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Abstract	

In this paper, we attempt to answer two questions: 1) which regions of the human brain, in 

terms of morphometry, are most strongly related to individual differences in domain-

general cognitive functioning (g)? and 2) what are the underlying neurobiological 

properties of those regions? We meta-analyse vertex-wise g-cortical morphometry 

(volume, surface area, thickness, curvature and sulcal depth) associations using data from 

3 cohorts: the UK Biobank (UKB), Generation Scotland (GenScot), and the Lothian Birth 

Cohort 1936 (LBC1936), with the meta-analytic N	= 38,379 (age range = 44 to 84 years old). 

These g‐morphometry associations vary in magnitude and direction across the cortex (|β| 

range = -0.12 to 0.17 across morphometry measures) and show good cross-cohort 

agreement (mean spatial correlation	r	=	0.57, SD	= 0.18). Then, to address (2), we bring 

together existing - and derive new - cortical maps of 33 neurobiological characteristics from 

multiple modalities (including neurotransmitter receptor densities, gene expression, 

functional connectivity, metabolism, and cytoarchitectural similarity). We discover that 

these 33 profiles spatially covary along four major dimensions of cortical organisation 

(accounting for 65.9% of the variance) and denote aspects of neurobiological scaffolding 

that underpin the spatial patterning of MRI-cognitive associations we observe (significant 

|r| range = 0.21 to 0.56). Alongside the cortical maps from these analyses, which we make 

openly accessible, we provide a compendium of cortex-wide and within-region spatial 

correlations among general and specific facets of brain cortical organisation and higher 

order cognitive functioning, which we hope will serve as a framework for analysing other 

aspects of behaviour-brain MRI associations.
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1 Introduction 

Individual differences in human cognitive function have well-established though modest 1 

associations with individual differences in brain structure. For example, larger total brain 2 

volumes are reliably associated with higher general cognitive function (g) scores (e.g., 1, N	3 

=	18,363,	r	=	0.275, 95% C.I. = [0.252, 0.299]). The strength of associations between	g	and 4 

brain volume varies by brain region (0F

2,
1F

1,
2F

3), and brain-cognition	associations also vary by 5 

region for other morphometry measures, such as surface area ( 11F

4,5), cortical thickness ( 0F

6,5), 6 

curvature ( 12F

7) and sulcal depth ( 13

8, 9).  The parieto-frontal integration theory (P-FIT, 14F

2) 7 

provides a theoretical basis for the involvement of parieto-frontal brain regions over others 8 

in cognition, and there have been expansions and additions to that framework (e.g., 15F

10
m, 92, 9 

11). However, explanations of what regional morphometry-phenotypic association patterns 10 

tell us are far from complete. Interpretations are complicated because measures of 11 

morphometry from brain MRI are a conflation of multifarious underlying biological 12 

properties which also vary by brain region. Thus, in the current paper, we aim to 13 

characterise the spatial concordance between two types of brain map, i.e., 1) g-14 

morphometry associations and 2) neurobiological profiles. We argue that this could help to 15 

decode the neurobiological principles of cortical organisation that facilitate our complex 16 

cognitive skills. Formally quantifying that spatial concordance, in turn, might further inform 17 

a mechanistic understanding of how cognitive functioning differs between individuals in 18 

health and dysfunction.  19 

Until recently, inferences about the underlying biology of brain morphometry-behaviour 20 

associations have been predominantly descriptive or indirect, reliant upon findings from 21 

unrelated studies to draw together narrative conclusions. This is mainly due to practical 22 

limitations in directly relating in vivo MRI findings to information taken postmortem, 23 

limitations in the number of biological properties that can be measured in the same 24 

individuals, and generally low participant numbers in instances that combine imaging and 25 

post-mortem work. However, group-level summary data brain maps for several 26 

neurobiological measures are increasingly being made open-source ( 64F

12, 65F

13), and can now be 27 

straightforwardly registered to the same common brain space as association maps (64F

12), 28 

allowing for direct quantitative comparisons. Royer et al. (2024) provide a detailed 29 

perspective paper discussing the recent rise in the creation and use of cortical profiles to 30 

make discoveries about brain organisation (14). A landmark study tested spatial associations 31 

between neurotransmitter receptor distributions and cortical patterns from case/control 32 

analyses of 13 disorders, including depression, obsessive-compulsive disorder, 33 
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schizophrenia and Parkinson’s disease; and identified spatial co-patterning between 34 

neurotransmitter receptors and functional imaging significance patterns derived from 35 

Neurosynth for a general factor of cognitive terms (including terms such as attention, stress, 36 

and planning) (15).  37 

Brain structural differences related to general cognitive functioning have been robustly 38 

established and have wide-reaching associations with important life outcomes including 39 

everyday function, health, illness, dementia, and death (20F

16, 21F

17, 22F

18). There are increasingly 40 

robust analyses which have established cognitive and brain structural associations (e.g., 3, 41 

19, 20, 21), yet there remain no large-scale meta-analytic estimates of general cognitive-MRI 42 

associations at the level of the cortical vertex. The measure of general cognitive function, as 43 

a principal component or latent factor ‘g’, offers several relevant properties that make it a 44 

behavioural measure of suitable quality for such analyses. It captures the general tendency 45 

for cognitive test scores to be positively correlated, and is somewhat invariant to cognitive 46 

test content, provided that multiple cognitive domains are captured (23F

22, 24F

23, 25F

24). It is one of 47 

the most replicated phenomena in psychological science ( 17F

25,12F 18F

26); and its individual 48 

differences tend to be quite highly stable across the healthy lifespan ( 19F

27). We bring together 49 

g-brain structure associations with biological cortical profiles to allow direct (quantitative) 50 

inferences about the organising principles of the brain that underlie the cognitive-MRI 51 

signals which we observe. Moreover, we produce an extension to prior analytic approaches 52 

whereby we go beyond cortex-level spatial correlations (e.g., 15, 28, 29, 30, 31), to additionally 53 

include regional-level spatial correlations. These regional-level spatial correlations (here, 54 

using the Desikan-Killiany atlas, with 34 left/right paired cortical regions) provide nuanced 55 

information about 1) the relative strengths of the spatial correlations in different regions 56 

and 2) the homogeneity of co-patterning across regions.  57 

In the current paper, we ask two main questions: 1) which regions of the human brain, in 58 

terms of their morphometry, are most strongly related to individual differences in domain-59 

general cognitive function? and 2) what are the underlying neurobiological properties of 60 

those regions? We address these two important gaps in our knowledge by (see Figure 1), 61 

first, conducting the largest vertex-wise (298,790 cortical vertices) analysis of g‐cortex 62 

associations across 3 cohorts with 5 morphometry measures (volume, surface area, 63 

thickness, curvature, and sulcal depth) in community-dwelling adults (meta-analytic N = 64 

38,379). Then we quantitatively test how those brain regions that are associated with	g	are 65 

spatially correlated with the patterning of 33 of the brain’s neurobiological properties 66 

across the human cerebral cortex (including neurotransmitter receptor densities, 67 
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cytoarchitectural, microstructural and functional connectivity similarity gradients, and 68 

metabolism) (32).  We assemble open-source brain maps and derive novel ones; registering 69 

them to the same common brain space as our brain morphometry-g meta-analytic results; 70 

and then we quantitatively test their spatial concordance. Additionally, we identify four 71 

principal components that explain the majority of the variance (65.9%) across the 33 maps 72 

of the brain’s neurobiological properties, which indicate major dimensions of fundamental 73 

brain organisation, and we test their associations with g‐morphometry cortical profiles.	 74 

These analyses implement methods for uncovering principles of cortical organisation that 75 

are associated with individual differences in our complex cognitive skills.76 
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	77 

Figure	1	Overview	of	the	methodological	approach.		78 

Figure	1	note	A)	Associations	between	g	and	5	measures	of	brain	morphometry	(volume,	surface	area,	79 
thickness,	curvature	and	sulcal	depth)	were	estimated	for	each	of	three	cohorts	of	community‐dwelling	80 
adults	 (UKB,	GenScot	and	LBC1936).	These	 vertex‐wise	association	maps	were	 then	meta‐analysed,	81 
which	 is	 the	 primary	 outcome	 of	 the	 first	 step.	 B)	 We	 curated	 and	 derived	 new	 maps	 of	 33	82 
neurobiological	characteristics	that	vary	across	the	cortex,	and	registered	them	to	the	same	anatomical	83 
space	as	the	vertex‐wise	meta‐analyses	described	in	A.	We	also	conduct	a	principal	components	analysis	84 
which	identifies	four	major	dimensions	of	neurobiological	organisation	across	the	cortex.	C)	Finally,	we	85 
calculate	 the	 spatial	 correlations	 between	 g‐morphometry	 profiles	 and	 neurobiological	 profiles,	 to	86 
identify	which	principles	of	cortical	organisation	are	most	 likely	candidates	 for	 supporting	complex	87 
cognitive	skills.	88 
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2 Methods 

2.1 Methods for identifying individual differences 89 

2.1.1 Participants 90 

Data from three cohorts were used to calculate associations between	 general cognitive 91 

functioning (g)	(and age and sex) and 5 measures of vertex-wise morphometry (volume, 92 

surface area, thickness, curvature, and sulcal depth) – the UK Biobank (UKB), Generation 93 

Scotland: Scottish Family Health Study (GenScot), and the Lothian Birth Cohort 1936 94 

(LBC1936). They were also used to calculate meta-analysed means for the 5 morphometry 95 

measures. These maps will be openly available on publication in fsaverage space at 96 

github.com/JoannaMoodie/moodie-brainmaps-cognition.  97 

The UKB (http://www.ukbiobank.ac.uk, 28F

33) is a study of ~500,000 participants, and the data 98 

of 40,383 participants who attended the first neuroimaging visit (which included collection 99 

of cognitive test data and brain MRI scans) are used in the present analyses. Participants 100 

were excluded from the present analysis if their self-reported medical history, taken by a 101 

nurse at the data collection appointment, recorded a diagnosis of, for example, dementia, 102 

Parkinson’s disease, stroke, other chronic degenerative neurological problems or other 103 

demyelinating conditions, including multiple sclerosis and Guillain–Barré syndrome, and 104 

brain cancer or injury (a full list of exclusion criteria is provided in	Table	S1). For the global 105 

and subcortical brain structures analysis (see Supplementary	 Analysis	 2), the sample 106 

consisted of N	=	39,250 (53% female, mean age = 63.91 years, SD	=7.67 years, and range = 107 

44 to 83 years). For the vertex-wise analyses, participants were included if qcaching in 108 

FreeSurfer ran successfully for all 5 morphometry measures. The final N	 for vertex-wise 109 

analyses was 36,744 participants (53 % female, mean age = 63.71 years, SD	=	7.63 years, 110 

and range = 44-83 years). The UKB was given ethical approval by the NHS Research Ethics 111 

Committee (REC reference 11/NW/0382) and the current analyses were conducted under 112 

UKB application number 10279. All participants provided informed consent. More 113 

information on the consent procedure can be found at 114 

https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100023.  115 

The GenScot imaging sample is a population-based study, developed from the Generation 116 

Scotland: Scottish Family Health Study (34). Data are available for a maximum of	N	=	1188 117 

participants. Cognitive and MRI data are available for N	=	1043 participants (60% female, 118 

mean age	=	59.29 years, SD	=	10.12 years, and range = 26 to 84 years). All 1043 participants 119 

were used in the current global and subcortical brain structures analyses (see 120 
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Supplementary	 Analysis	 2). For the vertex-wise analysis, qcaching in FreeSurfer ran 121 

successfully for all measures for N	= 1013 participants (60% female), mean age	= 59.22 122 

years (SD	= 10.12 years),	age range = 26 to 84 years. GenScot received ethical approval from 123 

the NHS Tayside Research Ethics Committee (14/SS/0039), and all participants provided 124 

informed consent.  125 

The LBC1936 is a longitudinal study of a sample of community-dwelling older adults who 126 

were born in 1936, most of whom took part in the Scottish Mental Survey of 1947 when 127 

they were ~11 years old, and who volunteered to participate in this cohort study at ~70 128 

years old ( 30F

35,
31F

36) https://lothian-birth-cohorts.ed.ac.uk/. The current analysis includes data 129 

from the second wave of data collection, which is the first wave at which head MRI scans 130 

are available. In total, 731 participants agreed to MRI scanning. After image collection and 131 

processing, N	=	636 participants were included in the specific brain structures analyses 132 

conducted in Supplementary	Analysis	2	 (47% female, mean age = 72.67 years,	SD	=	0.71 133 

years, and range = 70 to 74 years).	Qcaching was unsuccessful for 14 participants, leaving a 134 

final N	for vertex-wise analyses of 622	(47% female, mean age = 72.66 years, SD	= 0.73 years, 135 

and range = 71 to 74 years). The LBC1936 study was given ethical approval by the Multi-136 

Centre Research Ethics Committee for Scotland, (MREC/01/0/56), the Lothian Research 137 

Ethics Committee (LREC/2003/2/29) and the Scotland A Research Ethics Committee 138 

(07/MRE00/58). All participants gave written informed consent. 139 

2.1.2 Cognitive tests 140 

All three cohorts have data collected across several cognitive tests, covering several 141 

cognitive domains (e.g. memory, reasoning and processing speed), which enables the 142 

estimation of a latent factor, g. The cognitive tests in each cohort have been described in 143 

detail elsewhere: UKB ( 32F

37, 10 tests included: Reaction time, Number span, Verbal and 144 

numerical reasoning, Trail making B, Matrix pattern, Tower task, Digit-symbol substitution, 145 

Pairs matching, Prospective memory, and Paired associates), GenScot (34, 5 tests included: 146 

Matrix reasoning, Verbal fluency, Mill Hill vocabulary, Digit-symbol substitution, and Logical 147 

memory), and LBC1936 (35,
33F

38,
34F

39, 13 tests included: Matrix reasoning, Block design, Spatial 148 

span, National Adult Reading Test (NART), Weschler Test of Adult Reading (WTAR), Verbal 149 

fluency, Verbal paired associates, Logical memory, Digit span backwards, Symbol search, 150 

Digit-symbol substitution, Inspection time, and Four-choice reaction time), see 151 

Supplementary	Tables S2 to S7 for more details. The cognitive tests from each cohort cover 152 

various cognitive domains, including Crystallised (verbal) Ability, Reasoning, Processing 153 

speed, and aspects of Memory.  154 
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A latent factor of	g	–	capturing shared variance in performance across all cognitive tests – 155 

was estimated for each cohort in a structural equation modelling framework. For UKB and 156 

GenScot, no residual covariances between individual cognitive tests were included. For the 157 

LBC1936, which has a larger cognitive battery that includes multiple tests for each cognitive 158 

domain,	g	has previously been modelled with a hierarchical confirmatory factor analysis 159 

approach, to incorporate defined cognitive domains (35F

38, 36F

39). Here, in keeping with these 160 

previous models, within-domain residual covariances were added for four cognitive 161 

domains (visuospatial skills, crystallised ability, verbal memory and processing speed). 162 

Latent	g	model fits were assessed using the following fit indices: Comparative Fit Index 163 

(CFI), Tucker Lewis Index (TLI), Root Mean Square Error of Approximation (RMSEA), and 164 

the Root Mean Square Residual (SRMR). All models had  CFI > 0.95, TLI > 0.88, RMSEA < 165 

0.08 and SRMR < 0.04. For specific details of the model fits, see	Table	S9. Results of the	g	166 

measurement models are summarised in Figure	 S1	 and	 Table	 S8. For all cohorts, all 167 

estimated paths to latent	g	were statistically significant at the	p	< .001 level. To be clear, a g 168 

factor was found in each of the three cognitive test batteries (that is, a model with a g factor 169 

had a good fit to the data [i.e., the cognitive tests’ covariance matrices]) and was not imposed 170 

upon them. 171 

The latent	 g	 scores were extracted for all participants (these were calculated with the 172 

slightly larger samples that were included in the global and subcortical structures analysis, 173 

see Supplementary	Analysis	2, and these same scores were used for the vertex-wise analysis, 174 

which had a slightly smaller sample size due to qcaching failures). All	g	scores were scaled 175 

so that higher scores reflected better cognitive performance.  176 

2.1.3 MRI protocols 177 

Detailed information for MRI protocols in all three cohorts are reported elsewhere: UKB 178 

( 37F

40), LBC1936 ( 38F

41) and GenScot (34) but are briefly summarised here. In the present sample, 179 

UKB participants attended one of four testing sites: Cheadle (~60%), Reading (~14%), 180 

Newcastle (~25%), and Bristol (~0.13%). The same type of scanner was used in all four 181 

testing sites, a 3T Siemens Skyra, with a 32-channel Siemens head radiofrequency coil. 182 

The UK Biobank MRI protocol includes various MRI acquisitions (more details available 183 

here https://www.fmrib.ox.ac.uk/ukbiobank/protocol/V4_23092014.pdf) but in this 184 

work we exclusively used the T1-weighted MPRAGE volumes. For T1-weighted images, 208 185 

sagittal slices were acquired with a field view of 256 mm and a matrix size of 256 x 256 186 

pixels, giving a resolution of 1 x 1 x 1 mm3. The repetition time was 2000 ms and the echo 187 

time was 2.01 ms (40).  188 
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GenScot had 2 testing sites: Aberdeen (in the present sample,	N	=	528, 51% of the total 189 

sample) and Dundee (N	=	515, 49% of the total sample). Detailed information about the 190 

GenScot structural image acquisitions is available here 191 

https://wellcomeopenresearch.org/articles/4-185. For the current analysis, we used the 192 

T1-weighted fast gradient echo with magnetisation preparation volume. The Aberdeen 193 

site used a 3T Philips Achieva TX-series MRI system (Philips Healthcare, Best, 194 

Netherlands) with a 32-channel phased-array head coil and a back facing mirror (software 195 

version 5.1.7; gradients with maximum amplitude 80 mT/m and maximum slew rate 100 196 

T/m/s). For T1-weighted images, 160 sagittal slices were acquired with a field of view of 197 

240 mm and a matrix size of 240 x 240 pixels, giving a resolution of 1 x 1 x 1 mm3. 198 

Repetition time was 1968 ms, echo time was 3.8 ms and inversion time was 1031 ms. In 199 

Dundee, the scanner was a Siemens 3T Prisma-FIT (Siemens, Erlangen, Germany) with 20 200 

channel head and neck phased array coil and a back facing mirror (Syngo E11, gradient 201 

with max amplitude 80 mT/m and maximum slew rate 200 T/m/s). For T1-weighted 202 

images 208 sagittal slices were acquired with a field of view of 256 mm and matrix size 203 

256 x 256 pixels giving a resolution of 1 x 1 x 1 mm3. Repetition time was 1740 ms, echo 204 

time was 2.62 ms, and inversion time was 900 ms 34. 205 

All LBC1936 participants were scanned in the same scanner in the same clinic, using a GE 206 

Signa LX 1.5T Horizon HDx clinical scanner (General Electric, Milwaukee, WI) with a 207 

manufacturer supplied 8-channel phased array head coil. More information on the 208 

structural image acquisitions for the LBC1936 cohort is available in (41). For T1-weighted 209 

images (3D IR-Prep FSPGR), 160 coronal slices were acquired, with a field of view of 256 210 

mm and a matrix size of 192 x 192 pixels (zero filled to 256 x 256) giving a resolution of 1 x 211 

1 x 1.3 mm3. The repetition time was 10 ms, echo time was 4 ms and inversion time was 212 

500 ms.  213 

For all cohorts, the FreeSurfer image analysis suite (http://surfer.nmr.mgh.harvard.edu/) 214 

was used for cortical reconstruction and volumetric segmentation. The 46 global and 215 

subcortical structures (including grey matter, white matter and ventricles), used in 216 

Supplementary	Analysis	2, were available for each cohort in the aseg FreeSurfer outputs. 217 

Vertex-wise surface values for 5 morphometry measures (volume, surface area, thickness, 218 

curvature and sulcal depth) were available at 9 smoothing tolerances (0, 5, 10, 15, 20, 25, 219 

30, 35 and 40 mm FWHM, full width half maximum Gaussian kernel) by running the -qcache 220 

flag.  221 
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Each cohort used a different version of FreeSurfer: UKB = v6.0, GenScot = v5.3, LBC1936 = 222 

v5.1. The LBC1936 and GenScot parcellations have previously undergone quality control, 223 

with manual editing to rectify parcellation issues including skull stripping, tissue 224 

identification and regional boundary lines. The UKB regional data were extracted from the 225 

bulk-downloaded aseg files provided by the UK Biobank. For the current study, UKB values 226 

more than 4 standard deviations from the mean for any global or subcortical brain structure 227 

volume were excluded (corresponding to < 1.2% of the data per variable; M	=	87.97,	SD	=	228 

121.75, range = 0 to 474 participants) – note, outlier values were excluded by region, rather 229 

than participant-wise exclusions 230 

2.1.4 Morphometry measures 231 
The morphometry measurements are illustrated in Figure	1A (middle panel). Volume is the 232 

amount of three-dimensional space of a vertex, surface area is the total area of the cortical 233 

sheet section of the vertex, and thickness is the distance between the pial and white matter 234 

cortical surfaces.  If thickness were uniform across the vertex, volume would be the product 235 

of surface area and thickness, but this relationship is more complex in practice. For 236 

curvature, a value of zero represents no curvature “– “; those with negative values are 237 

curving up (convex) “◠“; those with positive values are curving down (concave)	“◡“. The 238 

sulcal depth is a measure of how removed a vertex is from a theoretical mid-surface that is 239 

estimated between the gyri and sulci (vertices on the mid surface receive a value of 0). A 240 

more positive sulcal depth suggests a deeper location (i.e., away from the scalp) and a more 241 

negative value is shallower (i.e., towards the scalp). Deep sulci tend to have more concave 242 

curvature, shallower regions tend to have curvature magnitudes nearer to zero, and gyri 243 

(defined here as regions with negative values for “sulcal depth”) tend to correspond to 244 

convex curvature. The measure of curvature provides information about how the cortex 245 

folds at the local level, while sulcal depth provides a more macroscopic perspective on the 246 

depth of sulci relative to the midpoint of the cortical surface, offering insights into the 247 

overall brain folding complexity.  248 

2.1.5 Meta-analyses 249 
We chose a 20 mm FWHM smoothing tolerance for our main cohort meta-analyses , in line 250 

with our previous work (42, 43). For each cohort, a standardised β was estimated between	g	251 

and each vertex for the 5 vertex-wise morphometry measures. Each participant’s cortical 252 

surface was aligned to the fsaverage template. Out of 327,684 initial vertices along the 253 

fsaverage surface, there are 298,790 vertices labelled as “cortex”, and these vertices are 254 

analysed here.  255 
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We first checked the cross-cohort agreement of the means of the five measures of cortical 256 

morphometry across the three cohorts. Spatial variations in measures of cortical volume, 257 

surface area, thickness, curvature and sulcal depth were highly stable between cohorts - all 258 

r > 0.843 (see	Table	S10, for the global means see Figure	S3, and for the meta-analysed mean 259 

cortical maps see Figure S2).	From these analyses, the meta-analysed mean profiles for 260 

surface area and thickness were included in the spatial correlation analyses in section 3.4. 261 

For cohort-based association analyses, all brain measures were controlled for head position 262 

in the scanner (X, Y and Z coordinates, from UKB codes 25756, 25757, and 25758; and 263 

estimated in FreeSurfer for GenScot and LBC1936), testing site (for UKB and GenScot only) 264 

and, for LBC1936 only, time lag (because it was the only cohort with a time lag between 265 

cognitive and MRI appointments, M	lag =65.08 days,	SD	=	37.77). Age and sex were included 266 

as covariates in models when they were not the variable of interest.  267 

To characterise which regions of the human brain, in terms of morphometry, are most 268 

strongly related to individual differences in g, we then meta-analysed the vertex-wise	g	269 

associations between the three cohorts with random effects models. This type of model was 270 

deemed the most appropriate due to the differing characteristics (e.g., age range) between 271 

the cohorts. Vertex-wise brain maps for age and sex associations were meta-analysed in the 272 

same way. For vertex-wise analyses of age, only GenScot and UKB cohorts were included 273 

due to the narrow age range of the LBC1936 cohort (mean age = 72.67 years,	SD	=	0.71). For 274 

all meta-analyses, between-cohort age moderation analyses were additionally conducted 275 

(i.e., mean age for each cohort was included as a moderator in the rma	 function in the 276 

metafor	package 90). UKB and GenScot have larger age ranges, and lower mean age (M	= 277 

63.91 years, range = 44-83; M	= 59.29 years, range = 26-84 respectively) compared to the 278 

LBC1936 (M	 = 72.67 years, range = 70-74). Therefore, although we included age as a 279 

covariate within cohorts, it remains possible that between-cohort age differences affect the 280 

brain associations. Any between-cohort age moderation analyses significant at the α < .05 281 

level are reported below. 282 

2.2 Neurobiological cortical profiles 283 

The 33 included neurobiological cortical profiles were derived from several modalities, 284 

including: in vivo MRI, rsfMRI (resting state functional MRI), fcMRI (resting-state functional 285 

connectivity MRI), PET (positron emission tomography) scans and postmortem tissue. 286 

Several of these cortical profiles are openly available online through neuromaps ( 64F

12), and 287 

BigBrainWarp (65F

13), and we registered all profiles to fsaverage space using neuromaps. We 288 
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include maps of metabolism (we calculated a principal component, derived from previously 289 

published, open source maps of cerebral blood flow, oxygen metabolism, and glucose 290 

metabolism, 79); similarity gradients of cytoarchitecture (staining intensity), functional 291 

connectivity, and microstructure (13); the first principal component of gene expression from 292 

the abagen toolbox ( 66F

44); cortical myelination T1/T2 ratio (67F

45) and 19 neurotransmitter 293 

receptor densities (12). These maps are described in more detail in Table 1 and in the 294 

subheadings below. 295 
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Table	 1	 Description of the neurobiological cortical profiles. Descriptive statistics of all 296 

vertex-wise cortical profiles in this paper are available in	Table	S13. 297 

Map Source Original 

source 

Data source Participants  Category Type Higher value 

= 

 

Gene expression 

PC1 

Neuromaps abagen 

toolbox 44 

Postmortem 

(gene 

expression) 

 

N	=	6 adult 

human donors, 

1 female, ages 

24 to57 years 

Microstructure Principal 

component 1 

of gene 

expression  

A higher 

positive 

component 

score for PC1  

 

Microstructural 

similarity  

BigBrainWarp  Paquola et al. 

13,77 

In Vivo (qT1)  

 

N	=	50 healthy 

adults 46, 23 

women, age 

mean = 29.54 

(SD = 5.62) 

Microstructure Eigenvectors 

1 and 2  

A higher 

positive 

eigenvector 

score  

 

Cytoarchitectural 

similarity 

BigBrainWarp  Paquola et al. 

13 

Postmortem 

(BigBrain, 

histology)  
 

N	=	1 donor, 65-

year-old male 

Microstructure Eigenvectors 

1 and 2 from 

BigBrain 

staining 

intensity 

profiles  

A higher 

positive 

eigenvector 

score 

 

Myelination (T1/T2 

contrast) 

Neuromaps Glasser 45 In vivo  

(T1/T2) 

 

N	=	449 young 

adults (ages 

22–35) from 

the Human 

Connectome 

Project (HCP)  

Microstructure T1w to T2w 

ratio 

Higher 

myelin 

density 

 

Allometric scaling Calculated for 

the current 

paper 

Current paper In vivo 

(T1, MRI) 

 

N	=	38,379 

adults, from 

UKB, GenScot 

and LBC1936; 

age range: 26-

84  

Macrostructure Log-log 

regression 

coefficient for 

vertex surface 

area predicted 

by total 

surface area 

Higher 

coefficient 

(greater 

deviation 

from 

isometry) 

 

Mean surface area 

adult 

Calculated for 

the current 

paper 

Current paper In vivo (T1, 

MRI)  

N	=	38,379 

adults, from 

UKB, GenScot 

and LBC1936; 

age range: 26-

84  

Macrostructure Mean Larger 

surface area 

 

Mean thickness 

adult 

Calculated for 

the current 

paper 

Current paper In vivo (T1, 

MRI)  

N	=	38,379 

adults, from 

UKB, GenScot 

and LBC1936; 

age range: 26-

84  

Macrostructure Mean Thicker  

Intersubject 

variability 

Neuromaps  Mueller et al. 47 In vivo 

(fcfMRI) 

N	=	healthy 

subjects (age 

51.8±6.99, 9 

female) 

Functional   Variability in 

fcMRI data  

More 

variability in 

rsfMRI 

 

Functional 

connectivity 

similarity 

BigBrainWarp  Paquola et al. 

13 

In vivo 

(rsfMRI)   

50 healthy 

adults 46, 23 

women, age 

mean = 29.54 

(SD = 5.62) 

Functional   Eigenvectors 

1 and 2 from 

rsfMRI data 

A higher 

positive 

eigenvector 

score 

 

Cognition PC1 

Neurosynth 

Neuromaps  Yarkoni et al. 

48 

In vivo (fMRI)  Unknown Functional   Principal 

component 1 

of fMRI 

patterns 

associated 

with various 

terms in 

Neurosynth 

A higher 

positive 

component 

score for PC1 
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Metabolism Neuromaps, 

and PC1 

calculated for 

the current 

paper  

Vaishnavi et al. 

79   

In vivo (PET)  N	=	33 

neurologically 

normal young 

adults, 19 

women, 14 

men, 20-33 

years old 

Functional   Principal 

component 1 

of cerebral 

blood flow, 

oxygen 

metabolism 

and glucose 

metabolism 

maps 

Higher 

positive 

values on 

PC1 (higher 

values on the 

maps for 

CBF, CMRO2 

and CMRGlu) 

 

         

5HT1a 

(Serotonin) 

Neuromaps, 

(Hansen et al.)  

Savli et al.49 In vivo (PET)  N	=	35, age 

mean = 26.3 

(SD = 5.2) 

Receptor density Group 

averaged PET 

data 

Higher 

density of 

each 

receptor 

 

5HT1b 

(Serotonin) 

Neuromaps, 

(Hansen et al.) 

Gallezot et al. 

50 

In vivo (PET)  N	=	65, age 

mean = 33.7 

(SD = 9.7) 

Receptor density Group 

averaged PET 

data 

Higher 

density of 

each 

receptor 

 

5HT2A 

(Serotonin) 

Neuromaps, 

(Hansen et al.) 

Beliveau et al. 

51 

In vivo (PET)  N	=	29, age 

mean = 22.6 

(SD = 2.7) 

Receptor density Group 

averaged PET 

data 

Higher 

density of 

each 

receptor 

 

5HT4 

(Serotonin) 

Neuromaps, 

(Hansen et al.) 

Beliveau et al. 

51 

In vivo (PET)  N	=	59, age 

mean = 25.9 

(SD = 5.3) 

Receptor density Group 

averaged PET 

data 

Higher 

density of 

each 

receptor 

 

5HT6 

(Serotonin) 

Neuromaps, 

(Hansen et al.) 

Radhakrishnan 

et al. 52 

In vivo (PET)  N	=	30, age 

mean = 36.6, SD 

= 9) 

Receptor density Group 

averaged PET 

data 

Higher 

density of 

each 

receptor 

 

5HTT 

(Serotonin) 

Neuromaps, 

(Hansen et al.) 

Beliveau et 

al.51 

In vivo (PET)  N	=	100, age 

mean = 25.1 

(SD = 5.8) 

Receptor density Group 

averaged PET 

data 

Higher 

density of 

each 

receptor 

 

D1 

(Dopamine) 

Neuromaps, 

(Hansen et al.) 

Kaller et al.53  In vivo (PET)  N	=	13, age 

mean = 33 

years (SD = 13) 

Receptor density Group 

averaged PET 

data 

Higher 

density of 

each 

receptor 

 

D2 

(Dopamine) 

Neuromaps, 

(Hansen et al.) 

Smith et al. 

and Sandiego 

et al. 54, 55  

In vivo (PET)  N	=	37, age 

mean = 48.4 

years (SD = 

16.9);  

N	=	55, age 

mean = 32.5 

years (SD = 9.7) 

Receptor density Group 

averaged PET 

data 

Higher 

density of 

each 

receptor 

 

DAT 

(Dopamine) 

Neuromaps, 

(Hansen et al.) 

Dukart et al. 56 In vivo (PET)  N	=	174, age 

mean = 61 

years (SD = 11) 

Receptor density Group 

averaged PET 

data 

Higher 

density of 

each 

receptor 

 

NAT 

(Norepinephrine) 

Neuromaps, 

(Hansen et al.) 

Ding et al.57 In vivo (PET)  N	=	77, age 

mean = 33.4 

(SD = 9.2) 

Receptor density Group 

averaged PET 

data 

Higher 

density of 

each 

receptor 

 

H3 

(Histamine) 

Neuromaps, 

(Hansen et al.) 

Gallezot et al. 

58 

In vivo (PET)  N	=	8, age mean 

= 31.7 (SD = 

9.0) 

Receptor density Group 

averaged PET 

data 

Higher 

density of 

each 

receptor 

 

A4B2 

(Acetylcholine) 

Neuromaps, 

(Hansen et al.) 

Hillmer et al. 59 In vivo (PET)  N	=	30, age 

mean = 33.5 

years (SD = 

10.7) 

Receptor density Group 

averaged PET 

data 

Higher 

density of 

each 

receptor 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2024. ; https://doi.org/10.1101/2024.12.17.628670doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.17.628670
http://creativecommons.org/licenses/by/4.0/


Page 18 of 52 
 

M1 

(Acetylcholine) 

Neuromaps, 

(Hansen et al.) 

Naganawa et 

al. 60 

In vivo (PET)  N	=	24, age 

mean = 40.5 

(SD = 11.7) 

Receptor density Group 

averaged PET 

data 

Higher 

density of 

each 

receptor 

 

VAChT 

(Acetylcholine) 

Neuromaps, 

(Hansen et al.) 

PIs: Tuominen, 

L. & Guimond, 

S.; 

Aghourian et 

al.61; 

Bedard et al. 62 

In vivo (PET)  N	=	4, age mean 

= 37 (DF = 

10.2);  

N	=	18 (age 

mean = 66.8, SD 

= 6.8);  

N	=	5, age mean 

= 68.3 (SD = 

3.1) 

Receptor density Group 

averaged PET 

data 

Higher 

density of 

each 

receptor 

 

CB1 

(Cannabinoid) 

Neuromaps, 

(Hansen et al.) 

Normandin et 

al. 63 

In vivo (PET)  N	=	77, age 

mean = 30 

years (SD = 8.9) 

Receptor density Group 

averaged PET 

data 

Higher 

density of 

each 

receptor 

 

MU 

(Opioid) 

Neuromaps, 

(Hansen et al.) 

Kantonen et al 

. 64 

 

In vivo (PET)  N	=	204, age 

mean = 32.3 

years (SD = 

10.8) 

Receptor density Group 

averaged PET 

data 

Higher 

density of 

each 

receptor 

 

NMDA 

(Glutamate) 

Neuromaps, 

(Hansen et al.) 

Galovic et al.65, 

66 

In vivo (PET)  N	=	29, age 

mean = 40.9 

years (SD = 

12.7) 

Receptor density Group 

averaged PET 

data 

Higher 

density of 

each 

receptor 

 

mGluR5 

(Glutamate) 

Neuromaps, 

(Hansen et al.) 

Smart et al. 67; 

PIs: Rosa-Neto, 

P. & 

Kobayashi, E.; 

DuBois et al. 68 

 

In vivo (PET)  N	=	73, age 

mean = 19.9 

(SD = 3.04);  

N	=	22, age 

mean = 67.9 

(SD = 9.6);  

N	=	28, age 

mean = 33.1 

(SD = 11.2) 

Receptor density Group 

averaged PET 

data 

Higher 

density of 

each 

receptor 

 

GABAa-bz 

(GABA) 

Neuromaps, 

(Hansen et al.) 

Nørgaard et 

al.69  

In vivo (PET)  N	=	16, age 

mean = 32.3 

(SD = 10.8) 

Receptor density Group 

averaged PET 

data 

Higher 

density of 

each 

receptor 

 

 298 

2.2.1 Gene expression  299 
The gene expression map was the first principal component of gene expression from the 300 

abagen toolbox (44). It is available in neuromaps in fsaverage 10k space, and we resampled 301 

it to fsaverage 164k using the transforms function in neuromaps. Seemingly due to 302 

registration error, there were more vertices outside the cortical mask than for the 303 

association maps, and most of the other neurobiological profiles. There were 292076 304 

vertices included in the cortical mask.  305 

2.2.2 T1/T2 ratio derived myelination 306 
The map of cortical myelin content was previously derived from T1w to T2w ratios (maps 307 

calculated in 45, method described in detail in 69F

70). T1/T2 ratio is thought by some to be a 308 

good estimate of relative myelin content across the cortical surface 70, although it is 309 

important to note that this method only provides a proxy for myelin content, and also 310 

reflects tissue microstructures other than myelin, such as axon density and dendrite density 311 
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and iron content 71. Indeed, in some contexts, T1/T2 ratios do not make a good proxy for 312 

myelination 72. Nevertheless, we call this map “myelination”, in line with the source paper. 313 

2.2.3 Allometric scaling 314 
To obtain a map of allometric scaling, we calculated associations between total surface area 315 

and vertex-wise surface for UKB, GenScot and LBC1936 cohorts and then meta-analysed 316 

them. Allometric scaling was calculated based on previous work ( 40F

73), with a log-log 317 

regression coefficient for vertex surface area predicted by total surface area. Allometric 318 

scaling shows which vertices have a disproportionately larger surface area in people with 319 

bigger brains. Comparable maps of allometric scaling are available for younger cohorts 320 

compared to the current sample (the Philadelphia Neurodevelopmental Cohort, PNC, and a 321 

National Institutes of Health, NIH, sample). These maps were created with samples 8 to 23 322 

years old (N	= 1373) and 5 to 25 years old (N	= 792). These previously calculated maps were 323 

correlated at	r	=	0.679, with each other, and at	r	=	0.430 and	r	=	0.378, respectively with our 324 

log vertex area ~ log total surface area maps (which are created with data on adults, age 325 

range = 26-83 years old). As most maps of interest included in the current study are derived 326 

from adult data, we use the allometry map that we created from our current samples in our 327 

further analyses. In our calculations of allometric scaling, the standardised estimates were 328 

strongly spatially correlated between cohorts (LBC1936-GenScot	r	=	0.764, GenScot-UKB	r	329 

=	0.773 and UKB-LBC1936,	r	=	0.730, all	p	< 2.2x10-16), showing that across cohorts, the 330 

regions that tended to be larger with increasing brain size were consistent. 331 

2.2.4 Mean surface area and mean thickness 332 
Meta-analysed mean values for surface area and thickness were calculated using UKB, 333 

GenScot and LBC1936 data (meta-analytic N = 38,379). These are mapped to the cortex in 334 

Figure	S2 (between cohort spatial correlations were all r > 0.843, see	Table	S10).  335 

2.2.5 Intersubject variability 336 
Intersubject variability in rsfMRI varies spatially across the cortex (47) 70F. In other words, for 337 

some regions, rsfMRI is similar across participants, whilst in other regions, it is more 338 

variable. An openly available cortical map of intersubject variability was available at 1k 339 

density in fsaverage space in neuromaps (12), and we registered it to 164k density in 340 

fsaverage space.  341 

2.2.6 Cognition PC1 from Neurosynth 342 
Component 1 from a principal components analysis of cognitive terms in Neurosynth 343 

(which is a database of task-based fMRI results) (48). It is available as a cortical map in 344 

MNI152 2mm space, and we registered it to fsaverage_164k space (12). 345 
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2.2.7 Similarity gradients: cytoarchitecture, functional connectivity and 346 
microstructure 347 

Cortical similarity gradients of cytoarchitecture, functional connectivity and microstructure 348 

are readily available in fsaverage_164k space in BigBrainWarp 349 

https://bigbrainwarp.readthedocs.io/en/latest/. The BigBrain data (N	= 1) ( 72F

74) was used to 350 

create the cytoarchitectural similarity map, and the microstructural and functional maps 351 

were based on N	= 50 healthy adults, for whom multiscale MRI data is openly available 73F

75. 352 

The cytoarchitectural gradients data are based on staining intensity profiles. The 353 

microstructural gradients are based on qT1 intensity, a quantitative measure of longitudinal 354 

relaxation time, which provides an in vivo proxy for cortical microstructure. The functional 355 

connectivity gradients are based on rsfMRI-derived functional connectomes. The methods 356 

used to obtain these maps are available in detail in the documentation for BigBrainWarp 357 

https://bigbrainwarp.readthedocs.io/en/latest/ and micapipe 358 

https://micapipe.readthedocs.io/en/latest/. Briefly, the cytoarchitectural and functional 359 

gradients were calculated with diffusion map embedding, which is a nonlinear manifold 360 

learning technique ( 74F

76), applied to cross-correlations of vertex-wise staining intensity 361 

profiles ( 75F

77), and the microstructural and functional connectivity axes are calculated using 362 

a microstructural profile covariance (MPC) approach ( 76F

78), which provides  eigenvectors of 363 

common variation. The percentage of variance explained by the first two eigenvectors for 364 

each measure were: cytoarchitectural similarity 1 = 42% and 2 = 35%, for functional 365 

connectivity 1 = 12.9% and 2 = 6.5%, and for microstructural similarity 1 = 59.0% and 2 = 366 

10.5%. In an attempt to make the cortical similarity gradients from BigBrainWarp of 367 

comparable granularity to our individual difference association maps (20 mm FWHM 368 

smoothing), we performed additional smoothing on the BigBrainWarp-sourced maps. The 369 

cytoarchitectural gradients were previously smoothed by 2 mm FWHM Gaussian kernel (13), 370 

and so we smoothed these with an additional 18 mm FWHM kernel. With the approximate 371 

guideline that the rsfMRI data approximately has a smoothing kernel of 6 mm (13), we 372 

smoothed the functional connectivity gradients with an additional 14 mm kernel. To our 373 

knowledge, the microstructural similarity gradients available in BigBrainWarp have not 374 

previously been smoothed, and here we smoothed them with a 20 mm FWHM kernel.  375 

2.2.8 Metabolism 376 
Metabolism data, available in neuromaps (12), was originally collected in 2010 by Vaishnavi 377 

et al. ( 68F

79). These data are an average of the PET maps across 33 young adults at rest. Here, 378 

we looked at 3 measures of cortical metabolism, cerebral blood flow, oxygen metabolism 379 

and glucose metabolism. We registered them from fsLR_164k to fsaverage_164k in 380 
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neuromaps (12). These maps were all highly spatially correlated with each other (all r	> 0.8), 381 

and the first principal component explained 88% of the variance, with all three loadings > 382 

0.5, see Figure	S17. It is this first principal component of cortical metabolism that we used 383 

for the “metabolism” map, included in our spatial correlation analyses. More positive values 384 

denote higher metabolic activity.  385 

2.2.9 Neurotransmitter receptor densities 386 
Hansen et al. recently collected receptor density maps for serotonin (5HT1A, 5HT1B, 387 

5HT2A, 5HT4, 5HT6, and 5HTT), dopamine (D1, D2, DAT), norepinephrine (NAT), histamine 388 

(H3), acetylcholine (α4β2, M1, VAChT), cannabinoid (CB1), opioid (Mu), glutamate (NMDA, 389 

mGluR5) and GABA (GABA A/BZ) neurotransmitter receptors (15). They are available 390 

through neuromaps and we registered them from MNI152 space to fsaverage_164k space, 391 

also using neuromaps (12). Due to the lower spatial resolution of PET data, no further 392 

smoothing was performed.  393 

2.3 Spatial correlations 394 

The g‐morphometry maps described above (Figure	1A) were then spatially correlated with 395 

1) 33 neurobiological maps, and 2) 4 PCs derived from the 33 neurobiological maps and 396 

denoting core components of cortical neurobiological organisation (Figure	 1B). Spatial 397 

correlations were calculated using Pearson’s r	(e.g. for each g‐morphometry map, the vector 398 

of cortical vertices was correlated with each other map’s vector of cortical vertices). 399 

Alexander-Bloch’s spin-based permutation test was used to calculate p-values 78F

80. Each g‐400 

morphometry map was spun randomly 10000 times, and from the resulting null 401 

distributions of the correlations,	p	values were calculated. The Pearson’s r	and p_spin values 402 

for spatial correlations between all maps included in the main correlation analyses in the 403 

current paper are available in the Supplementary Tabular Data file.  404 

All 33 neurobiological maps were inputted into a PCA which was calculated in R using the 405 

prcomp function, with the aim to identify core components of neurobiological spatial 406 

cortical organisation. With all vertices in the cortical mask, across the 33 maps, the vertex 407 

count was N	= 292,056 for the PCA. Four components were extracted, based on the variance 408 

they explained (together, 65.9%), and rotated with the varimax method. 409 

We also calculated within-region vertex-wise spatial correlations for g-morphometry and 410 

neurobiological map correlations. To do this, we used the fsaverage annotation files to 411 

identify which vertices were included in each region according to the Desikan-Killiany atlas 412 

(34 left/right paired cortical regions), and then calculated the spatial correlations 413 
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separately for each region. These within-region analyses offer important nuance to the 414 

cortex-wide spatial correlation statistics in the form of two additional features: 1) the 415 

relative strength of spatial correlations within different regions, and 2) the homogeneity of 416 

correlations among regions.   417 

2.4 Supplementary analyses 418 

We conducted three supplementary analyses. Supplementary	 Analysis	 1 addresses the 419 

current lack of consensus about optimal smoothing parameters. Noise in the data, due to 420 

registration inaccuracies, is minimized when the cortex is parcellated into larger regions 421 

(i.e., greater smoothing) but, when the cortex is parcellated into smaller regions (i.e., less 422 

smoothing), the % variance explained increases ( 41F

81) due to the additional information 423 

provided. Thus, at the vertex-wise level, there is a balance to be struck between the benefits 424 

of reducing noise in the data, and the problem that increasing to higher levels of smoothing 425 

will, at a point, remove fine-grained spatial information and thus reduce the spatial 426 

specificity of detected associations.  Lerch and Evans (2005) analysed the effect of different 427 

smoothing tolerances on cortical thickness measurement sensitivity, and they concluded an 428 

optimal kernel size of 30 mm FWHM ( 42F

82, N	=	25). Some studies use 30 mm (43F

83,
44F

84), and other 429 

common choices are 5 mm (45F

4), 10 mm ( 46F

85,
47F

86
4), 15 mm ( 49F

87,
50F

88) or 20 mm ( 51F

42,
52F

89). We investigated 430 

the effects of smoothing tolerances on	 g-morphometry	 associations here (see 431 

Supplementary	 Analysis	 1), and the results suggest that generally, across morphometry 432 

measures, 10-20 mm FWHM tends to maximise noise reduction while maintaining localised 433 

effects. These results may aid future smoothing tolerance choices for similar analyses.  434 

Supplementary	Analysis	2 focuses on global and sub-cortical associations with g, age, and 435 

sex. Although much previous work on g‐brain associations focuses on the cortex, sub-436 

cortical structures are becoming increasingly recognized for their associations with 437 

cognitive function.  438 

Supplementary	Analysis	3 tests whether g‐morphometry associations differ by sex when 439 

they are calculated separately for each sex. The spatial correlations were all r	> 0.753 for 440 

UKB, suggesting that meaningful sex differences do not exist in the general population.  441 

2.5 Analysis software 442 

Within-cohort vertex-wise analyses were conducted in surfstat 443 

http://www.math.mcgill.ca/keith/surfstat/ in MATLAB. All meta-analyses (metafor, 79F

90), 444 

structural equation models (lavaan, 80F

91), and spatial correlations were conducted in R 4.0.2. 445 
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(R Core Team, 2020). Structural equation models were estimated with the full information 446 

maximum likelihood method.  447 

2.6 Data Availability 448 

All UKB data analysed here were provided under project reference 10279. A guide to access 449 

UKB data is available from http://www.ukbiobank.ac.uk/register-apply/. To access data 450 

from the GenScot study, see https://www.research.ed.ac.uk/en/datasets/stratifying‐451 

resilience-and-depression-longitudinally-GenScot-a-dep, and to access the Lothian Birth 452 

Cohort data, see https://www.ed.ac.uk/lothian-birth-cohorts/data-access-collaboration. 453 

The BigBrainWarp toolbox, released by Paquola et al. (13), is available for download at 454 

https://bigbrainwarp.readthedocs.io/en/latest/. The neuromaps toolbox is available at 455 

https://github.com/netneurolab/neuromaps.  Analysis script templates and the vertex-456 

wise β estimate cortical maps for g, age, sex and allometric scaling, along with the meta-457 

analytic means, the principal component of the metabolism maps, and the four principal 458 

components derived from the 33 neurobiological maps that are calculated in the current 459 

paper will be available on publication here: github.com/JoannaMoodie/moodie-brainmaps-460 

cognition.  461 

3 Results 

3.1 Associations between general cognitive functioning and brain morphometry: 462 

cross-cohort replicability and meta-analysis results 463 

3.1.1 Global morphometry associations with g 464 
At the global cortical level (measures summed across all vertices, associations calculated for 465 

each cohort, then meta-analysed), participants with higher general cognitive function had a 466 

greater total cortical volume (β = 0.178, SE = 0.035,	p	= 3.18x10-7), higher total cortical 467 

surface area (β = 0.154, SE = 0.021,	 p	= 5.90x10-12), and (nominally) thicker cortex on 468 

average (β = 0.073, SE = 0.037,	p	= .049). Higher	g	was marginally associated with greater 469 

overall concave curvature (β = 0.080, SE = 0.005,	p	= 6.20x10-60) although, as shown below, 470 

the direction and magnitude of the association substantially depended on region (range 471 

vertex-wise β = -0.10 to 0.09) Average sulcal depth was not associated with	g	(β = 0.018, SE 472 

= 0.025,	p	= .472). This appears to be due to regional variation in the direction of effects, 473 

which cancel each other out (range vertex-wise β = -0.12 to 0.13; see Figure 2).  474 
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3.1.2 Vertex-wise g-morphometry associations: cross-cohort replicability 475 
We ran vertex-wise g‐morphometry analyses in each of the three cohorts. We used a 20 mm 476 

FWHM smoothing tolerance, which provided a good balance between noise reduction and 477 

loss of fine-grained cortical information (Supplementary	 Analysis	 1). The patterning of 478 

associations between general cognitive function and brain cortical measures showed good 479 

between-cohort spatial agreement with moderate-to-strong correlations (see	 Table	 2, 480 

correlations ranged from Pearson’s	r	=	0.174 to 0.581, all	p	< 2.2x10-16). The mean between-481 

cohort spatial correlation for	g	profiles was r	= 0.424, SD = 0.132, which provides further 482 

evidence for the utility of	g	for replicable brain-behaviour analyses ( 81F82F 83F

24, 23). Note that even 483 

for traits that have high reliability like sex, the between-cohort correlation is not r	= 1 (r	= 484 

0.710, SD = 0.073, see	Table	1 for details). The lowest g‐association agreements involved the 485 

LBC1936, which has an older and narrower-age-range compared to the other two cohorts 486 

(mean age = 72.67 years,	SD	=	0.71). Spatial correlations between GenScot and UKB were all 487 

r	> 0.345. Notably, the magnitude of the associations between vertex-wise cortical measures 488 

and	g	did not change significantly across mean cohort age groups (there were no between-489 

cohort age moderation effects, FDR	Q	> .05). The g‐association maps for each cohort are 490 

shown in Figures	S7 to 11 and the density distributions of the β values are summarised in 491 

Figure	S12. Associations between subcortical and global volumes and	g	found in the current 492 

work are presented and discussed in detail in Supplementary	Analysis	2. 493 

Table	2	Spatial	agreement	across	cohorts	in	the	patterning	of	vertex‐wise	associations	with	g,	age,	and	494 
sex	for	cortical	volume,	surface	area,	thickness,	curvature	and	sulcal	depth.	All	p	<	2.2x10‐16.		495 

Table	2	Note	Pearson’s	r	 is	shown,	 indicating	a	spatial	correlation	of	vectors	between	each	pairwise	496 
combination	of	cohorts	(LBC1936,	GenScot,	and	UKB).	The	vector	for	each	cohort	is	a	list	of	standardised	497 
β	at	each	cortical	vertex,	denoting	the	cortex‐wide	association	between	morphometry	(volume,	surface	498 
area,	thickness,	curvature	and	sulcal	depth)	and	g,	or	age,	or	sex.		499 

Measure  g	  Age  Sex  

Cohorts LBC1936

-GenScot 

GenScot-

UKB 

UKB-

LBC1936 

GenScot-

UKB 

LBC1936

-GenScot 

GenScot-

UKB 

UKB-

LBC1936 

Volume 0.177 0.435 0.254 0.553 0.765 0.780 0.749 

Surface area 0.292 0.579 0.391 0.785 0.627 0.723 0.630 

Thickness 0.455 0.539 0.579 0.438 0.723 0.622 0.583 

Curvature 0.273 0.345 0.297 0.625 0.681 0.781 0.677 

Sulcal depth 0.581 0.538 0.452 0.663 0.718 0.847 0.742 

500 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2024. ; https://doi.org/10.1101/2024.12.17.628670doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.17.628670
http://creativecommons.org/licenses/by/4.0/


Page 25 of 52 
 

3.1.3 Vertex-wise g-morphometry associations: meta-analysis results 501 
We further meta-analysed the g‐vertex associations with random effects models (mapped to the 502 

cortex in Figure 2 and shown in extended detail in Figures	S13 and S14). Qualitative summaries 503 

of the cortical regions with the strongest positive and negative associations for	g	are in	Table	S12. 504 

Across volume and surface area (respective β ranges = < 0.001 to 0.17, and 0.01 to 0.15), there 505 

were positive associations in lateral temporal, lateral frontal and parietal regions of the cortex. 506 

These loci are broadly consistent with the P-FIT (2) and other results from single-cohort analyses. 507 

These results offer substantially greater spatial fidelity than prior ROI-based analyses.  508 

These meta-analyses also provide novel information about cognitive-cortical associations. For 509 

thickness, some regions had positive associations and others had negative associations. These 510 

associations (β range = -0.08 to 0.13, M	= 0.03, SD = 0.03) were most strongly positive in the 511 

temporal pole and entorhinal cortex and were most strongly negative in the anterior cingulate, 512 

medial orbitofrontal and medial occipital regions, where a thinner cortex predicted higher g. 513 

Curvature and sulcal depth tended to be absent in prior ROI-based analyses, and so have not been 514 

considered in detail in reviews and previously published meta-analyses (e.g., 92). 	For curvature 515 

(β range = -0.10 to 0.09, M	= 0.02, SD	= 0.02), higher	g	is associated with more concave vertices in 516 

medial frontal and medial occipital regions and more convex vertices in the anterior cingulate. 517 

Lastly, for sulcal depth itself, our vertex-wise results provide regional detail beyond the null 518 

association found when only a global measure was used. There was substantial heterogeneity in 519 

regional associations (β range = -0.12 to 0.13, M	= <0.01, SD	=	0.03). The results suggest that, 520 

relative to the whole cortex, deeper vertices in the medial frontal, temporal pole and parieto-521 

frontal regions are associated with higher	 g	 and less deep vertices in the cingulate and 522 

hippocampal gyrus are associated with higher g	(see Supplementary Table 12). 	523 
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 524 

Figure	2	Vertex‐wise	g‐morphometry	associations.		525 

Figure	2	note	A)	Associations	between	g	and	cortex‐level	means	for	all	5	morphometry	measures,	for	the	3	526 
cohorts	(UKB,	GenScot	and	LBC1936)	and	 the	meta‐analysis.	B)	Vertex‐wise	g	associations,	mapped	to	 the	527 
cortex.	The	 lower	 scale	 limit	 for	 log	Q	maps	 is	 set	at	 the	minimum	available	value	 for	any	morphometry	528 
measure	 (which	 is	 ‐263.24,	 or	 FDR	 Q	 =	 4.75x10‐115).	 C)	 Density	 distributions	 for	 the	meta‐analysed	 g	 ~	529 
morphometry	associations	for	the	5	measures	of	morphometry	(volume,	surface	area,	thickness	curvature	and	530 
sulcal	depth).	The	vertical	dotted	line	marks	β	=	0.	531 

3.1.4 Vertex-wise g-morphometry associations: agreement between morphometry 532 
measures 533 

There were different regional association patterns for the 5 morphometry measures (see	Table	534 

3, and	Table	S11 for the absolute β value correlations). For example, surface area and thickness 535 

had negative and non-significant spatial agreement correlations with each other for both the	g	536 

and age analysis (see	Table	2,	g:	r	=	-0.182, p_spin	= .252; age:	r	=	-0.265, p_spin = .462). This result 537 

is consistent with previous findings that surface area and thickness associations are spatially, 538 

phenotypically and genetically distinct ( 3F

93, 4F

94,5F

95,6F

96).  The current results agree with the previous 539 

findings that patterns of g	 associations are not consistent between different morphometry 540 

measures (e.g., 3, 4). This serves as a reminder that g-morphometry associations do not simply tell 541 

us where	g	is in the brain; rather, they each index a conflation of multifarious biological properties 542 

which also vary by brain region. The differential nature of these g-morphometry associations 543 

might be explained by different underlying neurobiological factors of the brain (which we discuss 544 

further in section 3.4).   545 
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3.1.5 Vertex-wise g-morphometry associations: within-region correlations 546 
Within-region correlations show that 21/34 regions had a negative correlation between g-547 

surface area and g-thickness and the top 5 regions with negative correlations, r	range = -0.86 to -548 

0.65 are: lateral orbitofrontal, caudal middle frontal, pericalcarine, rostral middle frontal, and 549 

temporal pole (see Figure 4). There were 13/34 regions with positive correlations, and the top 5 550 

regions for which g-surface area are positively associated with g-thickness are the inferior 551 

parietal region, caudal anterior cingulate, lateral occipital, transverse temporal and frontal pole 552 

(r	range = 0.355 to 0.785). These results show that the concordance between these two maps has 553 

a considerable amount of variation across the cortex, which is not possible to tell from the overall 554 

cortical correlation (r	= -0.182).  555 

Table	3	Correlations	 (r)	between	directional	 (not	absolute)	g‐associations	 for	 the	5	vertex‐wise	measures.	556 
Permutation‐based	p‐values	are	available	for	g	correlations	in	Table	S13,	and	correlation	charts	are	shown	in	557 
Figure	S15.	If	the	p‐values	are	<	.05,	they	are	presented	in	bold	font.		558 

  Volume Surface area Thickness Curvature 
g Volume 	 	 	 	
 Surface area 0.656	    
 Thickness 0.442	 -0.182   
 Curvature ‐0.230	 ‐0.163	 -0.069  
 Sulcal depth -0.122 0.085 -0.109 0.176	
Age Volume     
 Surface area 0.602	    
 Thickness 0.345	 -0.309   
 Curvature ‐0.266	 -0.105 0.020  
 Sulcal depth 0.194 0.452	 ‐0.342	 -0.111 
Sex Volume     
 Surface area 0.771	    
 Thickness 0.600	 0.169   
 Curvature ‐0.174	 0.139	 ‐0.298	  
 Sulcal depth 0.041 0.237	 -0.105 0.410	

3.2 Brain regions most related to	g	are those most susceptible to ageing 559 

In addition to the meta-analytic	g-morphometry association maps, we similarly calculated meta-560 

analytic maps of	associations of age, and sex with cortical morphometry. Figure	3	shows how 561 

these age and sex associations map to the cortex, and	Table	S12 provides a qualitative description 562 

of the cortical regions that have the most strongly positive, and most strongly negative β values 563 

for each measure for age and sex associations. The g, age and sex association maps are in the same 564 

analysis space (fsaverage), and so we can quantitatively compare their spatial patterning across 565 

the cerebral cortex.  566 

The vertex-wise age associations show that older people tend to have a smaller cortex in terms 567 

of volume and surface area, and most of the cortex also thins with age; . Frontal, lateral temporal 568 
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and parietal regions are among those most strongly negatively associated with age. For curvature, 569 

vertices in the insula tend to be more concave with age, whilst most of the rest of the cortex sees 570 

an increase in convex vertices which is consistent with previous findings that show that cortical 571 

gyrification decreases with age (105).  For sulcal depth, the anterior cingulate gyrus, medial frontal 572 

region and insula become increased sulcal depth as age increases, and the medial orbitofrontal, 573 

posterior cingulate, and lateral orbitofrontal regions are less deep as age increases.  574 

We use these data to quantitatively assess prior observations (which have arisen mostly from 575 

qualitative inferences from disparate publications) that those parts of the brain most susceptible 576 

to ageing are also those most strongly implicated in our most complex thinking skills (97). We 577 

tested the spatial agreement of the vertex-wise associations for	g	with those for age (i.e., g-volume 578 

with age-volume etc.). The results show that, as previously qualitatively observed (98, 19, 99), 579 

regions of the brain most associated with	g	are also those that decline most with age: spatial 580 

correlations range from r	=	-0.311 to -0.575. These overall spatial correlations broadly held across 581 

most regions of the brain (mean number of negative correlations across measures = 28.8/34 582 

regions; Figure 3C): for most regions, vertices associated with higher	g	 tend to exhibit more 583 

ageing-related shrinkage and thinning. The 5 regions with the strongest negative correlations for 584 

age-volume and g‐volume comparisons were the transverse temporal, isthmus cingulate, frontal 585 

pole, caudal anterior cingulate and superior temporal regions (r	 range -0.660 to -0.912). The 586 

correlation of age-cortex and g‐cortex associations across all 46 global and subcortical measures 587 

was r	=	-0.860,	p	=	2.86x10-13 (see Supplementary	Analysis	2 for extended analyses). These findings 588 

are compatible with previous findings that present brain, age and	g	associations (e.g., 19, 100, 101). 589 

For example, this finding could be linked to the “last-in-first-out” hypothesis of ageing, whereby 590 

the neocortical regions that are responsible for more complex cognition mature later in 591 

development, and are also more vulnerable to ageing, which might be related to the high degree 592 

of dendritic plasticity and remodelling required for successful functioning (102, 103). 593 

3.3 Sex differences paradox may be due to a compensatory volume-gyrification trade-594 

off 595 

The vertex-wise profiles for sex associations show that, across the cortex, males tend to have a 596 

larger volume and surface area of frontal regions than females. Females tend to have thicker 597 

superior frontal and parietal regions than males, although lateral temporal regions are thicker in 598 

males than females. Males tend to have generally more concave curvature across the cortex, 599 

compared to females, and increased sulcal depth, particularly in medial frontal regions. 600 

Different brain regions have been shown to differentially mediate associations between sex and 601 

cognitive performance (e.g., for volume, the mediation % for verbal and numeric reasoning has 602 
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been shown to range from 0.9% in the cuneus to 29.1% in the superior temporal region, in a 603 

sample of 5216 UKB participants) (104). Here, we also tested the strength of spatial correlations 604 

between sex and	g	vertex-wise cortical maps. The correlation between sex- and g‐associations for 605 

subcortical and global regions was r	=	0.305,	p	=	.0496 (details available in Supplementary	Analysis	606 

2). For vertex-wise cortical spatial correlations, regions that tend to be larger/more 607 

concave/deeper in males than females also tend to be more associated with	g	(r	=	0.310 to r	= 608 

0.486), but this was a considerably weaker, non-significant result for g‐thickness (r	=	0.024,	p_spin	609 

= .912). The weaker result for thickness is understood better by looking at the within-region 610 

analysis. For the other 4 morphometry measures, the majority of g‐sex brain map correlations 611 

are in one direction (positive, see Figure 3, 2D). In contrast, for thickness, there is more of a 612 

balance between positive and negative correlations. For some regions, a higher	g	is associated 613 

more with a thicker cortex in males (top 5 correlations, r	range = 0.50 to 0.62: pericalcarine, 614 

isthmus cingulate, middle temporal, superior temporal, posterior cingulate), whereas in others, a 615 

higher	g	score	is associated with thicker cortex in females (top 5, r	range = -0.24 to -0.54 : frontal 616 

pole, paracentral, superior parietal, lateral occipital, superior frontal).  617 

 618 

Figure	3	g‐age	and	g‐sex	correlations.	Figure	3	note	A)	Age	(1)	and	sex	(2)	associations	mapped	to	the	cortex.	619 
Some	FDR	Q	values	were	estimated	 to	be	zero,	and	 these	have	been	 set	 to	 the	 closest	minimum	 that	was	620 
successfully	calculated.	For	age	and	sex,	the	log	Q	limit	was	set	at	‐704.3499,	which	is	FDR	Q	=	1.273x10‐306	621 
(Note	 that	 the	 log	 of	Q	 =	 .05,	 a	 typical	 α	 significance	 threshold,	 is	 ‐2.9957).	 B)	 The	 cortex‐level	 spatial	622 
correlations	between	the	g‐morphometry	associations	with	the	age‐	and	sex‐morphometry	associations.	Note	623 
g‐sex	volume	and	g‐sex	thickness	had	p_spin	values	>	 .05,	but	for	all	others	p_spin	<	 .05.	C)	Distributions	of	624 
regional	correlations.	D)	Scattergraphs	showing	the	cortex‐wide	correlations	(representing	the	numbers	in	B)	625 
in	black	and	showing	whether	and	where	that	overall	spatial	agreement	holds	for	different	regions	(colours	626 
represent	the	34	paired	left/right Desikan‐Killiany	regions)	of	the	brain.	627 
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These data offer a valuable new quantitative insight into a well-documented paradox: although 628 

global brain volume exhibits clear sex differences, with mean brain volume differing significantly 629 

between males and females, these structural disparities do not translate into measurable 630 

differences in cognitive functioning between the sexes. One hypothesised explanation for this 631 

paradox involves compensatory mechanisms that mitigate volumetric sex differences, such as 632 

increased gyrification (104). Here, there appears to be direct quantitative evidence of that: we 633 

found that brain regions that were largest in males were also more convex in females (r	= -0.174, 634 

p_spin	= .016 between volume and curvature for sex). Convex vertices are associated with greater 635 

gyrification which is generally a sign of a younger, healthier brain (105). For this sex ~ volume, sex 636 

~ curvature comparison, there were negative within-region correlations for the majority of 637 

regions (28/34 regions, see Figure 4B), with the top 5 correlations r	range = -0.77 to -0.81 for the 638 

caudal middle frontal, rostral anterior cingulate, pars triangularis, paracentral, and temporal pole 639 

regions.  640 

 641 

Figure	4	Examples	of	within‐region	spatial	correlations.			642 

Figure	4	note	Within‐region	vertex‐wise	spatial	correlations	for	A)	g	~	surface	area	and	g	~	thickness	643 
(overall	r	=	‐0.182)	and	B)	sex	~	volume	and	sex	~	curvature	(overall	r	=	‐0.174).	The	overall	r	is	shown	with	644 
a	black	line,	and	the	34	paired	Desikan‐Killiany	regions	are	plotted	according	to	the	colour	legend	on	the	645 
right‐hand	side	of	the	plot‐These	results	offer	regional	underpinnings	of	cortex‐wide	associations.	Assessing	646 
within‐region	correlations	allows	identifying	relative	strengths	of	spatial	correlations	in	different	regions	647 
across	the	cortex,	as	well	as	the	homogeneity	of	the	effects.	648 

3.4 Neurobiological correlations between g and brain profiles - what is distinctive 649 

about regions associated with g? 650 

We found widespread cortex-wide spatial correlations between	 g’s brain morphometry	651 

associations and 33 neurobiological cortical spatial profiles (Figure 5). This represents the most 652 

detailed compendium of shared spatial signatures between the structure of cognitively-relevant 653 

brain regions and, microstructural, macrostructural, functional and receptor densities to have 654 

been assembled at high regional fidelity. g-volume and g-surface area association maps were 655 

significantly correlated respectively with 14 and 15 neurobiological profile maps. The 656 

neurobiological correlations of g‐volume and g‐surface area are highly correlated (r	= 0.919) 657 
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suggesting that these two measures are highly similar in their relationships to underlying spatial 658 

characteristics. The results indicate that regions of the cortex where larger volume or surface area 659 

is more strongly associated with better general cognitive functioning were also those regions that 660 

show, for example, lower metabolic activity at rest (r	= -0.41 and -0.29, respectively), lower 661 

cortical myelination (T1/T2 contrast, r	 = -0.35 and -0.47, respectively), higher receptor densities 662 

(5HT1a, 5HT2a, 5HT4, 5HT6, D1, D2 M1, VAChT, CB1, MU, NMDA, r	range = 0.25 to 0.60), and also 663 

show significant co-localisation with the primary axis of cortical gene expression (r	= -0.44 and -664 

0.48, respectively). The negative association for T1/T2 contrast-derived myelination might be 665 

explained as the most highly myelinated areas of the brain are not those involved in higher order 666 

cognition but rather are areas receiving large volumes of sensory input such as the primary 667 

motor, somatosensory, auditory and visual cortices. Myelination decreases with distance from 668 

these regions 106. Additionally, higher T1/T2 ratios have previously been associated with poorer 669 

outcomes such as Alzheimer’s disease (107) and, as discussed earlier, this ratio is perhaps not a 670 

good proxy for myelination. Neurobiological profiles without any cortex-wide correlations with 671 

g’s brain associations were cytoarchitectural staining similarity gradient 1, functional 672 

connectivity similarity gradient 2, 5HT1b, A4B2. However, this does not suggest that there are no 673 

meaningful spatial correlations between g-morphometry profiles and these neurobiological 674 

profiles at the regional level (see Figure S22 for an extended version of Figure 5, with distributions 675 

of the within-region correlations, and Figures S26 to S30 for further detail).  676 

As reported in the analyses in section 3.1.4 above, there was a negative and non-significant 677 

cortex-wide spatial correlation between	g	~ surface area and	g	~ thickness (r	= -0.182, p_spin	= 678 

.252). In the current analyses, our cortical map of mean surface area (i.e., one of the 679 

neurobiological profile maps) was positively associated with	g	~ surface area (r	= 0.29, p_spin > 680 

.05) and negatively associated with	 g	 ~ thickness (r	 = -0.31, p_spin > .05) and these two 681 

correlations appear to cancel each other out in mean surface area’s association with	g	~ volume 682 

(r	= -0.02, p_spin > .05). Neurobiological profiles might offer some further insights into these 683 

relationships between	g	~	surface area and	g	~ thickness. While microstructure gradient 1 was 684 

correlated with g‐surface area (r	 = -0.59), microstructure gradient 2 was correlated with g‐685 

thickness (r	=	0.48). A similar pattern occurred for functional connectivity similarity gradients 686 

where the first one was significantly correlated with g-surface area (r	= -0.44), and the second 687 

had a moderate correlation with g-thickness (r	= 0.29, although p_spin = .205 The tendency of g-688 

surface area and g-thickness to align with different microstructural and functional similarity 689 

gradients may help explain why their cortical spatial patterns are spatially distinct, potentially 690 

reflecting their unique phenotypic and genetic characteristics (93, 94, 95, 96).  691 
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Regions of the brain where volume and surface areas were most strongly related to	g	were also 692 

those that density show particularly high receptor density across multiple neurotransmitters 693 

(5HT1a, D2, D1, 5HT4, CB1, VAChT, and 5HT2a; r	 range = 0.34 to 0.59). For the other g‐694 

morphometry associations, cortex-level spatial correlations were generally smaller and positive, 695 

with some exceptions. For example, there is a relatively large negative correlation between g‐696 

curvature and MU (r	=	-0.31, suggesting that regions with a higher density of MU receptors are 697 

those for which more convex vertices are associated with higher g) and between g‐sulcal depth 698 

and VACHT and mGluR5 (both	r	=	-0.29, suggesting that regions with a higher density of VACHT 699 

and mGluR5 receptors tend to be those for which a higher	g	 is associated with a more gyral 700 

vertex). At the cortex-wide level, there were no p_spin significant associations between the g-701 

thickness map and any neurotransmitter receptor profiles, although, as shown in Figure S28 (and 702 

reported in the Supplementary Tabular Data File), this appears to be because there was a mix of 703 

positive and negative correlations at the regional level, which likely cancel each other out. 704 
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 705 

Figure	5	Vertex‐wise	spatial	correlations	between	g‐morphometry	associations	and	33	706 
neurobiological	cortical	profiles.	707 

Figure	5	note	Spatial	correlations	with	p_spin	values	<	.05	are	underlined.		An	extended	version	of	708 
this	Figure	is	available	in	Figure	S22,	showing	the	underlying	regional	correlation	summaries,	like	709 
those	in	Figure	4.		710 
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3.5 Four major dimensions explain the majority of spatial variation across 33 cortical 711 

properties 712 

Since there were some qualitatively observable consistencies in spatial maps across the 33 713 

cortical properties presented in Figure 5, we conducted a spatial component decomposition using 714 

principal components analysis (PCA) to quantitatively identify any underlying spatial similarities 715 

(i.e., statistical ‘dimensions’) that were shared across multiple maps (Figure 6). We conducted the 716 

PCA across all 33 maps. It might be argued that one should reduce the dimensionality of the N = 717 

19 receptor maps first. However, there was no evidence that those receptor maps were more 718 

similar to each other than to all other maps, i.e., the absolute correlations within 719 

neurotransmitters, and those within other types of maps were not significantly different from 720 

each other (t = -0.198, p	= .843, neurotransmitter maps’ mean |r| = 0.371, SD |r|= 0.237, other 721 

maps’ mean |r| = 0.367, SD |r| = 0.267). 722 

Consistent with our qualitative observations, the 33 maps shared only four main spatial patterns: 723 

the first four components accounted for 65.9% of the variance, and there was a marked inflection 724 

point in the variance explained after these four (Figure	 6A and scree plot in Figure	 6B). We 725 

extracted the first four components with varimax rotation (loadings presented in Figure	6C). The 726 

first component alone accounted for almost one third of the spatial variance (the loadings of PC1 727 

were similar whether rotated or unrotated; coefficient of factor congruence = 0.900; Figure	S18). 728 

We describe these major dimensions as mapped onto the cortical surface (see Figure 6D), which 729 

appear to reflect core organisational principles of the brain’s neurobiology across multiple scales:  730 

- PC1 resembles previously reported latent variables of cortical macrostructure (108, 78). Its 731 

cortical profile is characterized by a gradient from unimodal sensory input areas 732 

(sensorimotor, primary auditory and visual / medial occipital regions) at one end of the 733 

scale, and amodal association cortices (medial frontal and temporal regions) at the other 734 

(78). It captures multiple aspects of neurobiological information with high loadings across 735 

microstructure, macrostructure, functional activity, and neurotransmitter receptor 736 

density categories. The largest positive receptor loadings were for 5HT1a, MU, CB1, D1 737 

and D2. NAT and GABAa-bz had negative loadings < -0.3.  738 

- PC2 is medial temporal and is most strongly characterized by allometric scaling, 739 

intersubject variability and metabolism showing strong parahippocampal localisation. 740 

High-loading receptor maps were A4B2, M1, VAChT, CB1, MU, mGluR5 and GABA-bz.  741 

- PC3 is an anterior-posterior component and is associated with functional activity (both 742 

FC similarity gradient 2 and CogPC1 Neurosynth) and the first principal component of 743 

cortical gene expression, as well as with cytoarchitectural staining and microstructural 744 
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similarity profiles. There is a large negative loading for GABAa-bz, and the largest positive 745 

loadings for mGlur5, MU and H3.  746 

- PC4 is superior/inferior, with strikingly strong component scores in the insula. It is 747 

largely a receptor-based component, with notable positive loadings for several serotonin 748 

maps (5HT1b, 5HT2a, 5HT4, 5HTT), and all three dopamine maps (D1, D2 and DAT), as 749 

well the two glutamate maps (NMDA, and mGLuR5) and VAChT (acetylcholine).  750 

We correlated these major dimensions of neurobiological organization with the g-morphometry 751 

association maps (see Figure 6E). Notably, PC1 correlations were highest with g‐volume (r	=	0.39, 752 

p_spin =.009) and g‐surface area (r	=	0.56, p_spin = .002). The strongest cortex-wide correlation 753 

for PC2 is for g‐thickness, although it is not significant in the spin test (r	=	0.29, p_spin	= .074). The 754 

only spin test p	value < .05 for g-morphometry associations with PC3 is for sulcal depth (r	= 0.21, 755 

p_spin	= .049). PC4 had the strongest association with g‐volume (r	=	0.43, p_spin	= .010), which 756 

appears to be led by g‐surface area (r	= 0.38, p_spin	= .079) rather than g‐thickness (r	= 0.18, p	= 757 

.364).  758 

Within-region analyses results show that significant cortex-wide map correlations are 759 

underpinned by homogenous correlations at regional level (see Figure 6F). Neurobiological 760 

profiles with null correlations at the cortex level had both positive and negative correlations at 761 

the regional level, which cancel each other out but could still reveal important associations of g-762 

morphometry maps and core organisational principles of the human brain. These results are 763 

presented in detail in Figure S31 and the Supplementary Tabular Data File. 764 

Together, the results show that multiple biological properties covary together in relatively few 765 

spatial axes across the cortex. These dimensions represent multi-system neurobiological 766 

foundations of individual differences in general cognitive functioning. 767 
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	768 

Figure	6	Many	neurobiological	profiles	converge	on	 four	spatial	dimensions	which	are	spatially	correlated	769 
with	g‐morphometry	maps.	770 

Figure	6	note	A)	A	correlation	plot	between	the	33	neurobiological	profiles.	B)	A	scree	plot	showing	percentage	771 
of	explained	variance	by	the	first	10	PCs.	The	first	four	were	extracted	with	varimax	rotation.	C)	The	loadings	772 
of	each	neurobiological	profile	on	the	first	four	components.	Loadings	<	|.3|	are	shown	in	a	reduced	alpha	to	773 
aid	interpretations.	D)	PC	scores	mapped	onto	the	cortex.	E)	Correlations	of	four	PCs	with	g	~	morphometry	774 
associations	 (with	 spin	 test	 <	 .05	 underlined).	 F)	 The	 distributions	 of	 within‐region	 g	 ~	 morphometry	775 
correlations.	Note	that	this	plot	does	not	take	into	consideration	the	number	of	vertices	in	each	region.	776 
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4 Discussion  

This study provides the most definitive cross-cohort characterisation of regional morphometric 777 

brain associations with	g	 to-date.	 It demonstrates how such associations vary in strength and 778 

direction across the volume, surface area, thickness, curvature and sulcal depth of the cortex. We 779 

also provide a compendium of spatial associations between g-morphometry profiles and 33 780 

neurobiological profiles and discover that these 33 profiles share four major dimensions of 781 

spatial cortical organization. We look at spatial correlations between g‐morphometry 782 

associations and neurobiological profiles to provide insights into the neurobiological 783 

mechanisms underpinning our complex cognitive functions. 784 

Using the spatial correlations approach, the current results provide further detail about	g	and 785 

brain-neurobiology relationships. Key findings were: 1) We provide the largest to-date meta-786 

analytic vertex-wise associations between brain morphometry and g (i.e., morphometry maps) 787 

and characterise how they vary across the cortex; 2) Vertices with larger g associations tend to 788 

be more susceptible to age; 3) Vertices most strongly associated with g were largest in males and 789 

also more convex in females; 4) g‐morphometry associations maps substantially overlap with 790 

maps of neurobiological properties; 5) The cortical spatial patterning of 33 neurobiological maps 791 

can be concisely summarised in 4 PCs, and their correlations with g-morphometry patterns are 792 

presented.  793 

There were p_spin	significant correlations between several g‐morphometry and neurobiological 794 

profiles, such as dopamine, serotonin, VACHT, CB1 and NMDA neurotransmitter receptor 795 

densities. These neurotransmitter-cognition results are in line with previous reports e.g., 796 

dopamine and serotonin have previously been shown to be important for cognitive processes 797 

(e.g., 109, 110, 111), VACHT dysfunction has been shown to be related to intellectual disabilities and 798 

Parkinson’s Disease, as well as to prefrontal cortex functioning (112,113), acute CB1 disruption 799 

results in a decline in verbal learning and working memory performance 114, and NMDA has been 800 

selected as a promising target for cognitive enhancement e.g., in dementia (115, 116). There was a 801 

negative correlation between brain volume and metabolism, which might be explained as the 802 

metabolism data were collected a rest, so one might expect these regions to be de-coupled from 803 

the cognition-relevant regions we identify here. g-volume and g‐surface area also had moderately 804 

strong correlations with PC1 gene expression, in line with our previous work which characterised 805 

g‐morphometry and gene expression profile associations in more detail (3). Microstructural and 806 

functional similarity gradients had differential correlations between g-surface area and g-807 

thickness, which could give insights into the mechanisms behind why the spatial profiles of these 808 

two g-morphometry profiles are different. 809 
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The spatial variation of the neurobiological profiles across the cortex was captured in four 810 

dimensions which reflect multi-scale organisational principles of the brain that support general 811 

cognitive functioning. Neurobiological PC1 resembles previously reported latent variables of 812 

cortical macrostructure (108, 78). Its cortical profile is characterized by a gradient from unimodal 813 

sensory input areas (sensorimotor, primary auditory and visual / medial occipital regions) at one 814 

end of the scale, and amodal association cortices (medial frontal and temporal regions) at the 815 

other. It captures multiple aspects of neurobiological information with high loadings across 816 

microstructure, macrostructure, functional activity, and neurotransmitter receptor density 817 

categories. The consistency with previous reports suggests that our applied methods are 818 

promising and that the core dimensions of cortical organisation may be replicated across 819 

different measures and analysis strategies. PC1 had moderate correlations with g-volume and g-820 

surface area, suggesting that this dimension of neurobiological characteristics is important for 821 

cognition-brain organisation.  822 

In the current study we also offer a framework to extend the increasingly popular method of 823 

calculating spatial correspondences between two cortical profiles (usually represented by a 824 

single correlation of assumed linear correspondence). Our approach to examine vertex-wise 825 

within-region spatial agreement offers important insights about the relative strength of 826 

correlations for different regions and the extent of homogeneity of cortex-wide correlations 827 

across regions. For correlations between age-brain and g‐brain maps,	the vast majority of within-828 

region correlations are negative. For example, for cortical volume – across regions, vertices for 829 

which a higher	g	is associated with higher volume tend to be the same vertices for which a higher 830 

age is associated with lower volume (i.e., appears to decline more with age).  On the other hand, 831 

for example, for the	g	~ surface area and	g	~	thickness comparison, there are 13 regions with 832 

positive associations (rs	M = 0.27, SD = 0.24, range = 0.006 to 0.785) and 21 with negative 833 

associations (rs	M = -0.397, SD = 0.269, range = -0.012 to -0.859), showing that the concordance 834 

between these two maps has a considerable amount of variation across the cortex, which is not 835 

possible to tell from the overall cortical correlation (r	= -0.182). Sometimes a cortical correlation 836 

might be null because positive and negative within-region correlations cancel each other out. For 837 

example, for	 g	~ thickness, there are no p_spin significant cortex-wise correlations with any 838 

neurotransmitter receptor density maps, but at the regional level, there are both large positive 839 

and negative associations for several receptor types. These within-region correlations cancel 840 

each other out at the cortex-level and conceal potentially meaningful spatial correlations between	841 

g	~ thickness and neurotransmitters receptor densities.  842 

The extent to which brain-behaviour associations are stable and replicable is a subject of current 843 

debate (117, 118), and here we formally quantified the extent to which the patterning of associations 844 
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is stable across cohorts. The results show good cross-cohort agreement, suggesting that it is not 845 

always the case that thousands of individuals are required to produce reproducible brain-wide 846 

associations. We also provide a critical evaluation of smoothing tolerances for these associations, 847 

which suggests that between 10-20 mm FWHM is a good choice across morphometry measures. 848 

We further conducted cross-cohort meta-analytic data on subcortical associations with g,	age, and 849 

sex (described in detail in Supplementary	 Analysis	 2) which contribute significantly to the 850 

literature on this topic.  851 

For our meta-analyses, methods were matched, where possible, between the UKB, GenScot and 852 

LBC1936 cohorts (e.g., obtaining brain morphometric measures from FreeSurfer and including 853 

multiple different cognitive test scores in our calculation of latent	g	scores). This consistency 854 

allowed for direct quantitative comparison between cohorts and leads to improved confidence in 855 

the final meta-analytic estimates of g‐brain associations. With that said, some differences in MRI 856 

data and processing protocols between the three cohorts might differentially affect the cortical 857 

surface results: 1) each of the three cohorts used different scanners for MRI acquisition and, 858 

although T1-weighted data provides consistent between-scanner measures ( 90F

119), we cannot rule 859 

out between-cohort scanner-specific effects; 2) Desikan-Killiany parcellations were visually 860 

inspected and manually edited for LBC1936 and GenScot, which would also affect the vertex-wise 861 

surfaces, but manual inspections were not carried out for UKB; and 3) different FreeSurfer 862 

versions were used for each cohort and are likely to have contributed to some differences in 863 

estimations, alongside different types and quantity of cognitive tests. It is therefore encouraging 864 

that the spatial correlations were fairly stable and that the meta-analytic results also show 865 

significant associations with multi-modal biological data from independent sources. 866 

All cortical maps included in the current analyses were registered to fsaverage space. Registration 867 

differences might have had a small impact on the results – e.g., there were a few vertices around 868 

the cortical mask that were present in some transformed fsaverage maps, and not in others (e.g. 869 

there were fewer vertices included in the cortical mask for the gene expression PC1). However, 870 

we only included vertices within the cortical mask across all maps in each analysis, and we would 871 

expect the effects of such registration inaccuracies to be small. Additionally, efforts were made to 872 

harmonise smoothing tolerances between maps for different data types, but the original sampling 873 

density across the cortex was different between maps. Cortical data obtained at lower spatial 874 

resolutions (e.g. neurotransmitter density maps, derived from PET data) may have contributed 875 

to some uncertainty in our vertex-wise analyses, particularly within smaller cortical structures. 876 

The cortex-wide r	values should thus be interpreted alongside the corresponding p_spin	values, 877 

as this limits the spatial autocorrelation effects that tend to increase with increased smoothing. 878 
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Although the spin test goes some way to improve the validity of spatial correlations, it is 879 

important to note, too, that using Pearson’s r	 to test spatial correlations of cortical profiles 880 

assumes that we are working with linear spatial associations. This is not always the case (e.g., see 881 

Figure S15), as non-linear patterns are often found. The spin test does not address the 882 

heterogeneity of spatial autocorrelation effects across the cortex. Further methods are currently 883 

being developed to address this issue and more accurately characterise spatial concordance 884 

between cortical maps ( 91F

120). The methods and cortical maps we provide here could aid more 885 

detailed investigations into how and where spatial concordance/discordance between 886 

neurobiological and brain structural profiles is relevant to brain-behaviour relationships. 887 

The methods used in the current paper rely on all cortical profiles having results at all vertices. 888 

The publication and release of summary data for all vertices should be encouraged, not only those 889 

vertices that reach certain criteria (e.g., significance thresholds). While for example, cluster-based 890 

analyses can be useful for identifying the main regions of interest, presenting results for all 891 

vertices provides information about the relative patterning of effects across the whole cortex that 892 

can be directly compared with other whole-cortex profiles.  893 

A limitation of this study is that participants were likely to be in relatively good health, as we 894 

chose to exclude participants with self-declared neurological issues from the UKB sample. Having 895 

said that, our UKB exclusion criteria did not include GP, hospital or death records, so it is likely 896 

that some participants with such conditions remain in the UKB sample, and may influence the 897 

findings, as some neurological diseases e.g. stroke or brain lesions are likely to affect brain-898 

cognition associations. The GenScot imaging sample was biased to have more participants with 899 

past or current depression than would likely be typical in the general population, in line with the 900 

initial aims of their study. Depression status was not controlled for in the current analyses, and it 901 

is possible that it could affect brain-cognition associations. All three cohorts used to calculate g-902 

brain associations are also largely white and northern European, and so it is not clear whether 903 

these findings apply in other world regions or ethnic groups. Additionally, whereas the cognitive-904 

MRI data do not include childhood and adolescence (and therefore the results may not relate 905 

directly to those parts of the life span), the good adulthood age coverage, absence of age 906 

moderation of the meta-analytic estimates within-cohort, and clear agreement across cohorts 907 

suggests that the well-powered results capture adulthood brain-g correlations. The open-source 908 

neurobiological maps that we use here are also limited in terms of generalisation due to sample 909 

characteristics, which are also not directly comparable with the cohorts used to calculate g-910 

morphometry associations. For example, gene expression PC1 was calculated based on data from 911 

6 donors, aged 24 to 57 years old, which is a small sample, and has a younger age range than the 912 

current study (age range = 44 to 84 years old); the cytoarchitectural similarity maps were based 913 
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on just one donor, and the PET maps tended to be conducted on young healthy adults, with sample 914 

sizes ranging from 8 to 204. At this stage, the results should be thought of as being at a high-level 915 

overview stage, and be used for hypothesis generation, rather than being taken as direct evidence 916 

of brain-behaviour relationships. 917 

As further group-level brain-wide maps are made openly available, the correlational structures 918 

between different cortical profiles should continue to be examined and updated. Moreover, the 919 

future collection or release of individual-level data across different neurobiological 920 

characteristics would enable individual differences analyses, for example, to test the relationship 921 

between the density of certain receptor types and g-morphometry associations at the individual 922 

level. This would allow for more direct associations between neurobiological characteristics and 923 

g, and longitudinal studies with within-participant cognitive, brain imaging and neurobiological 924 

data could also directly reveal whether which neurobiological characteristics underpin the clear 925 

similarity between	g	and age-related brain patterns.  926 

5 Conclusion 

This study advances our understanding of how different neurobiological profiles in the human 927 

cortex share spatial patterning with g-structural morphometry profiles. We discovered four 928 

principal components, which explain 65.9% of the variance across 33 neurobiological profiles, 929 

and represent major fundamental axes along which the human cortex is organised. These results 930 

offer new perspectives on the neurobiological properties underlying observable brain-cognitive 931 

associations. We provide important new data and a framework to study brain-behavioural 932 

associations in the future.933 
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