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Abstract

Background: Cancer mutations are often assumed to alter proteins, thus promoting tumorigenesis. However, how mutations affect
protein expression—in addition to gene expression—has rarely been systematically investigated. This is significant as mRNA and
protein levels frequently show only moderate correlation, driven by factors such as translation efficiency and protein degradation.
Proteogenomic datasets from large tumor cohorts provide an opportunity to systematically analyze the effects of somatic mutations
on mRNA and protein abundance and identify mutations with distinct impacts on these molecular levels.

Results: We conduct a comprehensive analysis of mutation impacts on mRNA- and protein-level expressions of 953 cancer cases with
paired genomics and global proteomic profiling across 6 cancer types. Protein-level impacts are validated for 47.2% of the somatic
expression quantitative trait loci (seQTLs), including CDH1 and MSH3 truncations, as well as other mutations from likely “long-tail”
driver genes. Devising a statistical pipeline for identifying somatic protein-specific QTLs (spsQTLs), we reveal several gene mutations,
including NF1 and MAP2K4 truncations and TP53 missenses showing disproportional influence on protein abundance not readily
explained by transcriptomics. Cross-validating with data from massively parallel assays of variant effects (MAVE), TP53 missenses
associated with high tumor TP53 proteins are more likely to be experimentally confirmed as functional.

Conclusion: This study reveals that somatic mutations can exhibit distinct impacts on mRNA and protein levels, underscoring the
necessity of integrating proteogenomic data to comprehensively identify functionally significant cancer mutations. These insights

provide a framework for prioritizing mutations for further functional validation and therapeutic targeting.
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Introduction

Cancer arises from the acquisition of mutations that confer se-
lective advantages. Most of these mutations are thought to affect
cellular functions by regulating the expression of gene products.
For example, truncations can result in nonsense-mediated decay
(NMD) [1, 2], which protects eukaryotic cells through degrading
premature termination codon (PTC) bearing mRNA [3]. Addition-
ally, a fraction of cancer mutations may uniquely affect protein
abundance but not mRNA expression. However, previous studies
characterizing genomic mutations affecting mRNA versus protein
levels have focused on germline variants as expression quantita-
tive trait loci (eQTL) [4-6]. While other cancer studies have char-
acterized the effect of somatic mutations on mRNA expression
levels [7-9], it remains unclear how somatic mutations may af-
fect protein abundance. The gap of knowledge is critical given that
mRNA and protein levels are only moderately correlated [10-13].
A myriad of factors, including cell state transition, signal delay,
translation on demand, and cellular energy constraint, can lead to
discrepancies between mRNA and protein levels [14]. Understand-
ing protein-level consequences of cancer mutations is critical in
identifying functionally important mutations and revealing their
downstream mechanisms.

In recent years, advances in mass spectrometry (MS) technolo-
gles have generated a wealth of global proteomic profiles of pri-
mary tumor cohorts, many of which also have concurrent ge-
nomic and transcriptomic profiling [15-20]. These proteogenomic
datasets present ample opportunities to validate somatic muta-
tions that show concordant impacts on downstream mRNA and
protein levels. On the other hand, protein abundance may also be
uniquely influenced by the efficiency of protein translation, trans-
port, and degradation. Thus, proteogenomic analyses can reveal
mutations that disproportionally impact protein abundances that
may not be found using genomic analyses alone.

Herein, we conducted a systematic analysis to decode the re-
lationship between somatic mutations versus mRNA and protein
levels using data from nearly a thousand cases across 6 cancer
types in prospective and retrospective cohorts from the Clinical
Proteomic Tumor Analysis Consortium (CPTAC). We identified mu-
tations showing concordant effects at both mRNA and protein ex-
pression levels in cis, as well as those that showed protein-specific
effects. We further examined how mutations associated with ex-
pression changes may predict in vitro and in vivo functional effects
measured by a massively parallel assay of variant effects (MAVE)
of TP53 [21]. Our results highlight the importance of pairing ge-
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Figure 1: Overview of the study workflow and proteogenomic cohorts. (A) Study workflow to identify eQTLs, pQTLs, concordant QTLs (between mRNA
and protein levels), and spsQTLs showing disproportional effects on protein expression. (B) Summary of the prospective CPTAC proteogenomic cohorts
used for the discovery analyses, including cancer type abbreviation, data source, sample size of tumor (T) and normal (N) tissues, female percentage,

average onset age in years, and tumor stage distribution.

nomic and proteomic analyses to prioritize functionally impor-
tant mutations.

Following the study workflow (Fig. 1A), we first sought to iden-
tify somatic mutations that may impact the corresponding gene’s
mRNA expression (somatic eQTL, termed seQTL below) and pro-
tein abundance (somatic pQTL, termed spQTL below) in primary
tumor tissue samples. We performed a multiple regression analy-
sis adjusted for age, gender, ethnicity, and Tandem Mass Tag (TMT)
[22] batch using the prospective CPTAC datasets that included
matched DNA sequencing (DNA-seq), RNA sequencing (RNA-seq),
and MS global proteomics data of primary tumor samples across
6 cancer types (see Methods, Fig. 1B), including 115 breast cancer

(BRCA) [19], 95 colorectal cancer (CRC) [16], 110 clear cell renal cell
carcinoma (CCRCC) [15], 109 lung adenocarcinoma (LUAD) [17], 84
ovarian cancer (OV) [20], and 97 uterine corpus endometrial carci-
noma (UCEC) [18] samples, as well as proteogenomic datasets for
additional, retrospective BRCA [11], CRC [13], and OV [12] cohorts
from CPTAC for validation (Supplementary Fig. S1A). We focused
on coding mutations given the coverage of the whole-exome se-
quencing (WES) data used in CPTAC studies; the analyses were
further stratified for truncations, missense, and synonymous mu-
tations given their likely different mechanisms of action in affect-
ing levels of the mutated gene product.

Based on the statistical power achieved by these cohort sizes
and to reduce false positives, we focused on genes with 3 or more
samples affected by mutations in each functional class of mis-
sense, truncation, and synonymous within the cancer cohort, in-
cluding 134, 13, and 15 genes tested in BRCA; 1,360, 318, and 226
genes tested in CRC; 55, 12, and 4 genes tested in CCRCC; 94, 4, and
8 genes tested in LUAD; 134, 5, and 8 genes tested in OV; and 2,243,
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Figure 2: Gene mutations identified as cis seQTLs and spQTLs across 6 adult cancer types. (A) Overview of the somatic mutation QTLs identified in
different cancer types and mutation types, including missense (green), truncating (orange), and synonymous (purple) mutations. For both eQTLs and
pQTLs, the panel on the left shows the counts of the mutation-gene pairs included in analyses, and the figure on the right shows the counts of the
significant eQTLs and pQTLs. (B) Volcano plots showing seQTL associations in the 6 cancer types (left) and volcano plots showing spQTL associations
(right), where each dot denotes a gene—cancer pair included in the analysis. Top associated genes were further labeled. FC: mRNA/protein expression

log fold change; FDR: false discovery rate.

273, and 196 genes tested in UCEC. We sought to identify their
seQTLs affecting cis-expression (i.e., expression of the mutation-
affected genes). Using the multiple regression model (see Meth-
ods), we identified 74 gene-cancer seQTL pairs (false discovery
rate [FDR] < 0.05), including 4 in BRCA, 47 in CRC, 7 in CCRCC, 3 in
LUAD, 1in OV, and 12 in UCEC (Fig. 2A, Supplementary Table S1).
Separated by the functional classes of mutations, 22 of those se-
QTLs are missense mutations, 12 are synonymous, and 40 are
truncating. Top seQTLs showing upregulation of gene expression
are primarily missenses, including SMARCA4 in LUAD, WNT7/B in

CRC, TP53 in OV, and FOXR2 in UCEC. Top candidates showing
downregulation of gene expression include TP53 and CDH1 trun-
cations in BRCA, as well as TP53 truncations in OV (Fig. 2B).
Using a similar multiple regression but modeling protein abun-
dance as the dependent variable, we identified 103 significant
gene—cancer spQTL pairs (FDR < 0.05), including 4 in BRCA, 31
in CRC, 8 in CCRCC, 3 in LUAD, 2 in OV, and 55 in UCEC (Fig. 2A,
Supplementary Table S2). Compared to the proportion of gene mu-
tation type evaluated in each cancer type, spQTLs showed sig-
nificant enrichment for truncations (Fisher exact test P < 0.05;
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Fig. 2A), highlighting the persistent and more profound effect
of truncations on protein abundance compared to mRNA levels.
Among the identified spQTLs across cancer, 7 are missense and
96 are truncating. For example, truncating mutations of NF1 and
ARID1A in UCEC and YLPM1 in CCRCC are each associated with
reduced protein level of the corresponding gene (Fig. 2B). Notably,
TP53 missenses in OV, BRCA, LUAD, and UCEC are each signifi-
cantly associated with increased protein expression in mutation
carriers (Fig. 2B).

To verify these discoveries, we applied the same seQTL and
spQTL analyses using retrospective CPTAC data (Supplementary
Fig. S1A) thatincluded independent cohorts of BRCA [11], CRC [13],
and OV [12] primary tumors. While these cohorts afforded smaller
sample sizes, 8 seQTLs and 5 spQTLs were detected in both retro-
spective and prospective sets. The gene-cancer spQTL pairs show-
ing strong validation in both datasets include TP53 missense mu-
tations and CDH1 truncations in BRCA and TP53 truncations in
CRC (Supplementary Fig. S1B).

Mutations showing concordant effects at mRNA
and protein levels

We next examined the concordance of seQTL and spQTL asso-
clations for each gene-cancer type pair. As expected, for most
(88.9%) of the significant seQTLs whose genes had sufficient ob-
servations at both the mRNA and protein levels, the identified
associations showed the same directionality. However, we only
identified 17 seQTLs (47.2%) that are also significant spQTLs at
an FDR < 0.05, which we show as concordant QTLs (Fig. 3A,
Supplementary Table S3). The effect sizes (in log fold change) of
these gene-cancer pairs showing concordant seQTLs and spQTLs
showed a high correlation between mRNA and protein (Pearson r
=0.90, P < 7.51E-7).

In different cancer types, genes whose mutation impacts on
gene and protein expressions are concordant include well-known
drivers of the disease, including TP53 missense mutations in OV,
CDH1 truncations in BRCA, and MSH3 truncations in CRC. Upreg-
ulation of mutated TP53 in OV is the only association found for
genes affected by missense mutations. The 16 other concordant
se/spQTLs are all truncations associated with reduced expres-
sion and highlight some “long-tail” driver genes, including PBRM1
in CCRCC, YLPM1 in CCRCC/UCEC, and ESRP1 in UCEC (Fig. 3B).
The concordant QTLs with truncating mutation can likely be ex-
plained by NMD, which reduces gene expression and in turn di-
minishes the expression of the corresponding proteins [3] . Com-
pared to the substantially higher counts of seQTL associations
(Fig. 2A, B), these concordant se/spQTL effects validate mutation
impacts on the gene product.

Protein-specific mutation impacts not observed
at mRNA levels

While most seQTLs and spQTLs show concordance, we postulate
that certain mutations may uniquely affect protein abundance
but not mRNA levels, which we term somatic protein-specific
QTLs (spsQTLs). To identify spsQTLs, we applied 2 methods to
stringently retain QTLs with discordant effects at mRNA and pro-
tein levels. First, applying a likelihood ratio test (LRT) between 2
regression models of protein level being predicted by mRNA level
with or without the mutation term (see Methods) [4], 96 candidate
spsQTLs (FDR < 0.05) were identified. Second, complementing this
LRT test with an approach filtering for a gene—cancer pair show-
ing significant spQTL (FDR < 0.05) but not seQTLs (see Methods)
[23], 86 candidate spsQTLs (FDR < 0.05) were identified.

By overlapping candidate spsQTLs identified by both methods,
we retained 83 spsQTLs, the majority (92.8%) of which are trun-
cating mutations (Fig. 4A, Supplementary Table S4). Top spsQTLs
associated with diminished protein expression include NF1 trun-
cations in UCEC, PLEAHKS truncations in CRC, and MAP2K4 trun-
cations in BRCA. The only spsQTLs that increase protein expres-
sion include TP53 missense mutations in BRCA, LUAD, and UCEC.
(Fig. 4B). We further examined the discordance in mutation im-
pacts on gene and protein expression levels (Fig. 4C). While some
of these truncations, such as NF1 in UCEC and MAP2K4 in BRCA,
were often accompanied by lower-than-median mRNA expression
in their respective tumor cohorts, their impacts were strikingly ob-
served at diminished protein expression levels. We highlighted in
Supplementary Fig. S2A spsQTLs where the affected gene’s pro-
tein showed negative protein log fold-change (logFC), whereas the
mRNA logFC is nonnegative, including CASP8 truncations in UCEC,
ARID1A truncations in CRC and UCEC, and ATM truncations in
LUAD and UCED. We also identified a set of spsQTLs truncations,
where the logFC associated with a reduction in proteinsis 15 times
greater than mRNA’s logFC (Supplementary Fig. S2B). These re-
sults suggest that NMD associated with these gene truncations
is closely tied to the terminated translation but may not affect
mRNA expression to the same degree [24].

To complement the cross-tumor analyses, we also utilized the
CPTAC samples with paired tumor-normal tissues to conduct
paired differential expression tests for both protein and mRNA
expression (Fig. 1A). The paired sample sizes with proteomic data
include 17 in BRCA, 17 in UCEC, 84 in CCRCC, 100 in LUAD, 29 in
CRC, and 10 in OV (Fig. 1B). Covariates including age at diagnosis,
ethnicity, race, and sequencing operator are adjusted in the anal-
ysis. While this analysis had varied statistical power due to differ-
ent normal tissue availabilities across cancer types, it served as
an independent validation of spQTLs (Supplementary Table S5).
This paired tumor-normal analysis validated the protein-level im-
pacts of several discordant spsQTLs (Supplementary Fig. S3A) as
well as some concordant se/spQTLs (Supplementary Fig. S3B).
For example, the validated discordant spsQTLs include trunca-
tions of SMAD4 and SCRIB in CRC as well as NF1, GLYR1, and
RASA1 in UCEC (Supplementary Fig. S3A). The validated con-
cordant se/spQTLs include truncations of YLPM1 and PBRMI in
CCRCC, SMARCA4 and KEAP1 in LUAD, and ESRP1 as well as JAK2
in UCEC (Supplementary Fig. S3B).

Functional evidence of TP53 missenses
associated with high protein expression

Notably, TP53 missenses are associated with higher protein ex-
pression in multiple cancer cohorts, in addition to the expected re-
duction in expression associated with truncations (Fig. 5A). Such
cis-effect of functional TP53 missense mutations had previously
been observed through immunohistochemistry (IHC [25]) or MS
global proteomics experiments [26]. Here, we hypothesized that
functional TP53 missense mutations are more likely to show high
levels of concurrent protein-level expression in the mutated tu-
mor sample. To test this hypothesis, we compared gene- and
protein-level TP53 expression from CPTAC with TP53 mutation-
level functional data from the in vitro and in vivo MAVE experi-
ment conducted by Kotler et al. [21], who designed a p53 variants
library to study the functional impact of those mutations.

We divided the TP53 missense mutations from Kotler et al. [21]
into 3 categories: (i) TP53 mutations with top 20% mRNA or protein
expression in the prospective CPTAC cohorts, (ii) the other TP53
mutations observed across all CPTAC samples, and (iii) the rest
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Figure 3: Gene mutations showing concordant impacts on gene and protein expression levels. (A) Overview of concordant QTLs as shown by their
effect sizes in log[fold change (FC)], where the gray line shows when the protein logFC equals RNA logFC. Some of the top concordant QTLs were
further labeled by cancer type and gene name. (B) Examples of QTL with concordant effects at mRNA and protein expression levels. For each gene, the
plot on the left shows the corresponding mRNA levels of mutation carriers versus noncarriers in FPKM, and the plot on the right shows protein level
comparison in log ratio (MS TMT measurements) in the respective cancer type labeled on top of each violin plot. The labeled mutations are the 3
mutations whose carriers show the highest absolute expression differences of the mutated gene product compared to the noncarriers.

of the assayed TP53 mutations from Kotler et al. [21]. For in vitro
data, the number of tested mutations by each category is 32, 78,
and 1,033, respectively. For in vivo data, the number of tested mu-
tations by each category is 19, 10, and 381, respectively. We first
compared the relative fitness score (RFS) measured from the in
vitro assays [21] . While there may be a trend, we did not observe

a significant difference between all the other mutations versus
TP53 missenses associated with either top 20% expression based
on either mRNA (P = 0.090, Wilcoxon rank-sum test) or protein
expression (P = 0.720).

We next compared the in vivo enrichment scores across the
same categories and found that TP53 missenses associated with

5
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Figure 4: Gene mutations showing discordant impacts on gene and protein expression levels. (A) Overview of discordant QTLs identified by our
statistical pipeline, as shown by their effect sizes in logFC, where the gray line shows when the protein logFC equals RNA logFC. (B) Heatmaps of QTLs
that are significant as either seQTL or spQTL and that are shared across at least 2 cancer types. Brown box indicates significant spsQTLs, and color
indicates the effect size in logFC and average protein expression of mutation carriers in log ratio from the MS TMT quantifications. (C) Examples of
QTL with discordant effects at mRNA versus protein levels. For each gene, the plot on the left shows the corresponding mRNA levels of mutation
carriers versus noncarriers in FPKM, and the plot on the right shows protein-level comparison in log ratio (MS TMT measurements) in the respective
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CPTAC samples, and (iii) the rest of the assayed TP53 mutations from Kotler et al. [21].
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top 20% protein expression showed a significantly higher enrich-
ment score in vivo compared to that of other TP53 missenses found
in CPTAC (P = 0.016) or other experimentally measured TP53 mu-
tations (P = 3.23E-5, Fig. 5B, Supplementary Table S6). In com-
parison, TP53 missenses associated with top 20% mRNA expres-
sion did not show a significant in vivo score difference to that of
other TP53 missenses found in CPTAC (P = 0.170). Kotler et al. [21]
observed that there was no significant correlation between en-
richment score in vivo and RFS in vitro, which is consistent with
our observations and may be explained by the different selec-
tive pressures between these settings in vivo and in vitro. Finally,
TP53 missenses associated with top 20% protein expression (P =
5.91E-7) or top 20% mRNA expression (P = 2.38E-2) showed sig-
nificantly higher prevalence than other CPTAC mutations based
on counts from the International Agency for Research on Cancer
(IARC) database [21] (Fig. 5B, Supplementary Table S6). Overall,
these analyses suggested that protein-level consequences from
primary tumor samples can aid the identification of functional
mutations.

Discussion

Herein, we analyzed how somatic mutations affect mRNA and
protein levels using matched genomic, transcriptomic, and global
proteomic data from 953 cases across 6 solid cancer types. We first
investigated the mutation impacts at the mRNA level and protein
level, finding that although most seQTLs have the same direction
of effect as spQTLs, less than half of them are also significant at
the protein level. We also studied the concordant or discordant re-
lationship between seQTL versus spQTLs, finding several spsQTLs
that have disproportional effects on protein. Finally, we conducted
analyses to provide functional validation [21] for our findings of
TP53 missenses associated with high protein expression.

Integrating protein-level data identified nearly 47.2% seQTLs
as concordant, significant spQTLs. The result demonstrates the
capacity of proteomic data to validate genomic findings and po-
tentially filter out noises that may arise, for example, due to the
more transient nature of transcription compared to translation.
In addition to well-known tumor suppressors like TP53 and MSH3,
other gene mutations with concordant effects may also be “long-
tail” driver genes that will otherwise require large cohort sample
sizes to discover. For example, PBRM1, which we found in CCRCC,
is a subunit of the PBAF chromatin remodeling complex thought
to be a tumor suppressor gene whose mutations may confer syn-
thetic lethality to DNA repair inhibitors [27]. ESRP1, found in UCEC,
is crucial in regulating alternative splicing and the translation of
some genes during organogenesis [28]. Other less-studied genes
we identified include YLPM1 truncations associated with concor-
dantly reduced YLPM1 mRNA and protein expression levels in
both CCRCC and UCEC. Analyzing the distribution of these gene
mutations on NCI's Genome Data Commons, we observed many
other recurrent truncations (Supplementary Fig. S4), suggesting
these mutations may represent some of the “long-tail” driver mu-
tations that warrant further investigation [29, 30].

By devising a specific pipeline to detect spsQTLs, our results
showed that apart from mutations that influence protein level
mediated by changes in mRNA level, many mutations are asso-
ciated with disproportional aberrations at the protein level com-
pared to mRNA changes, indicating posttranscriptional regula-
tion. SpsQTLs were found to affect known driver genes such as
TP53 missenses and truncations in NF1 [31] and MAP2K4 [32]. In
most cases, protein molecules are more direct mediators of cellu-
lar functions and phenotypes than mRNAs [33]. Thus, the discor-

dant effect between mRNA level and protein level discovered in
our study highlights the importance of exploring disease mecha-
nisms and developing treatments at the protein level.

One possible source of spsQTLs is the imperfect correla-
tion between mRNA and protein expression in the affected
genes. Additional statistical analyses revealed that these mRNA-
protein correlations range widely across genes and cancer types
(Supplementary Fig. S5). While genes harboring spsQTLs have
lower mRNA-protein correlations in general than genes with con-
cordant eQTL and pQTL, this is not the case for several discor-
dant genes, including MAP2K4 in BRCA and PBRM1 in CCRCC
(Supplementary Table S7). Based on the number of mutations and
genes identified, CRC and UCEC reached statistically significant
differences between concordant and all other expressed genes
(Wilcoxon rank-sum tests, P = 0.0056 and P = 0.022, respectively);
in CRC, mRNA-protein correlations also showed significant dif-
ferences between discordant and all other expressed genes (P =
0.013 and P = 0.29, respectively); other cancer types likely did
not reach statistical significance likely due to sufficient mutations
identified. The imperfect correspondence between gene mRNA-
protein correlations and mutation impacts further stresses the
need to analyze and consider protein-specific impacts of muta-
tions. Supplementary Table S7 provides complete mRNA-protein
correlation data for all concordant/discordant eQTL/pQTLs in
their respective cancer type for in-depth examination.

This study has several limitations. First, our findings do not dis-
tinguish between several potential mechanisms that could lead
to discordant effects of mutations on gene and protein expres-
sion. One possibility is that the mutation affects the efficiency of
translation, leading to changes in protein levels that are not re-
flected in mRNA levels. For example, accumulating evidence in
recent years suggests that NMD is closely tied to the termina-
tion of translation [24], which may explain instances when some
truncations afford much stronger associations with protein levels
in our findings. But, in many cases, the mechanisms of how mu-
tations may affect protein abundance may be context and gene
specific and remain to be elucidated. For example, certain muta-
tions may influence the binding of RNA-binding proteins and the
efficiency of translation, whereas others may alter posttransla-
tional modifications, such as phosphorylation or ubiquitination,
which can impact protein stability or degradation without affect-
ing transcription or translation rates. Second, the proteogenomic
tumor cohorts used herein, while being some of the largest stud-
ies to date, still are limited in sample sizes and preclude suf-
ficient statistical power to identify pQTLs at a single mutation
level or reveal trans effects. Third, given the limitation of current
omic technology and data, our findings do not resolve mutation
impact on proteins at the temporal, spatial, or single-cell reso-
lution but provide candidate mutations to be investigated in fu-
ture studies. Fourth, our regression models assume a linear rela-
tionship between mutations (1 gene at a time), confounders, and
expression, which may not capture more complex, nonlinear ef-
fects of mutations on multiple mRNA or protein expression. Fu-
ture studies could explore nonlinear regression models or neural
network approaches to better account for these effects. Fifth, we
employed 2 complementary methods to confidently identify sp-
sQTLs that represent true protein-specific regulatory events. How-
ever, the reliance on FDR thresholds could still limit the detec-
tion of spsQTLs with subtle effects. Alternative approaches, such
as Bayesian models that account for prior biological knowledge
or hierarchical modeling, could be considered in future analyses
to improve the specificity of spsQTL detection. Additionally, while
our method focuses on cis-acting mutations, potential trans-acting
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effects could be missed, a limitation that should be explored in
larger datasets or by incorporating network-based analyses.

Finally, using TP53 missense mutations as an example, we
showed that protein-level expression can serve as an effective
strategy to prioritize functional mutations. As DNA-seq becomes
ever more commonplace, many rare mutations are being identi-
fied, and it remains challenging to accurately classify their func-
tional impacts. Our data demonstrated that TP53 missenses as-
sociated with high protein expression show significantly higher
functional scores, particularly those measured in vivo. This pro-
tein expression-based prioritization strategy can be particularly
powerful when combined with high-throughput functional as-
says like using MAVE model systems that are typically in vitro.
Considering that both MAVE and proteogenomic datasets of tu-
mor cohorts are both expanding quickly in the next few years 34,
35], the combined approaches can help effectively pinpoint func-
tional mutations for mechanistic and clinical characterization.
The prioritized mutations based on protein-level consequences
may also guide the selection of targeted therapy to advance pre-
cision medicine.

Methods

Proteogenomic datasets

The prospective CPTAC data were downloaded and processed as
described in the Method section of the work of Elmas et al. [36].
The overview table in Fig. 1A of the dataset describes, for each
cancer cohort, the sample size, female patient percentage, aver-
age cancer onset age, and tumor stage. Samples are normalized
by their median absolute deviations (MAD), so that the MAD of
all samples in the dataset is 1. Protein markers with high frac-
tions (greater than 20%) of missing values are filtered out. For
the corresponding RNA-seq data, we used the log2 normalization
on the FPKM (fragments per kilobase of exon per million mapped
fragments)-normalized RNA-seq counts, and genes that have no
expression in at least 90% of the samples were filtered out.

The proteomics data used for validation were downloaded
from the NCI CPTAC portal [37]. The dataset overview table in
Supplementary Fig. S1A describes for each cancer cohort the sam-
ple size, female patient percentage, average cancer onset age, and
tumor stage. The validation data are processed in the same way as
the prospective data. The RNA-seq datasets of the 3 retrospective
CPTAC cohorts were downloaded from the NCI CPTAC DCC portal
[37]. The RNA expression was measured in FPKM)[38, 39] and was
further normalized by log2(FPKM + 1).

PQTL and eQTL identification

For each cancer cohort, we identified pQTLs and eQTLs using the
multiple linear regression model as implemented in the “limma”
R package (v3.42.2) [40]. We also corrected confounding factors,
including age, gender, ethnicity, and TMT batch. The FDR was
corrected from the P values with the Benjamini-Hochberg proce-
dure [41], ensuring that the identified QTLs are statistically ro-
bust. Somatic mutations are grouped at a gene level in the mul-
tiple regression model, similar to that implemented by our previ-
ously developed AeQTL tool [7]. Mutations are separately analyzed
by their mechanisms of action, including nonsynonymous muta-
tions that likely do not affect expression, missense mutations, and
truncating mutations—including frameshift and in-frame indels,
nonsense, splice site, and translation start site mutations. To im-
prove statistical power, we focused our analysis on genes with 3 or
more mutations in each cancer cohort and analyzed associations
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of mutations affecting cis-expression of the corresponding mRNA
or protein products.

spsQTL identification

We combined 2 complementary statistical methods to identify sp-
sQTLs. In the first method adopted from Battle et al. [4], we com-
pared the following 2 nested linear models using the LRT with the
“anova” function in R:

p=un+ Bog + Bir
p=un+ Por

where g is the genotype, r represents RNA level, and p is the pro-
tein level. By comparing these models using the LRT and filter-
ing results with an FDR less than 0.05, we identified candidate
spsQTLs where the genotype (mutation) has a disproportionate
impact on protein abundance independent of mRNA expression.

In the second method adopted from Mirauta et al. [23], we se-
lected QTLs where the spQTL FDR was less than 0.05 but the corre-
sponding seQTL FDR was greater than 0.05 as candidate spsQTLs
to specifically identify mutations that affect protein levels without
influencing mRNA. We then overlapped these 2 lists of candidate
spsQTLs obtained from 2 complementary methods to identify the
final list of spsQTLs for downstream analyses.

mRNA-protein correlation

To investigate the impact of mutations on mRNA and protein ex-
pression, we performed a comparative analysis across the 6 solid
cancer types. For each cancer type, Pearson correlation coeffi-
cients were calculated for individual genes using paired mRNA
and protein expression data. We analyzed 3 groups of genes we
identified as showing a variable impact on mRNA/protein-level
expressions: concordant genes (with mutations showing concor-
dant effects at both mRNA and protein levels in cis), discor-
dant genes (showing protein-specific effects), and other genes
(showing no concordant or protein-specific impact). Our aim was
to test the hypothesis whether the mRNA-protein correlations
of the concordant/discordant groups differed from the baseline
genome-wide mRNA-protein correlations, indicating biological
significance. To assess this, we employed a 2-sample Wilcoxon
rank-sum test, comparing the mRNA-protein correlations for the
concordant/discordant and other gene groups within each can-
cer type. Pairwise comparisons were made between the concor-
dant and other gene sets, as well as between the discordant and
other gene sets, demonstrating that the correlation coefficients
for these groups were drawn from distinct population distribu-
tions with statistical significance at a P value threshold of 0.05.

Tumor-normal differential expression analysis

We conducted this analysis in the prospective CPTAC cohorts
with paired tumor-adjacent tissue-normal samples. For each can-
cer cohort, we paired the tumor and normal samples from the
same patient and performed a differential protein/mRNA expres-
sion analysis to identify differentially expressed proteins with the
“limma” package. Demographic factors and batch effects, includ-
ing age, ethnicity, race, and sequencing operator, are adjusted in
the multiple regression model.

Availability of Supporting Source Code and
Requirements

Project name: Protein expression quantitative trait loci (pQTLs):
software and analytic code
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Project homepage: https://github.com/Huang-1lab/pQTL [42]
Operating system(s): Platform independent

Programming language: R, Python, Jupyter Notebook
License: MIT

Additional Files

Supplementary Fig. S1. Overview of the retrospective cohorts. (A)
Summary of the retrospective CPTAC proteogenomic cohorts used
for the discovery analyses, including cancer type abbreviation,
data source, sample size of tumor (T) and normal (N) tissues, fe-
male percentage, average onset age in years, and tumor stage dis-
tribution. (B) Volcano plots showing seQTL associations in the 6
cancer types (left) and volcano plots showing spQTL associations
(right), where each dot denotes a gene—cancer pair included in the
analysis. Top associated genes were further labeled. FC: log fold
change; FDR: false discovery rate.

Supplementary Fig. S2. spsQTLs with strong effects. (A) Examples
of spsQTL whose effect sizes in mRNA level and protein level are
in a different direction. For each gene, the plot on the left shows
the corresponding mRNA levels of mutation carriers versus non-
carriers in FPKM, and the plot on the right shows protein-level
comparison in log ratio (MS TMT measurements) in the respec-
tive cancer type labeled on top of each of the violin plots. The
labeled mutations are the 3 mutations whose carriers show the
highest absolute expression differences of the mutated gene prod-
uct compared to the noncarriers. (B) Examples of spsQTL with a
protein logFC and mRNA logFC ratio greater than 15.
Supplementary Fig. S3. Overlap of significant QTLs in cross-
tumor analysis and matched tumor-normal analysis projected
onto pQTL volcano plots based on cross-tumor analyses. The plots
were made separately for (A) discordant spsQTLs and (B) concor-
dant eQTL/pQTLs.

Supplementary Fig. S4. Example lolliplots showing mutations for
2 genes that were identified as spsQTLs, including YLPM1 and
ESRP1. The number on each disc denotes the number of mutations
in that position, and the color of the disc represents the mutation
type.

Supplementary Fig. S5. Correlation coefficients of concordant
versus discordant genes. The violin plots depict the distribution of
correlation coefficients between matched mRNA and protein ex-
pressions for concordant (blue), discordant (red), and other genes
(gray) across the 6 cancer types studied. Genes with notable cor-
relations are labeled in each plot.

Supplementary Table S1. List of expression quantitative trait loci
(eQTLs) identified across 6 cancer types. This table provides de-
tails on the gene mutations associated with mRNA expression lev-
els, including statistical test results, mutation type, P values (ad-
justed), and effect sizes.

Supplementary Table S2. List of protein quantitative trait loci
(pQTLs) identified across 6 cancer types. This table provides de-
tails on the gene mutations associated with protein abundance
levels, including statistical test results, mutation type, P values
(adjusted), and effect sizes.

Supplementary Table S3. Concordant expression and protein
quantitative trait loci (eQTLs and pQTLs) identified across 6 can-
cer types. This table includes information on the gene mutations,
identified cancer types, and their impact on both mRNA and pro-
tein expression levels, demonstrating loci with consistent effects
across both molecular layers.

Supplementary Table S4. Significant somatic protein-specific
QTLs (spsQTLs) identified by our statistical pipeline across 6 can-
cer types. This table details the loci with mutations showing sig-

nificant impacts on protein abundance not explained by mRNA
levels, including summary statistics for eQTL/pQTL tests and the
LRT and overlap test results.

Supplementary Table S5. Summary statistics for differentially ex-
pressed proteins (DEPs) identified in paired tumor-normal (TN)
samples across 6 cancer types. This table includes the test statis-
tics of protein expression differences between tumor and normal
tissues harboring the specific mutation.

Supplementary Table S6. Test statistics between the 3 groups of
TP53 mutations. The tested groups were defined by (i) TP53 mu-
tations with top 20% mRNA (left) or protein (right) expression in
the prospective CPTAC cohorts, (ii) the other TP53 mutations ob-
served across all CPTAC samples, and (iii) the rest of the assayed
TP53 mutations from Kotler et al. using TP53 functional scores
form Kotler et al.

Supplementary Table S7. Pearson’s correlation coefficient tests
between paired mRNA and protein expressions for each concor-
dant and discordant gene, within each cancer cohort.
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