAC). We identified mu- 
ations sho wing concor dant effects at both mRNA and protein ex-
r ession le v els in cis , as w ell as those that sho w ed protein-specific
ffects. We further examined how mutations associated with ex- 
r ession c hanges may pr edict in vitro and in vivo functional effects
easured by a massively parallel assay of variant effects (MAVE)

f TP53 [ 21 ]. Our results highlight the importance of pairing ge-
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Figure 1: Ov ervie w of the study w orkflo w and proteogenomic cohorts. (A) Study w orkflo w to identify eQTLs , pQTLs , concordant QTLs (between mRNA 

and protein levels), and spsQTLs showing disproportional effects on protein expression. (B) Summary of the prospective CPTAC proteogenomic cohorts 
used for the discovery analyses, including cancer type abbreviation, data source, sample size of tumor (T) and normal (N) tissues, female percentage, 
av er a ge onset age in years, and tumor stage distribution. 
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omic and proteomic analyses to prioritize functionally impor-
ant mutations. 

esults 

utation impacts on the mRNA and protein 

evels 

ollowing the study workflow (Fig. 1 A), we first sought to iden-
ify somatic mutations that may impact the corresponding gene’s

RNA expression (somatic eQTL, termed seQTL below) and pro-
ein abundance (somatic pQTL, termed spQTL below) in primary
umor tissue samples. We performed a multiple regression analy-
is adjusted for age, gender, ethnicity, and Tandem Mass Tag (TMT)
 22 ] batch using the prospective CPTAC datasets that included

atched DNA sequencing (DNA-seq), RNA sequencing (RNA-seq),
nd MS global proteomics data of primary tumor samples across
 cancer types (see Methods, Fig. 1 B), including 115 breast cancer
BRCA) [ 19 ], 95 colorectal cancer (CRC) [ 16 ], 110 clear cell renal cell
arcinoma (CCRCC) [ 15 ], 109 lung adenocarcinoma (LUAD) [ 17 ], 84
varian cancer (OV) [ 20 ], and 97 uterine corpus endometrial carci-
oma (UCEC) [ 18 ] samples, as well as proteogenomic datasets for
dditional, r etr ospectiv e BRCA [ 11 ], CRC [ 13 ], and OV [ 12 ] cohorts
rom CPTAC for validation ( Supplementary Fig. S1A ). We focused
n coding mutations given the coverage of the whole-exome se-
uencing (WES) data used in CPTAC studies; the analyses were
urther stratified for truncations , missense , and synonymous mu-
ations given their likely different mechanisms of action in affect-
ng le v els of the m utated gene pr oduct. 

Based on the statistical po w er ac hie v ed by these cohort sizes
nd to reduce false positives, we focused on genes with 3 or more
amples affected by mutations in each functional class of mis-
ense, truncation, and synonymous within the cancer cohort, in-
luding 134, 13, and 15 genes tested in BRCA; 1,360, 318, and 226
enes tested in CRC; 55, 12, and 4 genes tested in CCRCC; 94, 4, and
 genes tested in LUAD; 134, 5, and 8 genes tested in OV; and 2,243,

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae113#supplementary-data
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Figure 2: Gene mutations identified as cis seQTLs and spQTLs across 6 adult cancer types. (A) Overview of the somatic mutation QTLs identified in 
different cancer types and mutation types, including missense (green), truncating (orange), and synonymous (purple) mutations. For both eQTLs and 
pQTLs, the panel on the left shows the counts of the mutation–gene pairs included in analyses, and the figure on the right shows the counts of the 
significant eQTLs and pQTLs. (B) Volcano plots showing seQTL associations in the 6 cancer types (left) and volcano plots showing spQTL associations 
(right), wher e eac h dot denotes a gene–cancer pair included in the anal ysis. Top associated genes wer e further labeled. FC: mRNA/pr otein expr ession 
log fold change; FDR: false discovery rate. 
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273, and 196 genes tested in UCEC. We sought to identify their 
seQTLs affecting cis- expr ession (i.e., expr ession of the mutation- 
affected genes). Using the multiple regression model (see Meth- 
ods), we identified 74 gene–cancer seQTL pairs (false discovery 
rate [FDR] < 0.05), including 4 in BRCA, 47 in CRC, 7 in CCRCC, 3 in 

LU AD, 1 in O V, and 12 in UCEC (Fig. 2 A, Supplementary Table S1 ).
Separated by the functional classes of mutations, 22 of those se- 
QTLs are missense mutations, 12 are synonymous, and 40 are 
truncating. Top seQTLs showing upregulation of gene expression 

ar e primaril y missenses, including SMARCA4 in LUAD, WNT7B in 
RC, TP53 in OV, and FOXR2 in UCEC. Top candidates showing
ownregulation of gene expression include TP53 and CDH1 trun- 
ations in BRCA, as well as TP53 truncations in OV (Fig. 2 B). 

Using a similar multiple regression but modeling protein abun- 
ance as the dependent variable, we identified 103 significant 
ene–cancer spQTL pairs (FDR < 0.05), including 4 in BRCA, 31
n CRC, 8 in CCRCC, 3 in LUAD, 2 in OV, and 55 in UCEC (Fig. 2 A,
upplementary Table S2 ). Compared to the proportion of gene mu-
ation type e v aluated in eac h cancer type, spQTLs sho w ed sig-
ificant enrichment for truncations (Fisher exact test P < 0.05;

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae113#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae113#supplementary-data
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ig. 2 A), highlighting the persistent and mor e pr ofound effect
f truncations on protein abundance compared to mRNA levels.
mong the identified spQTLs across cancer, 7 are missense and
6 are truncating. For example, truncating mutations of NF1 and
RID1A in UCEC and YLPM1 in CCRCC are each associated with
 educed pr otein le v el of the corr esponding gene (Fig. 2 B). Notabl y,
P53 missenses in O V, BRCA, LU AD, and UCEC ar e eac h signifi-
antly associated with increased protein expression in mutation
arriers (Fig. 2 B). 

To verify these disco veries , we applied the same seQTL and
pQTL anal yses using r etr ospectiv e CPTAC data ( Supplementary
ig. S1A ) that included independent cohorts of BRCA [ 11 ], CRC [ 13 ],
nd OV [ 12 ] primary tumors. While these cohorts afforded smaller
ample sizes, 8 seQTLs and 5 spQTLs were detected in both r etr o-
pective and prospective sets . T he gene–cancer spQTL pairs show-
ng strong validation in both datasets include TP53 missense mu-
ations and CDH1 truncations in BRCA and TP53 truncations in
RC ( Supplementary Fig. S1B ). 

uta tions sho wing concordant effects a t mRN A 

nd protein levels 

e next examined the concordance of seQTL and spQTL asso-
iations for each gene–cancer type pair. As expected, for most
88.9%) of the significant seQTLs whose genes had sufficient ob-
ervations at both the mRNA and protein levels, the identified
ssociations sho w ed the same directionality. Ho w ever, w e only
dentified 17 seQTLs (47.2%) that are also significant spQTLs at
n FDR < 0.05, which we show as concordant QTLs (Fig. 3 A,
upplementary Table S3 ). The effect sizes (in log fold change) of
hese gene–cancer pairs showing concordant seQTLs and spQTLs
ho w ed a high correlation between mRNA and protein (Pearson r
 0.90, P < 7.51E-7). 
In different cancer types, genes whose mutation impacts on

ene and protein expressions are concordant include well-known
rivers of the disease, including TP53 missense mutations in OV,
DH1 truncations in BRCA, and MSH3 truncations in CRC. Upreg-
lation of mutated TP53 in OV is the only association found for
enes affected by missense mutations . T he 16 other concordant
e/spQTLs are all truncations associated with reduced expres-
ion and highlight some “long-tail” driver genes, including PBRM1
n CCRCC, YLPM1 in CCRCC/UCEC, and ESRP1 in UCEC (Fig. 3 B).
he concordant QTLs with truncating mutation can likely be ex-
lained by NMD, which reduces gene expression and in turn di-
inishes the expression of the corresponding proteins [ 3 ] . Com-

ared to the substantially higher counts of seQTL associations
Fig. 2 A, B), these concordant se/spQTL effects validate mutation
mpacts on the gene product. 

rotein-specific mutation impacts not observed 

 t mRN A le vels 

hile most seQTLs and spQTLs show concordance, we postulate
hat certain mutations may uniquely affect protein abundance
ut not mRNA le v els, whic h we term somatic pr otein–specific
TLs (spsQTLs). To identify spsQTLs, we applied 2 methods to
tringentl y r etain QTLs with discordant effects at mRNA and pro-
ein le v els. First, a ppl ying a likelihood r atio test (LR T) betw een 2
 egr ession models of protein level being predicted b y mRN A level
ith or without the mutation term (see Methods) [ 4 ], 96 candidate

psQTLs (FDR < 0.05) were identified. Second, complementing this
RT test with an a ppr oac h filtering for a gene–cancer pair show-
ng significant spQTL (FDR < 0.05) but not seQTLs (see Methods)
 23 ], 86 candidate spsQTLs (FDR < 0.05) were identified. 
By ov erla pping candidate spsQTLs identified by both methods,
e retained 83 spsQTLs, the majority (92.8%) of which are trun-

ating mutations (Fig. 4 A, Supplementary T able S4 ). T op spsQTLs
ssociated with diminished pr otein expr ession include NF1 trun-
ations in UCEC, PLEAHK5 truncations in CRC, and MAP2K4 trun-
ations in BRC A. T he only spsQTLs that increase protein expres-
ion include TP53 missense mutations in BRCA, LUAD, and UCEC.
Fig. 4 B). We further examined the discordance in mutation im-
acts on gene and pr otein expr ession le v els (Fig. 4 C). While some
f these truncations, such as NF1 in UCEC and MAP2K4 in BRCA,
ere often accompanied by lower-than-median mRNA expression

n their r espectiv e tumor cohorts, their impacts were strikingly ob-
erved at diminished protein expression levels. We highlighted in
upplementary Fig. S2A spsQTLs where the affected gene’s pro-
ein sho w ed negativ e pr otein log fold-c hange (logFC), wher eas the

RNA logFC is nonnegative, including CASP8 truncations in UCEC,
RID1A truncations in CRC and UCEC, and ATM truncations in
UAD and UCED. We also identified a set of spsQTLs truncations,
here the logFC associated with a reduction in proteins is 15 times

reater than mRNA’s logFC ( Supplementary Fig. S2B ). These re-
ults suggest that NMD associated with these gene truncations
s closely tied to the terminated translation but may not affect

RNA expression to the same degree [ 24 ]. 
To complement the cross-tumor analyses, we also utilized the

PTAC samples with paired tumor-normal tissues to conduct
air ed differ ential expr ession tests for both pr otein and mRNA
xpression (Fig. 1 A). The paired sample sizes with proteomic data
nclude 17 in BRCA, 17 in UCEC, 84 in CCRCC, 100 in LUAD, 29 in
RC, and 10 in OV (Fig. 1 B). Covariates including age at diagnosis,
thnicity, r ace, and sequencing oper ator ar e adjusted in the anal-
sis. While this analysis had varied statistical po w er due to differ-
nt normal tissue av ailabilities acr oss cancer types, it serv ed as
n independent validation of spQTLs ( Supplementary Table S5 ).
his paired tumor-normal analysis validated the protein-level im-
acts of se v er al discordant spsQTLs ( Supplementary Fig. S3A ) as
ell as some concordant se/spQTLs ( Supplementary Fig. S3B ).

or example, the validated discordant spsQTLs include trunca-
ions of SMAD4 and SCRIB in CRC as well as NF1 , GLYR1 , and
ASA1 in UCEC ( Supplementary Fig. S3A ). The validated con-
ordant se/spQTLs include truncations of YLPM1 and PBRM1 in
CRCC, SMARCA4 and KEAP1 in LUAD, and ESRP1 as well as JAK2

n UCEC ( Supplementary Fig. S3B ). 

unctional evidence of TP53 missenses 

ssociated with high protein expression 

otabl y, TP53 missenses ar e associated with higher protein ex-
ression in multiple cancer cohorts, in addition to the expected re-
uction in expression associated with truncations (Fig. 5 A). Such
is -effect of functional TP53 missense mutations had pr e viousl y
een observed through immunohistochemistry (IHC [ 25 ]) or MS
lobal proteomics experiments [ 26 ]. Here, we hypothesized that
unctional TP53 missense m utations ar e mor e likel y to show high
e v els of concurrent protein-level expression in the mutated tu-

or sample. To test this hypothesis, we compared gene- and
r otein-le v el TP53 expr ession fr om CPTAC with TP53 mutation-

e v el functional data from the in vitro and in vivo MAVE experi-
ent conducted by Kotler et al. [ 21 ], who designed a p53 variants

ibrary to study the functional impact of those mutations. 
We divided the TP53 missense mutations from Kotler et al. [ 21 ]

nto 3 categories: (i) TP53 mutations with top 20% mRNA or protein
xpression in the prospective CPTAC cohorts, (ii) the other TP53
 utations observ ed acr oss all CPTAC samples, and (iii) the r est

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae113#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae113#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae113#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae113#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae113#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae113#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae113#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae113#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae113#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae113#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae113#supplementary-data
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Figure 3: Gene mutations showing concordant impacts on gene and protein expression levels. (A) Overview of concordant QTLs as shown by their 
effect sizes in log[fold change (FC)], where the gray line shows when the protein logFC equals RNA logFC. Some of the top concordant QTLs were 
further labeled by cancer type and gene name. (B) Examples of QTL with concordant effects at mRNA and protein expression levels. For each gene, the 
plot on the left shows the corresponding mRNA le v els of mutation carriers versus noncarriers in FPKM, and the plot on the right shows protein level 
comparison in log ratio (MS TMT measurements) in the respective cancer type labeled on top of each violin plot. The labeled mutations are the 3 
mutations whose carriers show the highest absolute expression differences of the mutated gene product compared to the noncarriers. 
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of the assayed TP53 mutations from Kotler et al. [ 21 ]. For in vitro 
data, the number of tested mutations by each category is 32, 78,
and 1,033, r espectiv el y. For in vivo data, the number of tested mu- 
tations by each category is 19, 10, and 381, respectively. We first 
compar ed the r elativ e fitness scor e (RFS) measur ed fr om the in 
vitro assays [ 21 ] . While there may be a trend, we did not observe 
 significant difference between all the other mutations versus 
P53 missenses associated with either top 20% expression based 

n either mRNA ( P = 0.090, Wilcoxon rank-sum test) or protein
xpression ( P = 0.720). 

We next compared the in vivo enrichment scores across the
ame categories and found that TP53 missenses associated with 
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Figure 4: Gene mutations showing discordant impacts on gene and protein expression levels. (A) Overview of discordant QTLs identified by our 
statistical pipeline, as shown by their effect sizes in logFC, where the gray line shows when the protein logFC equals RNA logFC. (B) Heatmaps of QTLs 
that are significant as either seQTL or spQTL and that are shared across at least 2 cancer types. Brown box indicates significant spsQTLs, and color 
indicates the effect size in logFC and av er a ge pr otein expr ession of m utation carriers in log r atio fr om the MS TMT quantifications. (C) Examples of 
QTL with discordant effects at mRNA versus protein levels. For each gene, the plot on the left shows the corresponding mRNA levels of mutation 
carriers versus noncarriers in FPKM, and the plot on the right shows protein-level comparison in log ratio (MS TMT measurements) in the respective 
cancer type labeled on top of each violin plot. The labeled mutations are the 3 mutations whose carriers show the highest absolute expression 
differences of the mutated gene product compared to the noncarriers. 
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Figure 5: Functional verification of TP53 mutation associated with high mRNA or protein levels using in vitro and in vivo data from a MAVE experiment. 
(A) P er centile of av er a ged expr ession associated with a giv en TP53 m utation at the mRNA (x-axis) and pr otein (y-axis) le v els in the r espectiv e cancer 
cohort. TP53 mutations are color-coded by mutation type (left) and observed cancer type (right), respectively. (B) Violin plots comparing the in vitro 
functional score (RFS, top), in vivo enrichment score (middle), and IARC occurrences (bottom) for TP53 mutations in the 3 groups defined by (i) TP53 
mutations with top 20% mRNA (left) or protein (right) expression in the prospective CPTAC cohorts, (ii) the other TP53 mutations observed across all 
CPTAC samples, and (iii) the rest of the assayed TP53 mutations from Kotler et al. [ 21 ]. 
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op 20% protein expression sho w ed a significantly higher enrich-
ent score in vivo compared to that of other TP53 missenses found

n CPTAC ( P = 0.016) or other experimentall y measur ed TP53 m u-
ations ( P = 3.23E-5, Fig. 5 B, Supplementary Table S6 ). In com-
arison, TP53 missenses associated with top 20% mRNA expres-
ion did not show a significant in vivo score difference to that of
ther TP53 missenses found in CPTAC ( P = 0.170). Kotler et al. [ 21 ]
bserved that there was no significant correlation between en-
ic hment scor e in vivo and RFS in vitro , whic h is consistent with
ur observations and may be explained by the different selec-
iv e pr essur es between these settings in vivo and in vitro . Finally,
P53 missenses associated with top 20% pr otein expr ession ( P =
.91E-7) or top 20% mRNA expression ( P = 2.38E-2) sho w ed sig-
ificantly higher prevalence than other CPTAC mutations based
n counts from the International Agency for Research on Cancer
IARC) database [ 21 ] (Fig. 5 B, Supplementary Table S6 ). Ov er all,
hese analyses suggested that protein-level consequences from
rimary tumor samples can aid the identification of functional
utations. 

iscussion 

er ein, we anal yzed how somatic mutations affect mRNA and
r otein le v els using matc hed genomic, tr anscriptomic, and global
roteomic data from 953 cases across 6 solid cancer types. We first

nvestigated the mutation impacts at the mRNA level and protein
e v el, finding that although most seQTLs have the same direction
f effect as spQTLs, less than half of them are also significant at
he pr otein le v el. We also studied the concordant or discordant re-
ationship between seQTL versus spQTLs, finding several spsQTLs
hat have disproportional effects on protein. Finally, we conducted
nalyses to provide functional validation [ 21 ] for our findings of
P53 missenses associated with high protein expression. 

Integr ating pr otein-le v el data identified nearly 47.2% seQTLs
s concordant, significant spQTLs . T he r esult demonstr ates the
apacity of proteomic data to validate genomic findings and po-
entially filter out noises that may arise, for example, due to the

or e tr ansient natur e of tr anscription compar ed to tr anslation.
n addition to w ell-kno wn tumor suppressors like TP53 and MSH3 ,
ther gene mutations with concordant effects may also be “long-
ail” driver genes that will otherwise r equir e lar ge cohort sample
izes to discover. For example, PBRM1 , which we found in CCRCC,
s a subunit of the PBAF c hr omatin r emodeling complex thought
o be a tumor suppressor gene whose mutations may confer syn-
hetic lethality to DNA repair inhibitors [ 27 ]. ESRP1 , found in UCEC,
s crucial in regulating alternative splicing and the translation of
ome genes during organogenesis [ 28 ]. Other less-studied genes
e identified include YLPM1 truncations associated with concor-
antl y r educed YLPM1 mRNA and pr otein expr ession le v els in
oth CCRCC and UCEC. Analyzing the distribution of these gene
utations on NCI’s Genome Data Commons, we observed many

ther r ecurr ent truncations ( Supplementary Fig. S4 ), suggesting
hese mutations may represent some of the “long-tail” driver mu-
ations that warrant further investigation [ 29 , 30 ]. 

By devising a specific pipeline to detect spsQTLs, our results
ho w ed that apart from mutations that influence protein level
ediated by changes in mRNA le v el, man y m utations ar e asso-

iated with dispr oportional aberr ations at the pr otein le v el com-
ared to mRNA changes, indicating posttranscriptional regula-
ion. SpsQTLs were found to affect known driver genes such as
P53 missenses and truncations in NF1 [ 31 ] and MAP2K4 [ 32 ]. In
ost cases, protein molecules are more direct mediators of cellu-

ar functions and phenotypes than mRNAs [ 33 ]. T hus , the discor-
ant effect between mRNA le v el and protein level discovered in
ur study highlights the importance of exploring disease mecha-
isms and de v eloping tr eatments at the pr otein le v el. 

One possible source of spsQTLs is the imperfect correla-
ion betw een mRN A and pr otein expr ession in the affected
enes. Additional statistical analyses revealed that these mRNA–
r otein corr elations r ange widel y acr oss genes and cancer types
 Supplementary Fig. S5 ). While genes harboring spsQTLs have
o w er mRN A–pr otein corr elations in gener al than genes with con-
ordant eQTL and pQTL, this is not the case for se v er al discor-
ant genes, including MAP2K4 in BRCA and PBRM1 in CCRCC
 Supplementary Table S7 ). Based on the number of mutations and
enes identified, CRC and UCEC r eac hed statisticall y significant
ifferences between concordant and all other expressed genes

Wilcoxon rank-sum tests, P = 0.0056 and P = 0.022, r espectiv el y);
n CRC, mRNA–protein correlations also sho w ed significant dif-
erences betw een discor dant and all other expressed genes ( P =
.013 and P = 0.29, r espectiv el y); other cancer types likely did
ot r eac h statistical significance likel y due to sufficient mutations

dentified. The imperfect correspondence between gene mRNA–
r otein corr elations and m utation impacts further stresses the
eed to analyze and consider protein-specific impacts of muta-
ions. Supplementary Table S7 provides complete mRNA–protein
orrelation data for all concor dant/discor dant eQTL/pQTLs in
heir r espectiv e cancer type for in-depth examination. 

This study has se v er al limitations. First, our findings do not dis-
inguish between se v er al potential mechanisms that could lead
o discordant effects of mutations on gene and protein expres-
ion. One possibility is that the mutation affects the efficiency of
ranslation, leading to changes in protein levels that are not re-
ected in mRNA le v els . For example , accum ulating e vidence in
ecent years suggests that NMD is closely tied to the termina-
ion of translation [ 24 ], which may explain instances when some
runcations afford m uc h str onger associations with pr otein le v els
n our findings. But, in many cases, the mechanisms of how mu-
ations may affect protein abundance may be context and gene
pecific and remain to be elucidated. For example, certain muta-
ions may influence the binding of RNA-binding proteins and the
fficiency of tr anslation, wher eas others may alter posttr ansla-
ional modifications, such as phosphorylation or ubiquitination,
hich can impact protein stability or degradation without affect-

ng transcription or translation rates. Second, the proteogenomic
umor cohorts used herein, while being some of the largest stud-
es to date, still are limited in sample sizes and preclude suf-
cient statistical po w er to identify pQTLs at a single mutation

e v el or r e v eal trans effects . T hird, giv en the limitation of curr ent
mic technology and data, our findings do not r esolv e m utation
mpact on proteins at the temporal, spatial, or single-cell reso-
ution but provide candidate mutations to be investigated in fu-
ure studies. Fourth, our regression models assume a linear rela-
ionship between mutations (1 gene at a time), confounders, and
xpr ession, whic h may not ca ptur e mor e complex, nonlinear ef-
ects of mutations on multiple mRNA or protein expression. Fu-
ure studies could explore nonlinear regression models or neural
etwork a ppr oac hes to better account for these effects. Fifth, we
mplo y ed 2 complementary methods to confidently identify sp-
QTLs that r epr esent true pr otein-specific r egulatory e v ents. How-
 v er, the r eliance on FDR thr esholds could still limit the detec-
ion of spsQTLs with subtle effects. Alternative approaches, such
s Bayesian models that account for prior biological knowledge
r hier arc hical modeling, could be considered in futur e anal yses
o impr ov e the specificity of spsQTL detection. Additionall y, while
ur method focuses on cis -acting mutations, potential trans -acting

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae113#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae113#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae113#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae113#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae113#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae113#supplementary-data
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effects could be missed, a limitation that should be explored in 

larger datasets or by incorporating network-based analyses. 
Finally, using TP53 missense mutations as an example, we 

sho w ed that pr otein-le v el expr ession can serv e as an effectiv e 
strategy to prioritize functional mutations. As DNA-seq becomes 
e v er mor e commonplace, man y r ar e m utations ar e being identi- 
fied, and it remains challenging to accurately classify their func- 
tional impacts. Our data demonstrated that TP53 missenses as- 
sociated with high pr otein expr ession show significantly higher 
functional scor es, particularl y those measur ed in vivo . This pr o- 
tein expression–based prioritization strategy can be particularly 
po w erful when combined with high-throughput functional as- 
says like using MAVE model systems that are typically in vitro .
Considering that both MAVE and proteogenomic datasets of tu- 
mor cohorts are both expanding quic kl y in the next few years [ 34 ,
35 ], the combined a ppr oac hes can help effectiv el y pinpoint func- 
tional mutations for mechanistic and clinical characterization. 
The prioritized mutations based on protein-level consequences 
may also guide the selection of targeted therapy to advance pre- 
cision medicine. 

Methods 

Proteogenomic datasets 

The pr ospectiv e CPTAC data wer e downloaded and processed as 
described in the Method section of the work of Elmas et al. [ 36 ].
T he o v ervie w table in Fig. 1 A of the dataset describes, for each 

cancer cohort, the sample size, female patient percentage , a ver- 
age cancer onset age, and tumor stage. Samples are normalized 

by their median absolute deviations (MAD), so that the MAD of 
all samples in the dataset is 1. Protein markers with high frac- 
tions (greater than 20%) of missing values are filtered out. For 
the corresponding RNA-seq data, we used the log2 normalization 

on the FPKM (fr a gments per kilobase of exon per million mapped 

fr a gments)–normalized RNA-seq counts, and genes that have no 
expression in at least 90% of the samples were filtered out. 

The proteomics data used for validation were downloaded 

from the NCI CPTAC portal [ 37 ]. The dataset ov ervie w table in 

Supplementary Fig. S1A describes for each cancer cohort the sam- 
ple size, female patient percenta ge, av er a ge cancer onset age, and 

tumor stage . T he v alidation data ar e pr ocessed in the same way as 
the pr ospectiv e data. The RNA-seq datasets of the 3 r etr ospectiv e 
CPTAC cohorts were downloaded from the NCI CPTAC DCC portal 
[ 37 ]. The RN A expression w as measured in FPKM)[ 38 , 39 ] and w as 
further normalized by log2(FPKM + 1). 

pQTL and eQTL identification 

For each cancer cohort, we identified pQTLs and eQTLs using the 
m ultiple linear r egr ession model as implemented in the “limma”
R pac ka ge (v3.42.2) [ 40 ]. We also corrected confounding factors,
including age, gender, ethnicity, and TMT batch. The FDR was 
corr ected fr om the P v alues with the Benjamini–Hoc hber g pr oce- 
dure [ 41 ], ensuring that the identified QTLs ar e statisticall y r o- 
bust. Somatic m utations ar e gr ouped at a gene le v el in the m ul- 
tiple r egr ession model, similar to that implemented by our pr e vi- 
ousl y de v eloped AeQTL tool [ 7 ]. Mutations ar e separ atel y anal yzed 

by their mechanisms of action, including nonsynonymous muta- 
tions that likely do not affect expression, missense mutations, and 

truncating m utations—including fr ameshift and in-fr ame indels,
nonsense , splice site , and translation start site mutations. To im- 
pr ov e statistical po w er, w e focused our analysis on genes with 3 or 
mor e m utations in eac h cancer cohort and analyzed associations 
f mutations affecting cis- expression of the corresponding mRNA 

r protein products. 

psQTL identification 

e combined 2 complementary statistical methods to identify sp- 
QTLs. In the first method adopted from Battle et al. [ 4 ], we com-
ared the following 2 nested linear models using the LRT with the
anova” function in R: 

p = μ + β0 g + β1 r
p = μ + β2 r

here g is the genotype, r represents RNA level, and p is the pro-
ein le v el. By comparing these models using the LRT and filter-
ng results with an FDR less than 0.05, we identified candidate
psQTLs where the genotype (mutation) has a disproportionate 
mpact on protein abundance independent of mRNA expression. 

In the second method adopted from Mirauta et al. [ 23 ], we se-
ected QTLs where the spQTL FDR was less than 0.05 but the corre-
ponding seQTL FDR was greater than 0.05 as candidate spsQTLs
o specifically identify mutations that affect protein levels without 
nfluencing mRNA. We then ov erla pped these 2 lists of candidate
psQTLs obtained from 2 complementary methods to identify the 
nal list of spsQTLs for downstream analyses. 

RN A–protein correla tion 

o investigate the impact of mutations on mRNA and protein ex-
ression, we performed a comparative analysis across the 6 solid
ancer types. For each cancer type, Pearson correlation coeffi- 
ients were calculated for individual genes using paired mRNA 

nd pr otein expr ession data. We anal yzed 3 gr oups of genes we
dentified as showing a variable impact on mRNA/pr otein-le v el
xpressions: concordant genes (with mutations showing concor- 
ant effects at both mRNA and protein levels in cis ), discor-
ant genes (showing protein-specific effects), and other genes 

sho wing no concor dant or protein-specific impact). Our aim was
o test the hypothesis whether the mRNA–protein correlations 
f the concor dant/discor dant gr oups differ ed fr om the baseline
enome-wide mRNA–pr otein corr elations, indicating biological 
ignificance. To assess this, we employed a 2-sample Wilcoxon 

ank-sum test, comparing the mRNA–protein correlations for the 
oncor dant/discor dant and other gene groups within each can-
er type. Pairwise comparisons were made between the concor- 
ant and other gene sets, as well as between the discordant and
ther gene sets, demonstrating that the correlation coefficients 
or these groups were drawn from distinct population distribu- 
ions with statistical significance at a P value threshold of 0.05. 

umor-normal differential expression analysis 

e conducted this analysis in the pr ospectiv e CPTAC cohorts
ith paired tumor-adjacent tissue-normal samples. For each can- 

er cohort, we paired the tumor and normal samples from the
ame patient and performed a differ ential pr otein/mRNA expr es-
ion analysis to identify differentially expressed proteins with the 
limma” pac ka ge. Demogr a phic factors and batch effects, includ-
ng a ge, ethnicity, r ace, and sequencing oper ator, ar e adjusted in
he multiple regression model. 

vailability of Supporting Source Code and 

equirements 

r oject name: Pr otein expr ession quantitativ e tr ait loci (pQTLs):
oftware and analytic code 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae113#supplementary-data
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r oject homepa ge: https:// github.com/ Huang-lab/ pQTL [ 42 ] 
perating system(s): Platform independent 
r ogr amming langua ge: R, Python, Jupyter Notebook 
icense: MIT 

dditional Files 

upplementary Fig. S1. Ov ervie w of the r etr ospectiv e cohorts. (A)
ummary of the r etr ospectiv e CPTAC pr oteogenomic cohorts used
or the discov ery anal yses, including cancer type abbr e viation,
ata source, sample size of tumor (T) and normal (N) tissues, fe-
ale percentage , a verage onset age in years, and tumor stage dis-

ribution. (B) Volcano plots showing seQTL associations in the 6
ancer types (left) and volcano plots showing spQTL associations
right), wher e eac h dot denotes a gene–cancer pair included in the
nalysis. Top associated genes were further labeled. FC: log fold
hange; FDR: false discovery rate. 
upplementary Fig. S2. spsQTLs with strong effects. (A) Examples
f spsQTL whose effect sizes in mRNA le v el and pr otein le v el ar e
n a different direction. For each gene, the plot on the left shows
he corresponding mRNA levels of mutation carriers versus non-
arriers in FPKM, and the plot on the right shows pr otein-le v el
omparison in log ratio (MS TMT measurements) in the respec-
ive cancer type labeled on top of each of the violin plots . T he
abeled mutations are the 3 mutations whose carriers show the
ighest absolute expression differences of the mutated gene prod-
ct compared to the noncarriers. (B) Examples of spsQTL with a
rotein logFC and mRNA logFC ratio greater than 15. 
upplementary Fig. S3. Ov erla p of significant QTLs in cross-
umor analysis and matched tumor-normal analysis projected
nto pQTL volcano plots based on cr oss-tumor anal yses . T he plots
ere made separately for (A) discordant spsQTLs and (B) concor-
ant eQTL/pQTLs. 
upplementary Fig. S4. Example lolliplots showing mutations for
 genes that were identified as spsQTLs, including YLPM1 and
SRP1. The number on each disc denotes the number of mutations
n that position, and the color of the disc r epr esents the mutation
ype. 
upplementary Fig. S5. Correlation coefficients of concordant
ersus discordant genes . T he violin plots depict the distribution of
orrelation coefficients between matched mRNA and protein ex-
ressions for concordant (blue), discordant (red), and other genes

gr ay) acr oss the 6 cancer types studied. Genes with notable cor-
 elations ar e labeled in eac h plot. 
upplementary Table S1. List of expression quantitative trait loci

eQTLs) identified across 6 cancer types . T his table provides de-
ails on the gene mutations associated with mRNA expression lev-
ls, including statistical test r esults, m utation type, P v alues (ad-
usted), and effect sizes. 
upplementary Table S2. List of protein quantitative trait loci

pQTLs) identified across 6 cancer types . T his table provides de-
ails on the gene mutations associated with protein abundance
e v els, including statistical test r esults, m utation type, P v alues
adjusted), and effect sizes. 
upplementary Ta ble S3. Concor dant expression and protein
uantitativ e tr ait loci (eQTLs and pQTLs) identified acr oss 6 can-
er types . T his table includes information on the gene mutations,
dentified cancer types, and their impact on both mRNA and pro-
ein expression levels, demonstrating loci with consistent effects
cross both molecular la yers . 
upplementary Table S4. Significant somatic protein-specific
TLs (spsQTLs) identified by our statistical pipeline across 6 can-
er types . T his table details the loci with mutations showing sig-
ificant impacts on protein abundance not explained by mRNA
e v els, including summary statistics for eQTL/pQTL tests and the
RT and ov erla p test results. 
upplementary Table S5. Summary statistics for differ entiall y ex-
r essed pr oteins (DEPs) identified in pair ed tumor-normal (TN)
amples across 6 cancer types . T his table includes the test statis-
ics of protein expression differences between tumor and normal
issues harboring the specific mutation. 
upplementary T able S6. T est statistics between the 3 groups of
P53 mutations . T he tested gr oups wer e defined by (i) TP53 m u-

ations with top 20% mRNA (left) or protein (right) expression in
he pr ospectiv e CPTAC cohorts, (ii) the other TP53 m utations ob-
erv ed acr oss all CPTAC samples, and (iii) the rest of the assayed
P53 mutations from Kotler et al. using TP53 functional scores

orm Kotler et al. 
upplementary Ta ble S7. P earson’s correlation coefficient tests
etw een paired mRN A and pr otein expr essions for eac h concor-
ant and discordant gene, within each cancer cohort. 

c kno wledgments 

he authors thank CPTAC and its participating patients and fam-
lies who gener ousl y contributed the data. 

uthor Contributions 

uqi Liu (Data curation [supporting], Formal analysis [lead], Inves-
igation [lead], Methodology [lead], Software [lead], Visualization
lead], Writing – original draft [lead]), and Abdulkadir Elmas (Data
uration [lead], Formal analysis [supporting], Methodology [sup-
orting], Writing – r e vie w & editing [supporting]). Kuan-lin Huang

Conceptualization [lead], Supervision [lead], Writing – original
raft [supporting], Writing – review & editing [lead]). 

unding 

his w ork w as supported b y NIH NIGMS R35GM138113, ACS RSG-
2–115-01-DMC, and Mount Sinai funds to K.H. 

ata and Software Availability 

a ta Av ailability 

roteomic data for CPTAC-2/3 cohorts can be found on National
ancer Institute (NCI) Proteomic Data Commons (PDC) [ 43 ]. The
tudies used in the discovery cohorts and their PDC study IDs are
RCA (PDC000120), CRC (PDC000116), CCRCC (PDC000127), LUAD

PDC000153), OV (JHU: PDC000110; PNNL: PDC000118), and UCEC
PDC000125). 

The studies used in the validation cohorts and their PDC
tudy IDs are BRCA (PDC000173), CRC (PDC000111), and OV (JHU:
DC000113; PNNL: PDC000114). 

Genomic data, including DNA mutation and transcriptome pro-
ling for all CPTAC-2/3 cohorts used herein, can be found on Na-
ional Cancer Institute (NCI) Genome Data Commons (GDC) [ 44 ]
dbGaP Study Accession #: phs000892) and (dbGaP Study Acces-
ion #: phs001287) [ 45 ]. 

Data for TP53 MAVE assays can be downloaded from the Sup-
lementary Information from Kotler et al. [ 21 ]. 

Supporting data of our analysis results and an archival copy of
he corresponding code are available via the GigaScience repository,
igaDB [ 46 ]. 

https://github.com/Huang-lab/pQTL


Cancer Mutations’ Impact on mRNA vs. Protein | 11 

 

1
 

1  

 

1
 

2  

2  

 

2  

 

2  

2

2  

 

2  

2  

 

2

2  

 

3  

 

3  

3  

3  

 

Competing Interests 

K.H. is a cofounder and board member of a non-for-profit 501(c)(3) 
organization, Open Box Science, from which he does not receive 
any compensation and has no competing financial interests with 

this work. All other authors declare no competing interests. 

References 

1. Kurosaki T, Popp MW, Maquat LE. Quality and quantity control 
of gene expression by nonsense-mediated mRNA decay. Nat Rev 
Mol Cell Biol 2019;20:406–20. https://doi.org7/10.1038/s41580-01 
9- 0126- 2 .

2. Wang Z, Fan X, Shen Y, et al. Non-cancer-related pathogenic 
germline variants and expression consequences in ten- 
thousand cancer genomes. Genome Med 2021;13(1). 
https:// doi.org/ 10.1186/ s13073- 021- 00964- 1 .

3. Lindeboom RGH, Supek F, Lehner B. The rules and impact of 
nonsense-mediated mRNA decay in human cancers. Nat Genet 
2016;48(10):1112–18. https:// doi.org/ 10.1038/ ng.3664 .

4. Battle A, Khan Z, Wang SH, et al. Impact of regulatory variation 

fr om RNA to pr otein. Science 2015;347(6222):664. https://doi.or 
g/ 10.1126/ science.1260793 .

5. Cenik C, Cenik ES, Byeon GW, et al. Integr ativ e anal ysis of RNA,
tr anslation, and pr otein le v els r e v eals distinct r egulatory v ari- 
ation across humans. Genome Res 2015;25(11):1610–21. https: 
// doi.org/ 10.1101/ gr.193342.115 .

6. Chick JM, Munger SC, Simecek P, et al. Defining the conse- 
quences of genetic variation on a proteome-wide scale. Nature 
2016;534(7608):500–5. https:// doi.org/ 10.1038/ nature18270 .

7. Dong G, Wendl MC, Zhang B, et al. AeQTL: eQTL analysis 
using r egion-based a ggr egation of r ar e genomic v ariants. P ac 
Symp Biocomput 2021;26;172–83 https:// doi.org/ 10.1142/ 978981 
1232701 _ 0017 .

8. Rabadán R, Mohamedi Y, Rubin U, et al. Identification of rele- 
vant genetic alterations in cancer using topological data analy- 
sis. Nat Commun 2020;11(1). https:// doi.org/ 10.1038/ s41467-020 
- 17659- 7 .

9. Ding J, McConechy MK, Horlings HM, et al. Systematic analysis 
of somatic mutations impacting gene expression in 12 tumour 
types. Nat Commun 2015;6. https:// doi.org/ 10.1038/ ncomms95 
54 .

10. Arad G, Geiger T. Functional impact of pr otein-RNA v ariation 

in clinical cancer analyses. Mol Cell Proteomics 2023;22:100587. 
https:// doi.org/ 10.1016/ J .MCPRO .2023.100587 .

11. Mertins P, Mani DR, Ruggles KV, et al. Proteogenomics con- 
nects somatic mutations to signalling in br east cancer. Natur e 
2016;534(7605):55–62. https:// doi.org/ 10.1038/ nature18003 .

12. Zhang H, Liu T, Zhang Z, et al. Integrated proteogenomic char- 
acterization of Human high-gr ade ser ous ov arian cancer. Cell 
2016;166(3):755–65. https:// doi.org/ 10.1016/ j.cell.2016.05.069 .

13. Zhang B, Wang J, Wang X, et al. Proteogenomic characterization 

of human colon and rectal cancer. Nature 2014;513(7518):382–
87. https:// doi.org/ 10.1038/ nature13438 .

14. Liu Y, Beyer A, Aebersold R. On the dependency of cellular pro- 
tein le v els on mRNA abundance. Cell 2016;165(3):535–50. https: 
// doi.org/ 10.1016/ j.cell.2016.03.014 .

15. Clark DJ, Dhanasekaran SM, Petralia F, et al. Integrated proteoge- 
nomic c har acterization of clear cell renal cell carcinoma. Cell 
2019;179(4):964–83. https:// doi.org/ 10.1016/ j.cell.2019.10.007 .

16. Vasaikar S, Huang C, Wang X, et al. Proteogenomic analysis of 
human colon cancer r e v eals ne w ther a peutic opportunities. Cell 
2019;177(4):1035–49. https:// doi.org/ 10.1016/ j.cell.2019.03.030 .
7. Gillette MA, Satpathy S, Cao S, et al. Proteogenomic character- 
ization r e v eals ther a peutic vulner abilities in lung adenocarci-
noma. Cell 2020;182(1):200–25. https:// doi.org/ 10.1016/ j.cell.202 
0.06.013 .

8. Dou Y, Kawaler EA, Cui Zhou D, et al. Proteogenomic charac-
terization of endometrial carcinoma. Cell 2020;180(4):729–48.
https:// doi.org/ 10.1016/ j.cell.2020.01.026 .

9. Krug K, Jaehnig EJ, Satpathy S, et al. Proteogenomic land- 
scape of breast cancer tumorigenesis and targeted therapy.
Cell 2020;183(5):1436–56. https:// doi.org/ 10.1016/ j.cell.2020.10.0 
36 .

0. McDermott JE, Arshad OA, Petyuk VA, et al. Pr oteogenomic c har-
acterization of ovarian HGSC implicates mitotic kinases, repli- 
cation stress in observed chromosomal instability. Cell Reports 
Medicine 2020;1(1):100004. https:// doi.org/ 10.1016/ j.xcrm.2020. 
100004 .

1. Kotler E, Shani O, Goldfeld G, et al. A systematic p53 mutation
libr ary links differ ential functional impact to cancer mutation
pattern and evolutionary conservation. Mol Cell 2018;71(1):178–
90. https:// doi.org/ 10.1016/ j.molcel.2018.06.012 .

2. , Zecha J, , Satpathy S, , Kanashova T, et al. TMT Labeling for the
Masses: A Robust and Cost-efficient, In-solution Labeling Ap- 
pr oac h. Mol Cell Pr oteomics 2019;18:1468–78. https:// doi.org/ 10
.1074/mcp .TIR119.001385 . 

3. Mirauta BA, Seaton DD, Bensaddek D, et al. Population-scale pro-
teome variation in human induced pluripotent stem cells. eLife 
2020;9:e57390. https:// doi.org/ 10.7554/ ELIFE.57390 .

4. Karousis ED, Mühlemann O. Nonsense-mediated mRNA decay 
begins where translation ends. Cold Spring Harb Perspect Biol 
2019;11(2):a032862. https:// doi.org/ 10.1101/ cshperspect.a03286 
2 .

5. Davidoff AM, Humphrey PA, Iglehart JD, et al. Genetic ba-
sis for p53 ov er expr ession in human breast cancer. Proc Natl
Acad Sci 1991;88(11):5006–10. https:// doi.org/ 10.1073/ pnas.88. 
11.5006 .

6. Huang K-L, Scott AD, Cui Zhou D, et al. Spatially interacting
phosphorylation sites and mutations in cancer. Nat Commun 

2021;12(1). https:// doi.org/ 10.1038/ s41467- 021- 22481- w .
7. Chabanon RM, Morel D, Eychenne T, et al. PBRM1 deficiency con-

fers synthetic lethality to DNA repair inhibitors in cancer. Can-
cer Res 2021;81(11):2888–902. https:// doi.org/ 10.1158/ 0008-547 
2.CAN- 21- 0628 .

8. Vadlamudi Y, Dey DK, Kang SC. Emerging multi-cancer regula- 
tory role of ESRP1: orchestration of alternative splicing to con- 
trol EMT. Curr Cancer Drug Targets 2020;20(9):654–65. https: 
// doi.org/ 10.2174/ 1568009620666200621153831 .

9. Armenia J, Wankowicz SAM, Liu D, et al. The long tail of onco-
genic drivers in prostate cancer. Nat Genet 2018;50(5):645–51.
https:// doi.org/ 10.1038/ s41588- 018- 0078- z .

0. Loganathan SK, Sc hleic her K, Malik A, et al. Rar e driv er m uta-
tions in head and neck squamous cell carcinomas converge on
NOTCH signaling. Science 2020;367(6483):1264–69. https://doi.or 
g/ 10.1126/ science.aax0902 .

1. Philpott C, Tovell H, Frayling IM, et al. The NF1 somatic muta-
tional landscape in sporadic human cancers. Hum Genomics 
2017;11(1):13. https:// doi.org/ 10.1186/ s40246- 017- 0109- 3 .

2. Xue Z, Vis DJ, Bruna A, et al. MAP3K1 and MAP2K4 m utations ar e
associated with sensitivity to MEK inhibitors in multiple cancer 
models. Cell Res 2018;28(7):719–29. https:// doi.org/ 10.1038/ s414 
22- 018- 0044- 4 .

3. Buccitelli C, Selbach M. mRNAs, proteins and the emerging prin-
ciples of gene expr ession contr ol. Nat Re v Genet 2020;21:630–44.
https:// doi.org/ 10.1038/ s41576- 020- 0258- 4 .

https://doi.org7/10.1038/s41580-019-0126-2
https://doi.org/10.1186/s13073-021-00964-1
https://doi.org/10.1038/ng.3664
https://doi.org/10.1126/science.1260793
https://doi.org/10.1101/gr.193342.115
https://doi.org/10.1038/nature18270
https://doi.org/10.1142/9789811232701_0017
https://doi.org/10.1038/s41467-020-17659-7
https://doi.org/10.1038/ncomms9554
https://doi.org/10.1016/J.MCPRO.2023.100587
https://doi.org/10.1038/nature18003
https://doi.org/10.1016/j.cell.2016.05.069
https://doi.org/10.1038/nature13438
https://doi.org/10.1016/j.cell.2016.03.014
https://doi.org/10.1016/j.cell.2019.10.007
https://doi.org/10.1016/j.cell.2019.03.030
https://doi.org/10.1016/j.cell.2020.06.013
https://doi.org/10.1016/j.cell.2020.01.026
https://doi.org/10.1016/j.cell.2020.10.036
https://doi.org/10.1016/j.xcrm.2020.100004
https://doi.org/10.1016/j.molcel.2018.06.012
https://doi.org/10.1074/mcp.TIR119.001385
https://doi.org/10.7554/ELIFE.57390
https://doi.org/10.1101/cshperspect.a032862
https://doi.org/10.1073/pnas.88.11.5006
https://doi.org/10.1038/s41467-021-22481-w
https://doi.org/10.1158/0008-5472.CAN-21-0628
https://doi.org/10.2174/1568009620666200621153831
https://doi.org/10.1038/s41588-018-0078-z
https://doi.org/10.1126/science.aax0902
https://doi.org/10.1186/s40246-017-0109-3
https://doi.org/10.1038/s41422-018-0044-4
https://doi.org/10.1038/s41576-020-0258-4


12 | GigaScience , 2025, Vol. 14 

34. Edw ar ds NJ, Oberti M, Thangudu RR, et al. The CPTAC data por- 
 

3  

 

3  

 

 

3  

3  

3  

 

4  

 

Nucleic Acids Res 2015;43(7):e47. https:// doi.org/ 10.1093/ nar/ gk 

4  

 

 

4  

 

4  

 

4  

 

4  

 

4  

 

R
©
(

tal: a resource for cancer proteomics research. J Proteome Res
2015;14(6):2707–13. https:// doi.org/ 10.1021/ pr501254j .

5. Kuang D, Weile J, Kishore N, et al. MaveRegistry: a collaboration
platform for multiplexed assays of variant effect. Bioinformatics
2021;37(19):3382–83. https:// doi.org/ 10.1093/ bioinformatics/bta 
b215 .

6. Elmas A, Tharakan S, Jaladanki S, et al. Pan-cancer proteoge-
nomic investigations identify post-transcriptional kinase tar-
gets. Commun Biol 2021;4(1):1112. https:// doi.org/ 10.1038/ s420
03- 021- 02636- 7 .

7. CPTA C Data Portal. https://cptac- data- por tal.geor getown.edu/c
ptac/. Accessed 21 December 2024.

8. National Cancer Institute—GDC documentation: FPKM.https:
// docs.gdc.cancer.gov/ Data/Bioinformatics _ Pipelines/Expressio 
n _ mRNA _ Pipeline/#fpkm . Accessed 21 December 2024.

9. cpta rna expression (Ding lab) [GitHub repository]. https://gith
ub.com/ding-lab/cptac _ rna _ expression . Accessed 21 December
2024.

0. Ritchie ME, Phipson B, Wu D, et al. limma po w ers differential ex-
pr ession anal yses for RNA-sequencing and micr oarr a y studies .
ecei v ed: May 17, 2024. Revised: September 13, 2024. Accepted: December 5, 2024 
The Author(s) 2025. Published by Oxford Uni v ersity Pr ess GigaScience. This is an Open Access a

 https://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, an
v007 .
1. Benjamini Y, Hoc hber g Y. Contr olling the false discov ery r ate: a

practical and po w erful approach to multiple testing. J R Stat Soc
Ser B Stat Methodol 1995;57(1):289–300.https:// doi.org/ 10.1111/
j.2517-6161.1995.tb02031.x .

2. Pr otein expr ession quantitativ e tr ait loci (pQTLs): softwar e and
analytic code [GitHub repository]. 2024. https://github.com/Hua
ng-lab/pQTL . Accessed 21 December 2024.

3. National Cancer Institute—Proteomics Data Commons.https:
//cptac- data- por tal.geor getown.edu/cptacPublic/. Accessed 21
December 2024.

4. National Cancer Institute—Genomic Data Commons, CPTAC-
2.https:// portal.gdc.cancer.gov/ projects/CPTAC-2 . Accessed 21
December 2024.

5. National Cancer Institute—Genomic Data Commons, CPTAC-
3.https:// portal.gdc.cancer.gov/ projects/CPTAC-3 . Accessed 21
December 2024.

6. Liu Y, Elmas A, Huang K. Supporting data for “Mutation Impact
on mRNA v ersus Pr otein Expr ession acr oss Human Cancers. ”.
GigaScience Database. 2024. https:// doi.org/ 10.5524/ 102598 .
rticle distributed under the terms of the Cr eati v e Commons Attribution License 
d reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1021/pr501254j
https://doi.org/10.1093/bioinformatics/btab215
https://doi.org/10.1038/s42003-021-02636-7
https://cptac-data-portal.georgetown.edu/cptac/
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/#fpkm
https://github.com/ding-lab/cptac_rna_expression
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://github.com/Huang-lab/pQTL
https://cptac-data-portal.georgetown.edu/cptacPublic/
https://portal.gdc.cancer.gov/projects/CPTAC-2
https://portal.gdc.cancer.gov/projects/CPTAC-3
https://doi.org/10.5524/102598
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Results
	Discussion
	Methods
	Availability of Supporting Source Code and Requirements
	Additional Files
	Acknowledgments
	Author Contributions
	Funding
	Data and Software Availability
	Competing Interests
	References

