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Abstract 17 

Disappointment is a vital factor in the learning and adjustment of strategies in reward-seeking 18 

behaviors. It helps them conserve energy in environments where rewards are scarce, while 19 

also increasing their chances of maximizing rewards by prompting them to escape to 20 

environments where richer rewards are anticipated (e.g., migration). However, another key 21 

factor in obtaining the reward is the ability to monitor the remaining possibilities of obtaining 22 

the outcome and to tolerate the disappointment in order to continue with subsequent actions. 23 

The periaqueductal gray (PAG) has been reported as one of the key brain regions in regulating 24 

negative emotions and escape behaviors in animals. The present study suggests that the PAG 25 

could also play a critical role in inhibiting escape behaviors and facilitating ongoing motivated 26 

behaviors to overcome disappointing events. We found that PAG activity is tonically 27 

suppressed by reward expectancy as animals engage in a task to acquire a reward outcome. 28 

This tonic suppression of PAG activity was sustained during a series of sequential task 29 

procedures as long as the expectancy of reward outcomes persisted. Notably, the tonic 30 

suppression of PAG activity showed a significant correlation with the persistence of animals' 31 

reward-seeking behavior while overcoming intermittent disappointing events. This finding 32 

highlights that the balance between distinct tonic signaling in the PAG, which signals 33 

remaining reward expectancy, and phasic signaling in the LHb, which signals disappointment, 34 

could play a crucial role in determining whether animals continue or discontinue reward-35 

seeking behaviors when they encounter an unexpected negative event. This mechanism 36 

would be essential for animals to efficiently navigate complex environments with various 37 

reward volatilities and ultimately contributes to maximizing their reward acquisition.  38 
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Introduction 39 

During reward-seeking behaviors, humans and animals occasionally encounter 40 

disappointing events that diminish their engagement and even prompt them to leave the 41 

environment. Disappointment could be a crucial factor, for example, in environments where 42 

resources become scarce, helping animals adjust their behavioral patterns to minimize 43 

unnecessary energy expenditure (e.g., by hibernating) or migrate to environments with richer 44 

resources.1-6 However, in real life, we often need to pass through a series of unexpected 45 

events, some of which may be disappointing or irrelevant to immediate gratification, to 46 

achieve our desired outcomes ultimately.7 Thus, we hypothesized that there would be 47 

another important neuronal mechanism that signals the remaining reward expectancy, 48 

helping us overcome disappointing events and continue motivated behaviors until we reach 49 

our desired goals.8-10 Then, how does the animal brain signal disappointment and the 50 

remaining reward expectancy when encountering a disappointing event? 51 

To solve this question, we examined the lateral habenula (LHb) and periaqueductal 52 

gray (PAG), key brain regions involved in the regulation of negative mood in animals.11-13 The 53 

LHb is a well-known primary input to dopamine neurons, especially signaling 54 

disappointment14 and aversiveness15 from stimuli. Thus, dysfunction of the LHb has been 55 

extensively studied as a promising therapeutic target for treating major depressive 56 

disorder.16-19 In the present study, we raised a question regarding a feature of the LHb 57 

response, which primarily involves phasic firing lasting 100-500 ms.20 This rapid signaling is 58 

crucial for animals to quickly learn and identify significant objects in a complex environment, 59 

where various valued objects are presented sequentially, and to promptly guide their actions 60 

step-by-step accordingly.21-24 However, if an animal's reward-seeking behavior, which 61 

involves a series of sequential actions, is solely regulated by the phasic signaling of the LHb, 62 

the animal would easily abandon or leave the ongoing motivated behavior every time it 63 

encounters a disappointing event. 64 

Therefore, we investigated another key brain region involved in the regulation of 65 

negative moods, the PAG.25-27 Notably, PAG activity has primarily been reported to play a 66 

pivotal role in controlling coping strategies in response to aversive stimuli, such as defensive 67 

and escape behaviors.28 As a result, the PAG has been suggested to be a critical brain area 68 

that can provide therapeutic interventions not only for mental disorders29-31 but also for 69 

movement disorders related to the control of involuntary behaviors.32-37 This has been further 70 

supported by previous studies showing that PAG manipulation affects pain, analgesia,38 71 

uncontrollable freezing behaviors,39 and involuntary vocalizations.40 Moreover, the PAG has 72 

crucial efferents that project to the motor control system, such as the raphe interpositus, 73 

which regulates gaze fixation in primates.41 Hence, we could expect that the PAG would not 74 

only trigger escape behaviors but also play a critical role in controlling escape and sustaining 75 

reward-seeking behaviors when an animal encounters a disappointing event.  76 

In summary, we investigated how the LHb and PAG neurons signal disappointment 77 

and the remaining reward expectancy to understand how an animal decides whether to 78 

overcome or leave a disappointing event. As a result, we found a significant correlation 79 

between PAG activity and the continuity of reward-seeking behavior in animals, which could 80 

help them overcome disappointing events and ultimately obtain their desired rewards.  81 
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Results 82 

To record the neuronal and behavioral responses of rhesus macaque monkeys while passing 83 

through a series of disappointing events before ultimately obtaining a reward outcome, we 84 

devised a scene-based foraging/Pavlovian task. In this task, two different foraging and 85 

Pavlovian tasks were conducted on a shared background scene image (Fig. 1A). As a result, 86 

the monkeys were able to predict different reward outcomes for each group of scene images 87 

based on the average reward outcomes experienced in the foraging and Pavlovian tasks. 88 

Therefore, the monkeys experienced multiple changes in reward predictions throughout the 89 

task, depending on the appearance of each group of scene images and tasks. 90 

Reward expectation facilitates visual attention to contexts 91 

We firstly found that reward experiences facilitate the visual attention of primates. 92 

Each trial of the task started with the appearance of a scene image (Fig. 1A, scene onset), 93 

which allowed the monkey's free-viewing for 1 s and then remained as a background scene 94 

until the end of the trial, during which either the Pavlovian or foraging task was performed. 95 

The monkeys experienced large amount of juice rewards in both foraging and Pavlovian tasks 96 

in the high-valued scenes (Fig. 2A and C), while they received small amount of juice rewards 97 

in the foraging task and airpuff punishments in the Pavlovian task in the low-valued scenes 98 

(Fig. 2B and D). As a result, at the start of a trial, monkeys could predict greater reward 99 

outcomes from the appearance of the high-valued scenes compared to low-valued scenes 100 

(Fig. 1B). 101 

As the monkeys experienced larger rewards, their free viewing became more focused 102 

on high-valued scenes (Fig. 1F, outside). For the background scene images, we used face and 103 

landscape images, as they are representative examples of social and spatial contexts that 104 

animals encounter during reward-seeking behaviors in real life.42 When we used face images 105 

as the background scene images, they showed more pronounced gazes toward the eye 106 

regions in the high-valued face scene images than in the low-valued scene images, 107 

accompanied by stronger scene viewing of the high-valued face images (Fig. 1E and F, inside).  108 

Through an additional experiment where the influence of reward and punishment on 109 

scene gaze was examined respectively, we confirmed that the effect of value on monkeys' 110 

gaze for scene images was particularly regulated by the predicted values of reward rather 111 

than airpuff punishment in this task design (Supplementary Fig. S1). The monkeys' gaze 112 

toward the scene images was more focused on those with expected high-value rewards, even 113 

if they included an airpuff punishment, and it decreased for images with expected low-value 114 

rewards, even if there was no airpuff punishment. 115 

 116 

Continuity of reward expectancy facilitates subsequent actions even after disappointment 117 

We then found that the reward expectancy from the scene images continuously 118 

facilitated subsequent actions of animals in the next step. As described above, each trial 119 

began with the appearance of a scene image and the monkeys' free viewing for 1 s (Fig. 1A). 120 

In the meantime, although the monkeys' gaze was more focused on the high-valued scenes 121 

than on the low-valued scenes, we found that their gaze toward the scene images commonly 122 

increased during the 50-150 ms period for both scenes, reaching over 90% and being 123 
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sustained until the next stimuli appeared (Fig. 1F, outside). At the onset of the low-valued 124 

scenes, the monkeys sometimes closed their eyes or shifted their gaze away from the scene 125 

image during the free viewing period. However, they soon returned their gaze to the scene 126 

and prepared to perform the subsequent task. This indicates that the monkeys had a strong 127 

motivational engagement for the subsequent task procedures in both scene groups. Notably, 128 

these highly motivated states in both scenes consistently facilitated subsequent behaviors. 129 

After a free-viewing of the scene for 1 s, a fixation point (FP) appeared at the center 130 

of the screen, and either the foraging task or the Pavlovian task was initiated (Fig. 2). The 131 

foraging task and Pavlovian task were distinguished by different shapes of the FP (Fig. 2A-B, 132 

foraging task, square; Fig. 2C-D, Pavlovian task, circle). Once the FP appeared at the center of 133 

the scenes, the monkeys quickly fixated their gaze on the FP within 20 ms, whether it 134 

indicated the foraging task or the Pavlovian task (Fig. 3D and H). In both foraging and 135 

Pavlovian tasks, the start time at which monkeys' gaze reached the FP was significantly 136 

quicker in high-valued scenes than in low-valued scenes. In addition to the speed of the 137 

fixation start time, the monkeys exhibited higher fixation rates in high-valued scenes 138 

compared to low-valued scenes (Fig. 3C and G). However, even in low-valued scenes, 139 

monkeys initiated fixation on the FP within 20 ms (Fig. 3D and H, blue), and the fixation rates 140 

were over 95% (Fig. 3C and G, blue). This implies that the monkeys were in a strong 141 

motivational state in both high-valued and low-valued scenes. Indeed, even before the FP 142 

onset, about 90% of the monkeys' gaze had already stayed on the location where the FP 143 

would appear (Fig. 3 A-B and E-F).  144 

This result implies that as long as reward expectancy is sustained, animals can 145 

maintain a strong motivational state even after disappointment. How, then, do the neural 146 

mechanisms in the brain operate to sustain such a strong motivational state in animals, even 147 

after the disappointment? 148 

 149 

PAG neurons signal reward expectancy using tonic activity 150 

We found that the neuronal activity of the PAG was tonically modulated by the 151 

expectancy of reward outcomes. Along with the monkeys' gaze behaviors, we recorded 152 

neuronal activities in the LHb and PAG (Fig. 2). When a scene image appeared at the beginning 153 

of a task trial, neuronal activity in both brain regions was inhibited by high-valued scenes and 154 

excited by low-valued scenes (Fig. 1C and D). However, their responses exhibited distinct 155 

characteristics, with the PAG primarily showing tonic firing, while the LHb responded with 156 

phasic firing. We notably found that the reward expectancy induced by the scene onset had 157 

a significant and continuous effect not only on the continuity of the monkeys' subsequent 158 

scene-viewing behaviors (Fig. 1F, outside) but also on the tonic activity of PAG neurons, which 159 

persisted from scene onset to FP onset (Fig. 1D).  160 

The phasic LHb response was advantageous for rapidly encoding value information 161 

from the scene images, with a short latency of around 150 ms (Fig. 1C). The neuronal activity 162 

of LHb was suppressed by high-valued scenes and excited by low-valued scenes. The 163 

difference between these two scenes persisted for about 450 ms, after which their firing rates 164 

quickly recovered to baseline levels of neuronal activity, similar to those before the onset of 165 

the scene. This enabled the LHb to cease its response to the scene images before the next 166 
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stimuli appeared and to prepare for subsequent responses in the following steps (Fig. 4J and 167 

5J, before 0 ms). 168 

In contrast, the tonic activities of PAG slowly encoded the value information provided 169 

by the scene onset, starting around 300 ms (Fig. 1D). The neuronal activity of the PAG was 170 

also inhibited in response to high-valued scenes and slightly excited in response to low-valued 171 

scenes. However, after the value responses, the PAG activity did not quickly recover to 172 

baseline levels as the LHb responses did. Meanwhile, the PAG responses exhibited a more 173 

pronounced tendency to steadily sustain the tonic suppression in both high- and low-valued 174 

scenes until the next visual information was presented (Fig. 4N and 5N, before 0 ms). This 175 

result implies that PAG activity could tonically regulate the persistence of the task-engaged 176 

state in animals from a reward-informative stimulus to a subsequent reward-informative 177 

stimulus. 178 

 179 

Tonic PAG activity passes over disappointment and signals the continuity of reward 180 

expectancy until the goal is ultimately obtained 181 

We found that the PAG response is specifically tuned to signal the continuity of reward 182 

expectancy, even when disappointment occurs during the sequential procedures of reward-183 

seeking behaviors. As described above, the PAG neurons exhibited tonic suppression despite 184 

the disappointment induced by the low-valued scene (Fig. 1D). Especially through the foraging 185 

task, we observed additional evidence showing that PAG activity was able to maintain tonic 186 

suppression despite further disappointments occurring, until the reward was ultimately 187 

obtained (Fig. 2A-B; Fig. 4M-P). 188 

The foraging task was designed to observe behavioral and neural responses when 189 

temporary disappointment occurs during sequential task procedures, but the possibility of 190 

obtaining a reward outcome is 100% guaranteed. The foraging task began with the 191 

appearance of the square-shaped FP on the scene images. Once the monkeys completed gaze 192 

fixation on the FP, the FP disappeared, and good or bad objects appeared randomly on the 193 

left or right side (Fig. 2A-B, Object onset). The appearance of the good object allowed the 194 

monkeys to receive a reward immediately upon completing gaze fixation on it 195 

(Supplementary Movie S1). In contrast, the bad object required avoiding gaze toward it 196 

(Supplementary Movie S2). The monkeys could avoid the bad object by either not making a 197 

saccade toward it for 1 s or making a saccade but breaking the fixation within 500 ms. After 198 

the monkeys successfully avoided gazing at the bad object, the FP reappeared. Subsequently, 199 

the monkeys were finally able to find the good object and received a reward by fixating on it. 200 

The monkeys performed these instrumental behaviors with a success rate of over 95%. Even 201 

if they failed, the same trial was repeated until they succeeded, ultimately receiving a reward 202 

outcome with a 100% probability. 203 

On the one hand, we found that the phasic response of the LHb was proficient in 204 

encoding the value difference between good and bad objects (Fig. 4K-L). The appearance of 205 

the bad object was another disappointing event for the monkeys, as it incurred additional 206 

temporal and effort costs compared to the good object. As a result, LHb activity was inhibited 207 

by the presence of good objects and excited by the presence of bad objects. 208 
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On the other hand, we found that the tonic activity of the PAG maintained its tonic 209 

suppression state throughout the sequential procedures of the foraging task, even when good 210 

or bad objects appeared, ultimately leading to a 100% probability of obtaining a reward 211 

outcome (Fig. 4O-P). We observed that the tonic suppression of the PAG, which began with 212 

the initial scene onset (Fig. 4M), was sustained until the FP onset (Fig. 4N) and continued even 213 

after either the good or bad objects appeared (Fig. 4O-P). Although PAG activities were 214 

slightly excited by the appearance of either good or bad objects, their activities quickly 215 

declined and returned to a level lower than baseline (Fig. 4O-P, before 0 ms). As a result, the 216 

firing rates of the PAG neurons remained lower than baseline levels when FP reappeared 217 

following the avoidance of the bad object. 218 

 219 

Distinct LHb and PAG responses signal disappointment and continuity of remaining reward 220 

expectancy 221 

On the contrary, we also confirmed that PAG activity becomes tonically excited when 222 

the reward expectancy is completely extinguished during an ongoing motivated behavior, and 223 

remains in a tonically excited state until the end of the trial. This was evident in the Pavlovian 224 

task, which dramatically altered the remaining reward expectancy, sustaining it in high-valued 225 

scenes and completely extinguishing it in low-valued scenes. 226 

In the high-valued scenes, the Pavlovian task resulted in different probabilities of 227 

obtaining rewards (100%, 50%, 0%) depending on the object presented (Fig. 2C; 228 

Supplementary Movie 3). Ultimately, the appearance of the FP-indicating the Pavlovian task 229 

in the high-valued scenes resulted in an average probability of obtaining rewards of 50% (the 230 

average of 100%, 50%, and 0%). This implies that it caused disappointment compared to the 231 

100% probability of obtaining rewards in the foraging task (Fig. 2A), but there is still a 232 

possibility of obtaining rewards. 233 

On the other hand, in the low-valued scene, when the Pavlovian task began with the 234 

appearance of the FP, the probability of obtaining rewards was completely extinguished to 235 

0%, leaving only the prediction of punishment (Fig. 2D; Supplementary Movie 4). This not only 236 

caused disappointment compared to the 100% probability of obtaining rewards in the 237 

foraging task, but also implies that the possibility of obtaining rewards within the trial was 238 

completely extinguished (Fig. 2B and D). 239 

As a result of the common disappointment in both high- and low-valued scenes, LHb 240 

activities were excited by the FP-indicating the Pavlovian task (Fig. 5J). However, PAG 241 

exhibited different patterns of excitation and inhibition in response to the FP, depending on 242 

whether the Pavlovian task was initiated in high-valued or low-valued scenes (Fig. 5N). 243 

In the low-valued scenes, the PAG became excited when the expectancy of reward 244 

outcomes was completely extinguished by the appearance of the FP-indicating the Pavlovian 245 

task (Fig. 5N). Then, this tonically excited state of PAG activity was sustained until the end of 246 

the trial, remaining slightly above baseline levels when an object appeared after the FP (Fig. 247 

5P, before 0 ms). The PAG activity was not responsive to variations in punishment probability 248 

(100%, 50%, or 0% airpuff), differentiated by the appearance of objects (Fig. 5P), but had no 249 

significant impact on the previously extinguished remaining reward expectancy. 250 
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In contrast, in the high-valued scenes, the Pavlovian task induced disappointment but 251 

still allowed the monkeys to maintain the expectancy of obtaining rewards, even though the 252 

probability was reduced. As a result, when the FP-indicating the Pavlovian task appeared in 253 

the high-valued scenes, the PAG remained in a suppressed state until an object appeared (Fig. 254 

5O, before 0 ms). Subsequently, the neuronal activities of the PAG were significantly 255 

differentiated by the 100%, 50%, and 0% reward objects. When the objects associated with 256 

100% or 50% reward probabilities appeared, the PAG activity remained in a tonically 257 

suppressed state, but it became excited in response to the 0% reward object, which also 258 

signifies the complete extinction of reward expectancy within that trial (Fig. 5O).  259 

Consequently, we suggest that the distinct phasic LHb and tonic PAG responses could 260 

play separate roles in signaling disappointment and remaining reward expectancy. How, then, 261 

do changes in the tonic activity of the PAG contribute to behavioral responses when animals 262 

encounter an event that switches the remaining reward expectancy on or off? 263 

 264 

Tonic PAG activity facilitates subsequent actions based on inhibitory motor control 265 

Finally, we propose that the tonic activity of PAG neurons could signal the continuity 266 

of remaining reward expectancy and facilitate subsequent actions based on inhibitory motor 267 

control. Our findings have so far revealed that PAG neurons exhibited tonic inhibition during 268 

the foraging task, which guaranteed a 100% probability of obtaining a reward (Fig. 4M-P). This 269 

tonic inhibition of the PAG corresponded to the continuity of reward expectancy, facilitating 270 

monkeys' persistent visual attention throughout the task trials (Fig. 4A-D). Additionally, 271 

during this period, we observed that their overall eye movements were suppressed (Fig. 4E-272 

H) while the PAG exhibited tonic inhibition. This inhibitory control of eye movements could 273 

reflect an increase in gaze fixation on the scene images, indicating the persistence of visual 274 

attention. Along with this, our further evidence suggests that the inhibitory control of eye 275 

movements could play additional crucial roles in facilitating the execution of subsequent 276 

actions. 277 

This was evident in the Pavlovian task, which did not require any instrumental actions 278 

and allowed us to observe the natural behaviors of the monkeys. When the FP-indicating 279 

Pavlovian task appeared in low-valued scenes, the monkeys' remaining reward expectancy 280 

was completely extinguished. As a result, PAG activity was tonically excited (Fig. 5N and P), 281 

and the monkeys exhibited an increase in eye movements (Fig. 5F and H), which in turn 282 

resulted in a decrease in scene gaze compared to high-valued scenes (Fig. 5B and D). 283 

Consequently, PAG activity (Fig. 5O-P, before 0 ms) and eye movements (Fig. 5G-H, before 0 284 

ms) at the time of object onset were greater in low-valued scenes than in high-valued scenes 285 

(Fig. 6A). Ultimately, we found that PAG activity observed at the time of object onset was 286 

significantly correlated with the distance of the monkeys' eye movements before the object 287 

onset (Fig. 6B). 288 

Even after the object appeared, the differences in eye movements between the high-289 

valued and low-valued scenes persisted and were sustained until the end of the trial (Fig. 6C). 290 

Thus, when the object subsequently appeared in the Pavlovian task, the monkeys in the low-291 

valued scenes experienced slowness in locating their gaze on the object (Fig. 6D), and even 292 
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after making a saccade, their gaze did not remain fixated as long as it did in the high-valued 293 

scenes (Fig. 6E).  294 
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Discussion 295 

Tonic PAG activity and remaining reward expectancy in overcoming disappointment 296 

This study proposes that when animals encounter disappointing events, they could 297 

overcome disappointment and continue reward-seeking behaviors through a balance 298 

between distinct phasic and tonic signals from the LHb and PAG.  299 

The LHb is well-known as one of the primary inputs to the substantia nigra pars 300 

compacta (SNc) and ventral tegmental area (VTA) dopamine neurons for signaling 301 

disappointment.14,43-46 This neuronal pathway is essential for adaptability, flexibility, and 302 

learning of animal behaviors as it can modulate neuronal plasticity in the basal ganglia via 303 

dopamine transmission.47-50 The LHb responds to disappointing events with phasic firings 304 

based on the concept of reward prediction error, which calculates the discrepancy between 305 

actual outcomes and predicted values.21,51-53 Consequently, when an animal obtains a reward 306 

larger than expected, it suppresses LHb activity, enhances dopamine release to the striatum, 307 

and activates the direct pathway within the basal ganglia system. This pathway projects to 308 

the superior colliculus (SC), thalamus, and pedunculopontine nucleus (PPN), thereby 309 

facilitating the associated actions via the substantia nigra pars reticulata (SNr) and the internal 310 

segment of the globus pallidus (GPi).54-56 Conversely, when the reward is smaller than 311 

expected, LHb activity is stimulated, leading to reduced dopamine release and activation of 312 

the indirect pathway, which includes the external segment of the globus pallidus (GPe) and 313 

the subthalamic nucleus (STN), thereby suppressing the associated actions.57-61 314 

However, to optimize reward acquisition, animals often need to overcome 315 

disappointment and sustain reward-seeking behaviors by considering additional factors (e.g., 316 

good or bad) beyond these prediction errors (i.g., better or worse). For instance, during 317 

reward-seeking behaviors, animals may encounter a disappointing event that is relatively 318 

worse than expected but could still hold an absolute value worth pursuing.62 Our findings 319 

revealed distinct phasic and tonic neuronal responses in the LHb and PAG, representing 320 

disappointment and remaining reward expectancy, respectively. Notably, the PAG activity 321 

was proficient at signaling reward expectancy throughout task trials, persisting until the 322 

desired reward was achieved (Fig. 4M-P and 5M-P). Meanwhile, despite occasional 323 

disappointments, the monkeys consistently engaged in a series of task procedures with 324 

heightened visual attention (Fig. 4A-D and 5A-D). 325 

On the one hand, the PAG has reciprocal connections with the LHb, which should not 326 

be overlooked as a potential node for exchanging tonic signaling between them and guiding 327 

animals to overcome disappointing events.63-67 On the other hand, the PAG also establishes 328 

neuronal networks with other critical brain regions in the reward system, such as the ventral 329 

pallidum68,69 and amygdala (AMY).70-73 In previous studies, we particularly reported similar 330 

tonic activity patterns in amygdala neurons, which facilitated extraordinary goal-directed eye 331 

movements within the range of express saccades.74,75 Therefore, we suggest that this tonic 332 

signaling from the amygdala could be a strong candidate for modulating dopamine activity 333 

via the amygdalo-nigral pathway,76,77 and dopamine neurons could, in turn, integrate tonic 334 

signals from the PAG and phasic signals from the LHb (Fig. 7). Finally, further studies on the 335 

reciprocal connections of the PAG with the LHb and amygdala could deepen our 336 

understanding of how animals overcome disappointment and sustain reward-seeking 337 
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behaviors, ultimately achieving desired outcomes. Indeed, the PAG has recently been 338 

highlighted as a potential therapeutic target for major depressive disorder,78-80 which could 339 

expand treatment approaches and complement LHb studies aimed at improving sustained 340 

antidepressant effects.81-83 341 

 342 

Tonic suppression of PAG activity in bridging sequential reward-seeking behaviors 343 

Next, our findings suggest that the tonic activity of the PAG could play a crucial role in 344 

bridging sequential motor actions involved in reinforcement learning. This is evident in the 345 

correlation between the tonic signaling of the PAG and the anticipatory gaze of monkeys, 346 

which consistently maintained their gaze on the background scene images where their tasks 347 

took place (Fig. 1E-F). Thereby, the anticipatory gaze enabled monkeys to prepare for 348 

subsequent actions (Fig. 3D-E and H-I), allowing them to detect the FP with greater speed and 349 

gaze rates (Fig. 3). 350 

This is an essential component in the motor skill behaviors of animals, as it allows a 351 

sequence of actions to be interconnected and executed as cohesive behavioral units (i.g., 352 

motor chunk).84-86 As a result, animals could improve the speed and accuracy of a series of 353 

sequential procedures in reward-seeking behaviors.87,88 This is exemplified by our previous 354 

study, which examined motor skill acquisition in monkeys using a 2x5 task.89 The 2x5 task 355 

involved training the monkeys to learn and remember the sequence of pressing five pairs of 356 

buttons, which illuminated from a total of 16 buttons, in a predetermined order. Following a 357 

series of training sessions, the monkeys exhibited skilled behavior in which, upon pressing 358 

one button, they were able to locate their gaze on the next button they would press before 359 

it illuminated. As a result, they could perform subsequent actions with exceptional speed and 360 

accuracy, leading to faster reward acquisition. 361 

Furthermore, this reinforcement between behavioral units could also play a pivotal 362 

role in gating subsequent behaviors sequentially. For example, monkeys initiate eye contact 363 

before engaging in social behaviors like lip-smacking.90 Sequentially, lip-smacking induces 364 

synchronization of the animal's behavior, facilitating emotional exchange and cooperative 365 

actions, which, in turn, promotes a series of various subsequent behaviors.91-93 Thus, the tonic 366 

signaling of the PAG, which supported the monkeys' anticipatory gaze toward face scene 367 

images (Fig. 1), could play a crucial role in enhancing the likelihood of animals engaging in 368 

subsequent social behaviors. These motor skills, including social behaviors, are important 369 

sources of natural rewards and pleasure in the lives of humans and animals.94-96 In this way, 370 

social interactions between animals have been shown to improve stress coping,97-99 mitigate 371 

aversive responses to unpleasant stimuli, and enhance the persistence of ongoing motivated 372 

behaviors.100-104 Therefore, from the perspective of reinforcement learning, we suggest that 373 

the tonic activity of the PAG can provide additional reward resources for overcoming 374 

disappointing events and continuing ongoing motivated behaviors by facilitating the 375 

connection between sequential motor actions. 376 

 377 

Tonic PAG activity in inhibitory control of unnecessary movements 378 

 Lastly, we suggest that tonic PAG activity can contribute to the inhibitory control of 379 

unnecessary movements, which could potentially implicate its significant role in movement 380 

disorders. In the present study, we observed that monkeys exhibited strong inhibition of 381 
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unnecessary eye movements during highly motivated anticipatory scene viewing (Fig. 4E-H 382 

and 5E-G). The inhibitory motor control can play a crucial role in regulating impulsivity, 383 

guiding action selection, and prioritizing the sequence of actions in human and animal 384 

behavior.105-107 Thereby, this process ultimately improves the speed and accuracy of desired 385 

behaviors and smooths out the motion of humans and animals in response to the 386 

overwhelming influence of information processed through various sensory inputs that flow 387 

into the brain.108-111 388 

These findings could further provide valuable insights into the implications of PAG 389 

activity in movement disorders, such as Parkinson's disease. Parkinson's disease is 390 

characterized by abnormalities in the initiation and speed of actions (e.g., akinesia and 391 

bradykinesia).48 On the other hand, another significant symptom observed in this disease is 392 

the impairment in suppressing unnecessary movements, such as tremors and dyskinesia. 393 

These symptoms manifest abnormalities not only in limb movements but also in eye 394 

movements.112-114 For example, a Parkinson's disease patient in a previous study exhibited 395 

frequent abnormal repetitive saccades and fixation patterns during word reading, leading to 396 

more frequent unnecessary eye movements compared to a healthy individual.115 As a result, 397 

this impaired overall reading speed and comprehension. 398 

A key characteristic of Parkinson's disease is the degeneration of dopaminergic 399 

neurons in the SNc. Additionally, the PAG, along with surrounding brainstem regions, has also 400 

been reported as an area showing significant changes in patients and animal models with 401 

Parkinsonian symptoms.32,37,116-120 However, there is still a lack of research on the role of the 402 

PAG in Parkinsonian symptoms. The dopamine deficits in Parkinson's patients have primarily 403 

been reported in the caudal dorsal lateral part of the SNc, which projects to the tail of the 404 

striatum (i.e., the caudal part of the striatum).121-124 This neuronal pathway from the caudal 405 

dorsal lateral part of SNc to the tail of the striatum plays a crucial role in regulating automatic 406 

movements.125-129 Consequently, neurodegeneration in this pathway can impair the function 407 

of the indirect pathway, which is responsible for the inhibitory control of unnecessary 408 

automatic movements,130-132 and the decrease in PAG activity may affect its interaction with 409 

these basal ganglia circuits.  410 

Importantly, the PAG is also recognized as a critical integrator of emotional responses 411 

and outputs in the emotional motor system, projecting to the spinal cord, forebrain, 412 

cerebellum, and other brainstem regions to control movement (Fig. 7).133-136 For instance, 413 

dysfunction of the PAG might impair eye movement control in Parkinsonism through its 414 

connections, distinct from basal ganglia output, to the brainstem areas associated with the 415 

oculomotor system.137-139 Future studies investigating the specific mechanisms of PAG activity 416 

and its interplay with basal ganglia circuits could significantly enhance our understanding of 417 

the pathophysiology of movement disorders and identify new therapeutic targets. 418 

  419 
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Materials and Methods 420 

General Procedures 421 

Two male Macaca mulatta monkeys were used for this study. (CH, 10-year-old, 15 kg and KI, 422 

10-year-old, 9.5 kg). All animal care and experimental procedures were approved by the 423 

Animal Care and Use Committee of the National Eye Institute and complied with the Public 424 

Health Service Policy on the Humane Care and Use of Laboratory Animals. Apple juice (high-425 

value, 600 µl; low-value, 200 µl) and airpuff (10-20 psi, 100 ms) were used as reward and 426 

punishment outcomes in the task. Partial data from the LHb and behavioral recordings were 427 

used in related publications that tested the same task protocol.21,92 The monkeys' eye 428 

positions (n = 72)were recorded using an EyeLink 1000 Plus eye tracker (SR Research) and 429 

were simultaneously recorded with neuronal signals via Blip software 430 

(www.robilis.com/blip/).  431 

 432 

Scene-based foraging/Pavlovian task 433 

A trial of the scene-based foraging/Pavlovian task began with the appearance of a scene 434 

image (size: 40°; (2 faces + 2 landscapes) × 4 scene groups = 16 scene images per block), which 435 

was maintained as the background scene throughout the trial (Fig. 1B). After 1 s of free 436 

viewing, a FP indicating either the foraging or Pavlovian task appeared at the center of the 437 

scene, and the respective task began. Each block of the task consisted of 384 trials, with tasks 438 

presented in a pseudo-random order (foraging task, 192 trials; Pavlovian task, 192 trials). 439 

Additionally, 32 non-cued free outcomes (8 high-value rewards, 8 low-value rewards, 16 440 

punishments) were randomly delivered between task trials without any visual stimuli. 441 

 442 

Background scene images 443 

We created four groups of background scene images, each contextually associated with 444 

different reward and punishment outcome experiences (Supplementary Fig. S1): high-value 445 

reward without punishment (Rwd++ Pun-), high-value reward with punishment (Rwd++ Pun+), 446 

low-value reward without punishment (Rwd+ Pun-), and low-value reward with punishment 447 

(Rwd+ Pun+). This study focused on data from high-valued scenes (Rwd++ Pun-) and low-448 

valued scenes (Rwd+ Pun+) to address the primary research question (Supplementary Fig. S1). 449 

As a result, monkeys received a large amount of juice reward for completing foraging tasks in 450 

the high-valued scenes and a small amount of juice reward in the low-valued scenes (Fig. 1A). 451 

During Pavlovian tasks, in the high-valued scenes, monkeys received rewards of the same size 452 

as those in the foraging tasks. In contrast, in the low-valued scenes, monkeys received airpuff 453 

punishment outcomes instead of juice rewards. The background scene images were collected 454 

from Google Earth (https://www.google.com/earth), OpenAerialMap 455 

(https://openaerialmap.org), and Face Database (https://fei.edu.br/~cet/facedatabase.html). 456 

 457 

Foraging task 458 

The foraging task began with the appearance of a square-shaped FP (size, 2°), requiring the 459 

monkeys to fixate on it for more than 700 ms within 1 s (Fig. 4). After the fixation, one of the 460 

good or bad objects (size, 10°) appeared on either the left or right side (15°) of the background 461 

scene image. Monkeys were then required to fixate on the good object (500 ms) within 1 s to 462 

receive a reward. If the bad object appeared after fixation, monkeys had to avoid it by either 463 

not making a saccade to the object for 1 s or by fixating on the bad object for no more than 464 

500 ms. If the monkey successfully avoided the bad object, it disappeared from the scene, 465 

and the FP reappeared at the center of the scene. The monkey was then required to fixate on 466 
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the FP again. Afterward, the good object was presented again on either side of the scene, and 467 

the trial could be completed by fixating on the good object to acquire the reward. If the 468 

monkey failed to avoid the bad object or failed to fixate on the FP or the good object, the 469 

visual stimuli disappeared, accompanied by a beep sound. The trial was then repeated from 470 

the scene onset until the monkey correctly completed the task and acquired the reward. 471 

Therefore, monkeys could earn fixed amounts of reward outcomes for each scene image in 472 

the block. The good object appeared first in 1/3 of the trials and after the bad object in 2/3 of 473 

the trials. Each scene image had different fractal images129 for the respective good and bad 474 

objects. 475 

 476 

Pavlovian task 477 

The Pavlovian task began with the appearance of a circular FP, which required no action from 478 

the monkeys for 1 s (Fig. 5). After 1 s, one of three objects (100%, 50%, or 0% probability) 479 

appeared on the left or right side of the background scene image for 1.5 s. Monkeys then 480 

received a reward or punishment outcome based on the probabilities associated with each 481 

object. One second after the outcome delivery began, the background scene disappeared, 482 

and the next trial started after approximately 7 s. Each scene image had different fractal 483 

objects representing the respective objects. 484 

 485 

Electrophysiology 486 

We recorded 34 neurons from the LHb and 44 neurons from the PAG in two monkeys: CH 487 

(LHb, 15; PAG, 30) and KI (LHb, 19; PAG, 14). Single-unit neuronal activity was recorded using 488 

glass-coated electrodes (diameter 0.38 mm, 1 MΩ, Alpha-Omega) connected to a 489 

microelectrode AC amplifier (model 1800; A-M Systems; gain, 10k; filters, 0.1 to 10 kHz) and 490 

a band-pass filter (model 3384; Krohn-Hite). The electrode was advanced using an oil-driven 491 

micro-manipulator (MO-97A, Narishige) through a guide tube and an 8° tilted posterior 492 

chamber. Recording sites were confirmed via vertical MRI scanning (4.7 T, Bruker) with a 493 

gadolinium-filled grid (1 mm-spacing) and Elgioy deposits marking the PAG.140 Neuronal firing 494 

was monitored in real-time and isolated using custom voltage- and time-based windows in 495 

Blip software. 496 

 497 

Statistical Analysis 498 

We presented data as mean ± standard error of the mean. The statistical significances were 499 

analyzed using the Wilcoxon matched-pairs signed rank test, one-way repeated measures 500 

analysis of variance (ANOVA) with Bonferroni post hoc test, and Pearson correlation analysis 501 

using Prism9 (GraphPad Software). The average firing rates of neurons and gaze probabilities 502 

were smoothed by Gaussian kernel (σ = 10 ms) using MATLAB (MathWorks). 503 

 504 

  505 
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Figure 1 Neuronal responses and anticipatory gazes in scene viewing 903 

(A) In the scene-based foraging/Pavlovian task, each trial began with the free viewing of a 904 

scene image. Each group of scene images provided respective reward outcomes from the 905 

foraging and Pavlovian tasks. Consequently, the monkeys freely viewed each group of scene 906 

images based on the average rewards they had experienced during both tasks. 907 

(B) Midlines indicate the average amount of juice reward and airpuff punishment provided to 908 

each group of scenes from the foraging and Pavlovian tasks. Bars indicate the maximum and 909 

minimum amounts of the outcomes. 910 

(C, D) Left, recording sites are marked with orange dotted lines, indicating the locations of the 911 

LHb and PAG. Right, the average firing rates of LHb and PAG in response to scene onset. The 912 

purple shaded areas represent the differences in neuronal responses between high-valued 913 

and low-valued scenes. 914 

(E) An example heatmap illustrating monkeys' gaze on face scene images. 915 

(F) Outside, the probabilities of gaze on face scene images during the free-viewing period 916 

(Scene zone, 40° × 40°). Inside, the probabilities of gaze on the eye regions of face scene 917 

images during the free-viewing period (Eye zone, 4° × 3°). Please see Supplementary Fig. 1 for 918 

additional information and P values. 919 

 920 

Figure 2 Neuronal and behavioral responses in foraging and Pavlovian tasks 921 

(A) The histograms (10 ms bins) showing neuronal activity in the LHb (top) and PAG (bottom) 922 

during the foraging task with high-valued scenes. The histograms are aligned to the onset of 923 

each stimulus during the task procedures (scene onset, FP onset, and object onset). The green 924 

dotted line indicates baseline neuronal activity measured for 200 ms before scene onset. The 925 

green shaded areas represent changes in neuronal activity compared to baseline levels during 926 

the task procedures. 927 

(B) The histograms show the same data as in A, but for low-valued scenes. 928 

(C-D) The histograms show the same data as in A and B, respectively, for the Pavlovian task. 929 

 930 

Figure 3 Reward expectancy facilitates subsequent actions 931 

(A) The probabilities of anticipatory gaze before the FP onset, where the gaze was located at 932 

the position where the FP would appear (FP zone, 10°× 10°). The purple shaded areas 933 

represent differences in responses between high-valued and low-valued scenes or between 934 

good objects and bad objects. The green shaded areas indicate the monkeys' gaze on the 935 

location where the FP appeared, starting from scene onset and maintained throughout the 936 

subsequent task procedures. The purple shaded areas highlight the differences in gaze 937 

responses between high-valued and low-valued scenes. 938 

(B) The probabilities of gaze on the FP after its appearance. 939 

(C) The fixation start time, representing the gaze-reaching time for monkeys to initiate 940 

fixation on the FP (Wilcoxon matched-pairs signed rank test; **P < 0.01, n = 72). 941 

(D) The fixation rate, indicating the percentage of time monkeys maintained their gaze on the 942 

FP to engage in the next task procedure (Wilcoxon matched-pairs signed rank test; ****P < 943 

0.0001, n = 72). 944 

(E-F) Same as A-B, respectively, for the Pavlovian task.  945 

(G-H) Same as C-D, respectively, for the Pavlovian task.  946 
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 947 

Figure 4 Tonic inhibition of PAG signals continuity of reward expectancy in foraging task 948 

(A-D) The probabilities of gaze fixation on scene images during the foraging task. The purple 949 

shaded areas represent differences in responses between high-valued and low-valued scenes, 950 

or between 100% objects and 0% objects. The green dotted line indicates baseline levels 951 

measured for 200 ms before scene onset, while the green shaded areas represent changes in 952 

gaze responses relative to baseline during the task procedures. 953 

(E-H) Same as A-D, but for the velocity of eye movement. 954 

(I-L) The LHb activity shown in figures 2A-B aligned with the gaze response presented in A-H. 955 

(M-P) The PAG activity corresponds to the data presented in I-L. 956 

 957 

Figure 5 Tonic excitation of PAG signals complete extinction of reward expectancy in 958 

Pavlovian task 959 

(A-D) The probabilities of gaze fixation on scene images during the Pavlovian task. The purple 960 

shaded areas represent differences in gaze responses between high-valued and low-valued 961 

scenes. The green dotted line indicates baseline levels measured for 200 ms before scene 962 

onset, while the green shaded areas represent changes in gaze responses relative to baseline 963 

during the task procedures. 964 

(E-H) Same as A-D, but for the velocity of eye movement. 965 

(I-L) The LHb activity shown in figures 2C-D aligned with the gaze response presented in A-H. 966 

(M-P) The PAG activity corresponds to the data presented in I-L. 967 

 968 

Figure 6 Implications of tonic PAG activity on subsequent behaviors through the inhibitory 969 

control of eye movements 970 

(A) Left, the average firing rates of PAG neurons before object onset during the Pavlovian task. 971 

The firing rates were quantified for PAG neurons, as shown in figures 5O-P, during the - 200–972 

0 ms period preceding object onset. Right, the average eye movement distance before object 973 

onset in the Pavlovian task. The distances were quantified during the - 200–0 ms period 974 

preceding object onset (Wilcoxon matched-pairs signed rank test; ***P < 0.001, ****P < 975 

0.0001, n = 44). 976 

(B) The correlation between the average firing rates of PAG neurons (from A, left) and the 977 

average eye movement distances (from B, right) (Pearson correlation analysis; r < 0.05, *P < 978 

0.05, n = 44). 979 

(C) The average eye movement distance after object onset in the Pavlovian task. The distances 980 

were quantified for 1 s after object onset, as shown in figures A-D. 981 

(D) The time to initiate gaze on the object after object onset in the Pavlovian task. The start 982 

time for the monkeys' gaze reaching the object was analyzed. 983 

(E) The duration of gaze fixation on the objects after object onset in the Pavlovian task. The 984 

gaze-holding duration was measured for 1.5 s. 985 

 986 

Figure 7 Hypothetical neuronal mechanisms underlying inhibitory control of movements 987 

The interconnection between the PAG and AMY could play a key role in the inhibitory control 988 

of movements via dopamine neurons in the SNc and VTA. This pathway could enable 989 

dopamine neurons to integrate tonic signals from the PAG with phasic signals from the LHb. 990 
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Furthermore, the PAG could be essential for integrating emotional information from the AMY 991 

and LHb, thereby orchestrating movement control through additional interactions with brain 992 

regions such as the forebrain, cerebellum, and other brainstem areas. 993 
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