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The advent of spatial transcriptomics and spatial proteomics1

have enabled profound insights into tissue organization to2

provide systems-level understanding of diseases. Both3

technologies currently remain largely independent, and4

emerging same slide spatial multi-omics approaches are5

generally limited in plex, spatial resolution, and analytical6

approaches. We introduce IN-situ DEtailed Phenotyping7

To High-resolution transcriptomics (IN-DEPTH), a stream-8

lined and resource-effective approach compatible with var-9

ious spatial platforms. This iterative approach first entails10

single-cell spatial proteomics and rapid analysis to guide11

subsequent spatial transcriptomics capture on the same12

slide without loss in RNA signal. To enable multi-modal in-13

sights not possible with current approaches, we introduce14

k-bandlimited Spectral Graph Cross-Correlation (SGCC) for15

integrative spatial multi-omics analysis. Application of IN-16

DEPTH and SGCC on lymphoid tissues demonstrated pre-17

cise single-cell phenotyping and cell-type specific transcrip-18

tome capture, and accurately resolved the local and global19

transcriptome changes associated with the cellular organi-20

zation of germinal centers. We then implemented IN-DEPTH21

and SGCC to dissect the tumor microenvironment (TME)22

of Epstein-Barr Virus (EBV)-positive and EBV-negative dif-23

fuse large B-cell lymphoma (DLBCL). Our results identi-24

fied a key tumor-macrophage-CD4 T-cell immunomodulatory25

axis differently regulated between EBV-positive and EBV-26

negative DLBCL, and its central role in coordinating immune27

dysfunction and suppression. IN-DEPTH enables scalable,28

resource-efficient, and comprehensive spatial multi-omics29

dissection of tissues to advance clinically relevant discov-30

eries.31

Spatial Multi-Omics | Spatial Proteomics | Spatial Transcriptomics | Graph Sig-32

nal Processing | Bioinformatics | Computational Biology | EBV | Tumor Virus33

| Tumor Microenvironment | DLBCL | Systems Immunology34
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Introduction36

Spatial transcriptomics and spatial proteomics are recent37

technological breakthroughs that have enabled investiga-38

tions of complex biological systems at unprecedented de-39

tail within native tissue contexts (1–4). Effective combi-40

nation of both approaches on the same tissue section is41

currently the rate-limiting step for novel biological insights,42

particularly given the complementary strengths of assess-43

ing both RNA and proteins. While spatial transcriptomics44

offers higher feature coverage and pathway-level insights,45

the technology faces inherent biological limitations in pre-46

dicting functional outcomes due to post-transcriptional47

regulation and variable RNA-to-protein correlations (5–48
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7), whereas spatial proteomics directly captures func-49

tional molecular phenotypes and functional states with50

high signal-to-noise ratios and data acquisition speeds, al-51

beit with lower multiplexing capacity. Spatial multi-omics52

methods that can simultaneously profile both transcripts53

and proteins from the same tissue section would enable54

insights into regulatory mechanisms while preserving spa-55

tial context to bridge the gap between gene expression and56

functional protein dynamics in complex biological systems57

and archival clinical specimens.58

Several innovative approaches have successfully demon-59

strated the potential of integrating spatial protein and RNA60

imaging on the same tissue sample (8–14). While these61

pioneering methods have provided valuable insights, cur-62

rent technical constraints, such as multiplexing capacity63

(8, 10, 11, 14, 15) and spatial resolution in grid/spot-based64

approaches (8, 9, 12, 13) , suggest opportunities for fur-65

ther advancements. Spatial transcriptomics approaches66

also often incorporate protease treatment of tissue sec-67

tions for efficient RNA detection, which will compromise68

protein epitope integrity and impact downstream protein69

analysis (10, 15, 16). An additional key limitation for70

broad clinical application and adoption is the compatibil-71

ity with formalin-fixed paraffin-embedded (FFPE) tissues,72

the standard preservation method in clinical pathology73

(17). There is also significant potential to expand compu-74

tational approaches to fully empower multi-modal analysis75

for meaningful biological insights (18).76

We herein present IN-DEPTH (IN-situ DEtailed Pheno-77

typing To High-resolution transcriptomics), a cost-efficient78

and reproducible spatial multi-omics approach that uti-79

lizes single-cell spatial proteomics to guide subsequent80

genome-wide spatial transcriptomics capture on the same81

slide without compromise to protein or RNA signals. IN-82

DEPTH advances our conceptual approach of spatial83

multi-omics data generation by linking rapid cell type func-84

tional identification and tissue architecture analysis with85

deep interrogation of transcriptomic pathways in a biolog-86

ically relevant manner. To quantify tissue spatially-linked87

transcriptomic pathways revealed by IN-DEPTH, we de-88

veloped k-bandlimited Spectral Graph Cross-Correlation89

(SGCC) to determine spatial co-varying relationships be-90

tween cell pairs using an unbiased graph signal represen-91

tation method (19). Here, the spatial arrangement and pat-92

tern of each cell phenotype is a graph signal where cells93

serve as nodes, spatial patterns are node attributes, and94

spatial distances are edges. This allows an unbiased rep-95

resentation of spatial patterns of each cell population on96

tissues through spectral graph signals to resolve underly-97

ing spatial relationships between cell types and gene pro-98

grams.99

We demonstrate the broad applicability of IN-DEPTH100

across various commercially available spatial platforms,101

and highlight the combination of IN-DEPTH and SGCC102

to accurately identify human tonsil multi-modal features at103

global and local scales. We further demonstrate the syn-104

ergistic potential of IN-DEPTH and SGCC to unravel novel105

biological insights on the impact of the prototypic tumor106

virus, Epstein-Barr Virus (EBV), on the diffuse large B-107

cell lymphoma (DLBCL) tumor microenvironment (TME)108

and immune dysregulation. Through our same-slide it-109

erative and integrative spatial multi-omics analysis, we110

uncover viral-linked spatial reorganization of the DLBCL111

TME by exploiting a key tumor-macrophage-CD4 T cell im-112

munomodulatory axis to promote CD4 T cell dysfunction,113

potentially underscoring the need for informed targeted114

therapeutic strategies in virus-associated malignancies.115

Results116

IN-DEPTH combines antibody staining and RNA probe117

hybridization on the same slide while retaining protein118

and RNA quality.119

IN-DEPTH utilizes high-dimensional spatial proteomics for120

initial precise cellular phenotyping and functional assess-121

ment to guide subsequent targeted spatial transcriptomics122

capture in specific cell types and regions of interest on123

the same slide (Fig. 1A). This streamlined approach en-124

sures the biological relevance of spatial transcriptomics by125

tying it to spatial proteomics-guided identification of tis-126

sue regions of interest (ROI), thus reducing the resource-127

intense cost and time barriers associated with spatial tran-128

scriptomics of whole slides, while retaining high sensitivity129

(Supp Fig. 1A). Given the impact of the protease diges-130

tion step during spatial transcriptomics on subsequent an-131

tibody imaging (10, 15, 16), we postulated that performing132

spatial proteomics first before transcriptomics will circum-133

vent this challenge. As various spatial proteomics plat-134

forms also differ in recommended tissue retrieval condi-135

tions, we first implemented a standardized heat-induced136

epitope retrieval step at 97°C for 20 min using a pH 9.0137

retrieval buffer followed by a 1-hour photobleaching step,138

optimized across our prior experiments (10, 11, 20, 21).139

To systematically evaluate the feasibility of integrat-140

ing spatial proteomics with transcriptomics with a gen-141

eralizable framework, we focused on four multiplexed142

immunofluorescence-based spatial proteomics platforms143

(CODEX (22), SignalStar (23), Polaris (24), Orion (25))144

due to their established track record in clinical applica-145

tions, general preservation of tissue integrity, rapid whole146

slide imaging capabilities, and complementary technical147

approaches to protein labeling. These platforms repre-148

sent diverse methodologies including cyclic immunofluo-149

rescence, signal amplification, and spectral deconvolution,150

providing a diverse initial setting for method development.151

We also selected representative spatial transcriptomics152

platforms (GeoMx (8), VisiumHD (26), CosMx (27)) with153

broad availability both within and beyond our laboratories,154

using stringently adjusted protocols to ensure experimen-155

tal compatibility across both platforms (see Materials and156

Methods).157

To determine if prior spatial proteomics on tissue sam-158

ples affects downstream RNA signal recovery, we first159

compared the spatial transcriptome signal of adjacent tis-160
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Figure 1: IN-DEPTH combines spatial proteomics and transcriptomics on the same slide without loss of protein or RNA quality. (A) Schematic overview of IN-
DEPTH, where spatial proteomics was used to guide cell-type specific genome-wide transcriptomic capture on the same slide. (B) Experimental outline to assess the effects
of spatial proteomics workflow on RNA capture, with an adjacent tissue section without spatial proteomics as a control. (C) Assessment of tissue imaging and RNA capture
quality after IN-DEPTH. Each row represents a different combination of spatial platforms evaluated for IN-DEPTH and the corresponding tissue type used, and each column
represents key experimental variables or data output presented in systematic order from left to right. The breakdown for individual profiled ROIs and negative control probes
are in Supp Figs. 1C & D. All tissues were subjected to H&E staining at the end of each assay (see Materials and Methods).
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sue slides, wherein one slide was subjected to IN-DEPTH161

(spatial proteomics followed by spatial transcriptomics)162

while the other slide was subjected to only the corre-163

sponding spatial transcriptomics platform as a control (Fig.164

1B). Both slides subsequently underwent hematoxylin and165

eosin (H&E) staining to assess the retention of tissue166

morphology. In our initial proof-of-concept, we applied167

CODEX-GeoMx IN-DEPTH on FFPE tonsil tissues and168

observed a robust gene-to-gene correlation (R = 0.938)169

between the IN-DEPTH and the control slide with mini-170

mal differences in total captured RNA and robust antibody171

staining (Fig. 1C, row 1). We next demonstrated the172

easy adaptability of the CODEX approach using any mi-173

croscope by performing CODEX with manual stripping and174

hybridization of detection oligos (22, 28) with whole slide175

imaging using the slide-scanner functionality of the GeoMx176

instrument followed by RNA recovery, obtaining consistent177

RNA signals (R = 0.952) (Fig. 1C, row 2).178

We next expanded upon these initial IN-DEPTH results179

across various combinations of spatial proteomics and180

spatial transcriptomics platforms using a variety of FFPE181

tissue samples. We observed a generally consistent posi-182

tive gene-to-gene correlation (R > 0.94) and total transcript183

recovery between the IN-DEPTH and control slides (Fig.184

1C, rows 3-8), with the exception of the Orion-GeoMx185

combination with a lower gene-to-gene correlation (R =186

0.692) (Supp Fig. 1B). The total number of non-binding187

control RNA probes detected was also consistently low188

across all conditions (Supp Fig. 1C), with the transcrip-189

tome gene-to-gene correlation remaining strongly positive190

across each individual spatially profiled ROI (Supp Fig.191

1D).192

These data collectively demonstrate the robustness of193

spatial protein and RNA signals with IN-DEPTH, while al-194

lowing user flexibility for cross-platform and region-specific195

RNA capture. Among the validated platform combina-196

tions, we selected CODEX-GeoMx for further development197

based on several key advantages: (1) our strong exper-198

tise with the CODEX and GeoMx platforms and experi-199

mental protocols compatible with FFPE tissues (10, 11,200

20, 21, 29–31), (2) its rapid whole-slide imaging capa-201

bility enabling comprehensive tissue assessment, (3) ac-202

cess to extensively validated antibody reagents in-house203

(10, 21, 32, 33) and commercially for tissue profiling, (4)204

the proven stability and reproducibility in cyclical imag-205

ing with CODEX oligo-tagged antibodies (22, 28, 34), and206

(5) the GeoMx’s ability to automatically capture whole207

transcriptome data with precise regional selectivity, rapid208

speed, and cost effectiveness compared to the other tran-209

scriptomics platforms we tested (Supp Fig. 1E). Based on210

these advantages, we focused our subsequent IN-DEPTH211

development and validation on the CODEX-GeoMx plat-212

form combination.213

IN-DEPTH enables reproducible and robust spatial214

multi-omics profiling and reveals functional cell states215

within the native tissue architecture.216

We next performed IN-DEPTH (CODEX-GeoMx) on two217

adjacent FFPE sections from the same tonsil tissue, with218

each section undergoing RNA capture on two independent219

GeoMx instruments to assess for technical reproducibility.220

We applied a 12-plex antibody panel consisting of cell phe-221

notyping markers on both slides together (Supp Fig. 2A),222

and imaged them in parallel on the Phenocycler Fusion223

system capable of imaging two slides at a time. We per-224

formed cell segmentation and phenotyping for 11 cell pop-225

ulations using the background subtracted images from the226

Phenocycler Fusion (Fig. 2A, left and Fig. 2B, left).227

To capture cell type-specific transcriptomes, we imported228

these cell-type specific masks onto the GeoMx for custom229

spatial transcriptome capture using the human whole tran-230

scriptome atlas (hWTA) library consisting of >18,000 tar-231

gets in the human genome. We selected 16 paired and232

continuous 660×760 µm rectangular ROIs on each adja-233

cent slide that include B follicles and T cell zones (Supp234

Fig. 2B). We first confirmed the specificity of our anti-235

body panel and accuracy of spatial proteomics cell type236

annotation for both tissues (Fig. 2B, middle and Supp237

Fig. 2C, middle), with final confirmatory assessment238

with board-certified pathologists by assessing the post-IN-239

DEPTH H&E staining of the same tissue section (Fig. 2B,240

right and Supp Fig. 2B, right).241

We further assessed the specificity and accuracy of our242

cell phenotyping via the expected enriched expression of243

each antibody marker in each of the 11 annotated cell244

populations (Fig. 2C, left and Supp Fig. 2D, left). We245

then orthogonally verified the spatial transcriptomics cap-246

ture specificity by quantifying the enrichment of cell-type247

specific transcriptomic signatures for each cell population248

against a single-cell tonsil atlas (35) (Fig. 2C, middle249

and Supp Fig. 2D, middle). We additionally confirmed250

the expected cell counts (Fig. 2C, right and Supp Fig.251

2D, right), high consistency between the protein and tran-252

scriptome signatures (Supp Fig. 2D), gene-to-gene corre-253

lation (Supp Fig. 2E), total RNA capture (Supp Fig. 2F),254

and low signals from non-targeting negative control probes255

(Supp Fig. 2G) between the adjacent slides. These re-256

sults highlight the robust technical reproducibility of IN-257

DEPTH across different instruments.258

We recognize that spatial proteomics-guided transcrip-259

tomes with IN-DEPTH is well suited to address the chal-260

lenge of accurate real world ground-truth reference data261

currently missing for deconvolution approaches (36–39).262

We demonstrate this application by systematically bench-263

marking the performances of popular deconvolution al-264

gorithms CIBERSORT (40), dtangle (41), MuSic (42),265

and SpatialDecon (43) on our reference gene signatures266

(Supp Table 1 and see Material and Methods). We267

observed that for the top three cell type components —268

BCL6-positive B cells, BCL6-negative B cells, and CD4 T269

cells — the results from CIBERSORT, dtangle, and Mu-270

SiC were relatively consistent (Fig. 2D). Ranking the ton-271

sil ROIs by cell type proportion complexity, as estimated272

by the Gini-Simpson index (Supp Fig. 2H) applied to273
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Figure 2: IN-DEPTH enables reproducible and systematic characterization of tonsillar tissue architecture through integrated spatial proteomics and transcrip-
tomics. (A) Schematic workflow of IN-DEPTH, illustrating the 12-marker antibody imaging, cell segmentation and phenotyping, cross platform tissue image registration,
and targeted RNA capture from identified cell populations on the same slide. (B) Visualization of key cellular features in tonsillar tissues using CODEX multiplexed imaging
(left) showing T cells (CD3), B cells (CD20 and BCL6), and endothelial cells (CD31), with the corresponding cell phenotype map (middle) and H&E image (right) as part
of the IN-DEPTH workflow. (C) Cell type-specific protein expression levels (left), gene signatures (middle), and cell counts (right) for the annotated cell types. Data shown
is generated from two technical replicates. (D) Systematic evaluation of four computational deconvolution algorithms using IN-DEPTH data as the ground truth reference.
(E) Spatial multi-modal analysistion of Tfh cells showing their distribution relative to B cell follicles (top schematic) and quantitative validation through differential Tfh gene
signature enrichment between follicle-high and follicle-low regions (bottom left, 6 ROIs chosen each), and correlation with B cell density (bottom right). A two-sided Wilcoxon
rank sum test was performed, with the null hypothesis that there is no difference in the Tfh signature between follicle-low and follicle-high regions (bottom left), and a Spear-
man’s correlation was used for the correlation test (bottom right). (F) Top cell type-specific gene expression programs identified, and their relative enrichment across the 12
annotated cell populations.
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ground truth cell type proportions, revealed that all four274

methods achieved high correlation (>0.9) with the ground275

truth in ROIs of low complexity (e.g. ROIs 1, 2, 3, 4, 5,276

9). These results not only validate IN-DEPTH’s ability to277

generate reliable ground-truth spatial references, but also278

provide valuable insights for selecting and optimizing com-279

putational approaches for specific tissue contexts and re-280

search questions.281

To demonstrate the utility of paired spatial proteomics and282

transcriptomics data from IN-DEPTH, we next examined283

the established functional and spatial dynamics of lympho-284

cytes in the tonsillar tissue architecture. We focused on285

CD4 T follicular helper (Tfh) cells, which are known to mi-286

grate into B follicles during their activation and maturation287

process (35) (Fig. 2E, top). While Tfhs can be easily iden-288

tified from our CD4 T cell population as spatially residing289

within B follicles, we did not include Tfh-specific markers290

such as PD-1 or CXCR5 in our study, making them difficult291

to annotate using canonical spatial proteomics analysis.292

We first hypothesized an enrichment in Tfh gene signa-293

tures (Supp Table 1) for CD4 T cells located in the follicles294

compared to those outside. Our results confirmed a sig-295

nificant increase in Tfh gene set variation analysis (GSVA)296

signatures in the ROIs stratified by high or low B follicle297

densities (Fig. 2E, bottom left). We further identified a298

positive correlation between the Tfh GSVA scores with the299

proportion of B cells across all ROIs from both tissues (R300

= 0.75) (Fig. 2E, bottom right), consistent with the known301

Tfh cell trafficking and maturation in the tonsil (35).302

To systematically characterize tissue-wide, cell type-303

specific transcriptional programs in the tonsil, we per-304

formed consensus non-negative matrix factorization (44)305

to infer the predominant gene expression programs306

(GEPs) within the tonsil for each cell type and identi-307

fied 10 distinct GEPs. These GEPs were annotated308

based on Gene Ontology Biological Process (GOBP) sig-309

natures (Supp Table 2) and exhibited cell type-specific310

distributions aligning with known cellular functions (35).311

These specifically include “DNA Modification” and “So-312

matic Hypermutation” in BCL6-positive B cells, “T cell313

Activation” across T cells, “Vascularization” in endothe-314

lial cells, “MHC Class II Activity” in dendritic cells and315

M2-like macrophages, “ER Stress Response” in M1-like316

macrophages, and “Epithelial Differentiation” in Other317

(non-immune) cells that predominantly reside in tonsillar318

crypts (Fig. 2F).319

The reproducible spatial and molecular profiling demon-320

strated here, from precise cell type identification to cap-321

ture of transitional cell states and tissue wide transcrip-322

tional programs, establishes IN-DEPTH as a robust plat-323

form for deep multi-omics investigation of tissue biology.324

Beyond elucidating detailed cellular and molecular profiles325

in their native context, IN-DEPTH also enables essential326

reference data to advance computational approaches such327

as cell deconvolution.328

Coordinated spatial transitions in cellular states and329

tissue organization.330

To investigate how spatial organization relates to cellu-331

lar function and maximize the utility of IN-DEPTH multi-332

omics data, we developed Spectral graph cross-correlation333

(SGCC), a mathematical formulation built upon graph sig-334

nal processing approaches to analyze pairwise coordi-335

nated spatial patterns. SGCC leverages the unbiased rep-336

resentation and interpretability of Graph Fourier transform337

(GFT) to explore the distributional relationships between338

pairs of cell phenotypes. In our previous study (19), any339

spatial-omics feature (e.g. cell phenotype labels) can be340

treated as a graph signal, where the underlying graph can341

be a lattice graph (a pixel graph with nodes representing342

pixels and edges defined by pixel-to-pixel distance) or an343

irregular graph (a cell graph with nodes representing cells344

and edges defined by cell-to-cell distance). Subsequently,345

GFT is applied to project vertex-domain graph signals onto346

the frequency domain via Fourier modes (FM) (see Mate-347

rials and Methods), yielding a set of interpretable Fourier348

coefficients (FC). As the first k low-frequency FMs cap-349

ture the spatially organized components of the graph sig-350

nal (45, 46), it lays the foundation of correlating pairwise351

cell phenotype in frequency domain by computing the sim-352

ilarity of these k-bandlimited Fourier coefficients.353

SGCC quantitatively measures the spatial distributional re-354

lationships and underlying patterns between two cell phe-355

notypes via the following three steps. First, by binning356

cell phenotypes from the cell graph into a pixel graph, all357

ROIs’ FCs are placed within the same linear space, en-358

suring subsequent cross-correlation calculations. Second,359

the binned cell phenotype data are transformed into the360

frequency domain via Graph Fourier Transform. A low-361

frequency bandwidth is then delineated, enabling the ex-362

traction and selection of the top k band-limited Fourier co-363

efficients that characterize the broad-scale spatial orga-364

nization. Third, pairwise correlations between cell phe-365

notypes are computed, resulting in c(m,2) pairwise com-366

parisons, where m represents the number of cell pheno-367

types. These SGCC scores reflect the spatial distribution368

patterns between two cell types (Fig. 3A).369

When multiple samples are available, SGCC can be370

treated as a continuous or ordinal variable serving as a371

spatial factor. A negative SGCC value indicates reduced372

spatial co-occurrence, while a positive value indicates in-373

creased spatial co-occurrence between cell phenotypes.374

Consequently, SGCC can be used to predict genes co-375

varying with spatial factors. For example, one can apply376

the ImpulseDE2 model (47) to treat SGCC as a continu-377

ous spatial variable, or employ edgeR (48) to treat it as an378

ordinal spatial variable, thereby enabling the identification379

of spatially dynamic genes (Fig. 3B).380

We first simulated 80 datasets, each representing a 60×60381

pixel graph, to create ring-like distributions of two cell phe-382

notypes. These distributions varied in terms of area and383

complementarity, thus demonstrating both global and local384

patterns (Fig. 3C). Next, we conducted a k-bandlimited385
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Figure 3. SGCC reveals coordinated spatial transitions in cellular states and tissue architecture. (A) Schematic overview of the SGCC methodology showing: I)
Pattern binning of single-cells in spatial proteomics data, followed by II) Pattern encoding through GFT to generate low-frequency FCs, and III) Cross-correlation analysis to
identified coordinated spatial patterns for downstream integration with transcriptomics. (B) Integration framework for identifying genes covarying with spatial pattern across
the tissue, linking spatial factors to gene expressionfor functional analysis. (C) Systematic validation of SGCC using 80 simulated spatial patterns to demonstrate the ability
to detect transitions from global to local complement states. (D) Quantification of pattern relationships through SGCC scores. (E) Analysis of CD4 T cell and BCL6-positive
B cells via IN-DEPTH proteomics and transcriptomics analysis, showing SGCC scores and their associated spatial distribution of cells in bins (top), changes in macrophage
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Fourier mode selection experiment to identify the optimal386

number of neighbors for ensuring robust graph smooth-387

ness, thereby defining the robust low-frequency Fourier388

modes. As shown in Supp Figs. 3A & 3B, when the389

graph size is 60 nodes and the number of neighbors is390

set to 400, the graph’s smoothness remains stable at391

the eigenvalue “knee” point following Laplacian decom-392

position. We then computed their SGCC scores, which393

increased under locally complementary patterns but de-394

creased under globally complementary patterns, indicat-395

ing that SGCC effectively distinguishes changes in spatial396

patterns (Fig. 3D). Another additional set of 80 cell phe-397

notype pixel graphs demonstrated that SGCC can also dis-398

criminate differences in area and spatial proximity between399

two cell phenotype patterns (Supp Figs. 3C & 3D).400

We next demonstrated the applicability of SGCC to real401

world IN-DEPTH data, by stratifying nuanced cell state402

transitions between CD4 T cells and BCL6-positive B cells,403

key players in modulating germinal center reactions (49).404

The SGCC score between these cell populations identi-405

fied consistent orchestrated spatial patterns between tis-406

sue replicates (Supp Figs. 3E & F). Increasing SGCC be-407

tween these T and B cells revealed coordinated changes408

in tissue organization and macrophage cell states (Fig.409

3E, top), with a more immunosuppressive M2-like polar-410

ization toward a more reactive M1-like state as the SGCC411

score increases, along with a decrease in CD163 expres-412

sion (Supp Fig. 3G). This analysis also uncovered grad-413

ual changes in gene expression signatures, reflecting an414

increase in T cell and B cell cytokine production, B cell415

MHC-II, T cell TCR activation, and B cell PAX5 expression416

(Supp Fig. 3G) with increased SGCC score and a tran-417

sition from global to local complementary patterns (Fig.418

3E, bottom). These transcriptional changes were associ-419

ated with the functional states of CD4 T cells and follicu-420

lar B cells, where the low SGCC regions align with self-421

aggregation of T cells and B cells (Figs. 3E & F, left), and422

the high SGCC regions align with more T-B cell crosstalk423

akin to light zone interactions (Figs. 3E & F, right). These424

data together demonstrate the unique insights enabled by425

the combination of IN-DEPTH spatial multi-omics data with426

SGCC analysis to reveal spatially coordinated transitions427

in cell states and function, beyond the capacity of either428

modality alone.429

IN-DEPTH reveals an EBV-linked macrophage im-430

munosuppression and associated CD4 T cell dysfunc-431

tion in the DLBCL TME.432

To investigate the complex tumor-immune interactions in433

the viral-linked TME, we next applied IN-DEPTH to dis-434

sect the poorly understood TME of EBV-positive and EBV-435

negative DLBCL. Using a multi-institutional cohort of FFPE436

tissues from 17 EBV-positive and 13 EBV-negative pa-437

tients, we performed IN-DEPTH (CODEX-GeoMx) with a438

30-marker antibody panel for cell phenotyping and func-439

tional analysis (Fig. 4A and Supp Fig. 4). We identi-440

fied 8 distinct cell populations (Fig. 4A and Supp. Fig.441

5), from which we captured genome-wide transcriptomes442

across 38 ROIs (one per patient) with appropriate batch443

effect correction applied (see Materials and Methods and444

Supp Fig. 6A). All images and annotations were validated445

through same-slide H&E review by board-certified pathol-446

ogists (Figs. 4B & C).447

Building upon our prior findings of increased T cell dys-448

function in EBV-positive classical Hodgkin’s Lymphoma449

(cHL) TME (21), we hypothesized there to be distinc-450

tive immune composition and organization within the EBV-451

stratified DLBCL TME. Our initial analysis revealed strik-452

ing differences in TME composition, with EBV-positive453

DLBCL consisting of higher immune infiltrates compared454

to the tumor-heavy EBV-negative cases (Fig. 4D). Fur-455

ther dissection of the immune population demonstrated an456

EBV-associated increase in regulatory T cells (Tregs), and457

a distinctive shift in macrophage polarization marked by458

elevated immunosuppressive M2-like macrophages and459

diminished reactive M1-like macrophages in the EBV-460

positive DLBCL (Fig. 4E and Supp Fig. 6B).461

At the tissue level, the EBV-positive DLBCL TME exhibited462

reduced MHC Class II expression, elevated PD-L1, and463

minimal differences in MHC Class I (Fig. 4F), suggesting a464

CD4 T cell-focused mechanism of dysfunction. Using CD4465

and CD8 T cell dysfunction signatures on both the protein466

and transcript levels (50–52), we found increased global T467

cell dysfunction in EBV-positive DLBCL, with CD4 T cells468

exhibiting significantly more pronounced effects than CD8469

T cells (Fig. 4G). The orthogonal confirmation of T cell470

dysfunction at both protein and transcript levels highlight471

the value of same-slide multi-omics via IN-DEPTH for bio-472

logical discovery and validation.473

To identify the cellular neighborhoods associated with ele-474

vated CD4 T cell dysfunction in EBV-positive DLBCL, we475

analyzed the immediate network of cells surrounding CD4476

T cells using a network graph approach on the most im-477

mediately adjacent (1-hop neighbors). K-means clustering478

classified 5 distinct motifs (Fig. 4H and Supp Figs. 6C &479

D), with immune-rich Motif 1 (enriched in macrophages,480

Tregs, dendritic cells, and endothelial cells) and 4 (en-481

riched in CD8 T cells) significantly more prevalent in EBV-482

positive cases and no significant EBV-linked differences483

for the other motifs (Fig. 4I). Further comparison of the484

protein-derived CD4 T cell dysfunction scores between485

EBV-positive and EBV-negative immune-enriched (Motifs486

1) and immune-deficient motifs (Motifs 2 + 3 + 4 + 5) re-487

vealed a graded decrease in CD4 T cell dysfunction from488

EBV-positive immune-enriched to EBV-negative immune-489

deficient motifs (Supp Fig. 6E).490

Given the role of macrophages as major MHC Class II491

antigen-presenting cells and immune modulators in the492

TME (53), we examined their contribution to CD4 T cell493

dysfunction between EBV-positive and EBV-negative DL-494

BCL. We performed negative binomial regression on M1-495

like and M2-like macrophages (Supp Fig. 6F and Supp496

Table 3), and identified that EBV-positive samples had ap-497

proximately 1.91 times the expected M2-like macrophage498
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Figure 4. Iterative spatial multi-omics dissection of EBV-positive and EBV-negative DLBCL via IN-DEPTH reveals a macrophage-linked CD4 T cell dysfunction
interaction axis. (A) IN-DEPTH workflow on EBV-positive (n=17) and EBV-negative (n=13) DLBCL biopsy samples, using a 30-marker antibody panel and a genome-wide
RNA probe panel spiked in with custom-designed probes targeting 14 EBV genes. (B) Representative CODEX multiplexed images (left) with markers for nuclei (DAPI),
B/tumor cells (Pax5), endothelial cells (CD31), macrophages (CD68), and T cells (CD3) shown, as well as the corresponding phenotype maps (middle), and H&E images
(right) of EBV-positive and EBV-negative DLBCL tissues. Phenotype maps for each tissue sample core are in Supp Fig. 5. (C) Relative protein expression levels (left) and
cell counts (right) for the annotated cell types from this DLBCL cohort. (D) Relative proportions of annotated cell types across EBV-positive and EBV-negative (left) tissues.
(E) Log2 fold enrichment plot of immune cell proportions between EBV-positive and EBV-negative DLBCL tissues in this patient cohort. (F) Relative protein expression of
MHC Class I (HLA1), MHC Class II (HLA-DR), and PD-L1, on the corresponding cell types that express these molecules across EBV-positive (top) and EBV-negative (bottom)
DLBCL tissues in this patient cohort.
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Figure 4 continue: (G) Left: Comparison of CD4 and CD8 T cell dysfunction scores calculated based on protein markers between EBV-positive and EBV-negative DLBCL
tissues. Right: Comparison of CD4 and CD8 T cell dysfunction scores calculated based on GSVA scoring of RNA signatures EBV-positive and EBV-negative DLBCL tissues.
A one-sided Wilcoxon rank sum test were performed, with the alternative hypothesis that the T cell dysfunction signature was greater in the EBV-positive tissues. The protein
markers and RNA signatures were curated using a panel of T cell exhaustion checkpoint markers and genes (see Materials and Methods). (H) Schematic representation
of identifying different cellular motifs through n-hop neighborhood analysis anchored on a cell type of interest. (I) Top: Cell type enrichment from each identified cellular
motif, with CD4 T cells set as the anchor cell. Bottom: Comparison of motif abundance between EBV-positive and EBV-negative DLBCL. A two-sided Wilcoxon rank sum test
was performed, with the null hypothesis that there is no difference between motif abundance in EBV-positive and EBV-negative tissues. (J) Left: Distribution of the density
of M2-like macrophages between EBV-positive and EBV-negative DLBCL tissues in this patient cohort, with the dotted line indicating the cutoff for stratifying M1-rich and
M2-rich samples. Right: Comparison of RNA GSVA score of CD4 and CD8 T cell dysfunction between M1-rich and M2-rich populations. A one-sided Wilcoxon rank sum test
was performed, with the alternative hypothesis that the T cell dysfunction signature was greater in the EBV-positive tissues. (K) Cartoon model depicting key differences in
macrophage and CD4 T cell dysfunction states between EBV-positive and EBV-negative DLBCL.

count compared to EBV-negative samples (p < 0.05, 95%499

confidence interval [1.64, 2.25]) for any given motif. In con-500

trast, the expected M1-like macrophage count compared501

to EBV-negative samples was 0.86 times that of EBV-502

positive DLBCL (p < 0.05, 95% confidence interval [0.74,503

0.99]). Macrophage association with EBV-negative tumors504

had decreased PD-L1 and increased HLA-DR with higher505

tumor density, with both trends reversed in LMP1-positive506

EBV-positive tumor cells (Supp Fig. 6G). These findings507

implicate a key role of immunosuppressive macrophages508

as key modulators of CD4 T cell dysfunction in EBV-509

positive DLBCL. We also observed a clear bimodal dis-510

tribution of macrophage polarization associated with EBV511

status, with an elevation of suppressive M2-like in EBV-512

positive and activating M1-like in EBV-negative cases (Fig.513

4J, left). Notably, M2-enriched regions displayed signifi-514

cantly higher CD4 T cell dysfunction signatures, with no515

corresponding differences in CD8 T cell dysfunction (Fig.516

4J, right). These findings support a model in which EBV517

reshapes the DLBCL microenvironment through a coordi-518

nated reduction in MHC Class II, elevation of PD-L1, and519

conditioning of an M2-polarized macrophage microenvi-520

ronment around CD4 T cells to promote T cell dysfunction521

(Fig. 4K).522

SGCC analysis reveals a spatially coordinated tumor–523

macrophage-CD4 T cell axis driving immune dysfunc-524

tion in EBV-linked DLBCL.525

To further dissect the molecular mechanisms underpinning526

our proposed model of EBV-linked CD4 T cell dysfunction527

(Fig. 4K), we extended SGCC to analyze the spatial re-528

lationships between tumor cells, macrophages and CD4529

T cells and elucidate coordinated molecular mechanisms530

underlying this biological process.531

First examining tumor-macrophage interactions, we con-532

firmed EBV presence through viral transcript detection and533

LMP1 viral oncoprotein expression in EBV-positive tumors534

(Fig. 5A, top and Supp Fig. 7A, top). As EBV is primarily535

present in tumor cells, we assessed how tumor cells can536

influence macrophage functional states. SGCC analysis537

revealed divergent immunomodulatory signatures: EBV-538

negative tumor cells exhibited M1-polarizing signatures539

while EBV-positive tumor cells promoted an immunosup-540

pressive M2-like TME (Fig. 5A, middle and Supp Fig.541

7A, middle). This observation was further supported by542

the macrophage phenotype distribution and transcriptional543

programs, showing a predominantly M2-like phenotype544

and gene program in EBV-positive and M1-like in EBV-545

negative cases, with increased SGCC scores (Fig. 5A,546

bottom and Supp Fig. 7A, bottom). We next assessed547

the influence of macrophages on CD4 T cell functional548

states (Fig. 5B, top). In EBV-negative DLBCL, increas-549

ing SGCC was associated with MHC Class II gene pro-550

gram and HLA-DR protein expression along with T cell551

activation signatures, which were conversely dampened552

in EBV-positive DLBCL (Fig. 5B, middle and Supp Fig.553

7B, top). This was consistent with the increase in T cell554

dysfunction states and low T cell activation pathways in555

EBV-positive DLBCL, with both trends reversed in EBV-556

negative DLBCL, as SGCC scores increased (Fig. 5B,557

bottom and Supp Fig. 7B, bottom). These findings sup-558

port a key spatially-linked and immunomodulatory role of559

macrophages in inducing contrasting CD4 T cell functional560

states specific for the EBV-positive TME.561

To better appreciate the complexities of this tripartite spa-562

tial interaction, we visualized three-way relationships using563

ternary analysis of SGCC scores (Fig. 5C). While SGCC564

scores were generally evenly distributed between these 3565

cell populations, we observed an enrichment of CD4 T cell-566

centric SGCC scores in EBV-positive, and macrophage-567

centric scores in EBV-negative DLBCL TMEs. Markers568

of T cell dysfunction peaked where all three cell types569

co-localized (Fig. 5D, rows 1-2 and Supp Table 4), in-570

dicative of this tripartite spatial interaction axis in pro-571

moting CD4 T cell dysfunction. Adjacency enrichment572

statistic (AES) analysis (54) further revealed preferen-573

tial tumor-macrophage interactions in EBV-positive DL-574

BCL versus macrophage-CD4 T cell interactions in EBV-575

negative cases (Fig. 5D, row 3 and Supp Table 4),576

supporting a model in which tumor-macrophage crosstalk577

and immunosuppression predominates in the EBV-positive578

DLBCL TME to limit CD4 T cell activation and promote579

dysfunction. LMP1 appears to play a role here, with580

an enrichment in expression at the center of the ternary581

plot (Supp Fig. 7C) and positive correlation of LMP1-582

expressing tumor cells with M2-like polarization and CD4 T583

cell dysfunction (Supp Fig. 7D). Conversely, macrophage-584

mediated CD4 T cell engagement is more prevalent in585

EBV-negative DLBCL, facilitating an immune reactive TME586

with increased CD4 T cell activation and functional im-587

mune responses.588

We validated our observations using a 6k-plex CosMx spa-589

tial transcriptomics analysis on an independent cohort of590

8 EBV-positive and 12 EBV-negative DLBCL patient sam-591
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Figure 5. SGCC reveals coordinated spatial multi-modal interactions and EBV-linked cell states in the tumor-macrophage-CD4 T cell axis. (A) Analysis of tumor-
macrophage spatial relationships. Top: SGCC-ranked spatial distributions and representative images. Middle: EBV transcript levels, LMP1+ tumor cells, and tumor-associated
signaling pathways across SGCC scores. Bottom: Changes in macrophage M1/M2 polarization states and associated pathway signatures with increasing SGCC scores. (B)
Analysis of macrophage-CD4 T cell interactions. Top: SGCC-ranked spatial distributions and representative images. Middle: Changes in PD-L1 and HLA-DR expression
of macrophage and antigen presentation pathways across SGCC scores. Bottom: Changes in T cell dysfunction signatures and immune activation pathways across SGCC
scores. The full gene pathway names for (A) and (B) are in Supp Table 2. (C) Ternary plot depicting a three-way SGCC relationship between CD4 T cells and tumor (top
vertex), CD4 T cells and macrophages (bottom left vertex), and macrophages and tumor (bottom right vertex). Points located near the vertices indicate colocalization between
two specific cell types while forming a complementary structure with the third cell type (e.g. the ROI from Rochester 4 at the left bottom end of the triangle demonstrates
colocalization between CD4 T cells and macrophages while complementing the tumor). In contrast, points near the center of the triangle may signify colocalization among all
three cell types. (D) Ternary plots across the tumor-macrophage-CD4 T cell axis colored by their expression of key immune dysfunction features (top two rows) or adjacency
enrichment statistic (AES) (bottom row). (E) Validation in an independent cohort using CosMx. Top: Study design with EBV-positive (n=8) and EBV-negative (n=10) DLBCL
biopsy samples using a 6k-plex panel. Bottom left: Representative phenotype map of one EBV-positive and one EBV-negative FOV, showing the spatial organization of
annotated tumor (red), macrophage (purple), and T cell populations (green). Bottom middle: Re-visualizing the same phenotype map to emphasize T cell dysfunction GSVA
score on T cells. Bottom right: Comparison of T cell dysfunction GSVA scores between EBV-positive and EBV-negative tissues from this cohort. A two-sided Wilcoxon rank
sum test was performed, with the null hypothesis that there is no difference in T cell dysfunction score between EBV-positive and EBV-negative tissues. (F) Cartoon model
depicting contrasting immune state differences in the tumor-macrophage-CD4 T cell interaction axis between EBV-positive (more immunosuppressive) and EBV-negative
(less immunosuppresive) DLBCL TMEs.
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ples (Fig. 5E, top row). We observed heterogeneous592

spatial organization between tumor cells, macrophages,593

and T cells, with T cells in the EBV-positive TME consis-594

tently exhibiting elevated dysfunction signatures compared595

to their EBV-negative counterparts (Fig. 5E, bottom and596

Supp Fig. 7E), confirming our findings from the primary597

IN-DEPTH cohort.598

Coupling IN-DEPTH with SGCC extended our proposed599

mechanism (Fig. 4K) to reveal two distinct spatially or-600

chestrated cellular circuits in the DLBCL TME: In EBV-601

positive cases, tumor cells preferentially associate with602

macrophages to condition an immunosuppressive environ-603

ment that impairs CD4 T cell function. Conversely, in EBV-604

negative TMEs, increased macrophage-CD4 T cell inter-605

actions foster a pro-inflammatory TME (Fig. 5F).606

Discussion607

IN-DEPTH addresses current limitations in spatial multi-608

omics efforts by enabling same-slide protein and RNA pro-609

filing to significantly expand the number of simultaneously610

detectable biomolecules without proportional increases in611

cost and time. This approach eliminates the need for612

challenging computational integration of adjacent tissue613

slides and associated artifacts (Supp Fig. 1A). Our spa-614

tial protein-first strategy enables targeted spatial transcrip-615

tomics dissection guided by biological context, offering a616

resource-effective alternative to whole-slide transcriptome617

profiling in a platform agnostic manner. While IN-DEPTH618

accommodates various commercially available or home-619

brewed spatial platforms, careful consideration is essen-620

tial. For instance, the tyramide signal amplification ap-621

proach in the Polaris involves direct covalent deposition622

of Opal fluorophores on the tissue (24), and may require623

significant photobleaching or alternatives for compatibility624

with fluorescence in-situ hybridization-based spatial tran-625

scriptomics platforms such as the CosMx. Importantly, IN-626

DEPTH is carefully optimized to maximize tissue integrity627

while enabling robust protein epitope staining via spatial628

proteomics, RNA signal retention, and subsequent H&E629

staining for downstream pathological verification (Figs.630

1C, 2B, 4B and Supp Fig. 2C), and thus potentially al-631

lowing for additional spatial modalities on the same slide632

beyond protein and RNA (55).633

SGCC is derived through graph signal processing and634

GFT-based mathematical reasoning (Fig. 3) and serves635

as a measure for quantifying the relative spatial positions636

of any two cell phenotypes in the low-frequency domain.637

Due to the unbiased and interpretable nature of GFT, this638

metric can effectively gauge spatial relationships between639

two cell phenotype distributions. Furthermore, when multi-640

ple samples or multiple ROIs are available, SGCC can be641

treated as a continuous or ordinal spatial factor. In this ca-642

pacity, it can be integrated with transcriptomic data to iden-643

tify covarying genes, thus offering a comprehensive under-644

standing of the relationship between cellular arrangements645

and functional states.646

We demonstrate the utility of IN-DEPTH in dissecting EBV-647

associated immune modulation in the DLBCL TME, reveal-648

ing key contrasting features including tumor-associated in-649

crease in M2-like macrophages with diminished HLA-DR650

and increased PD-L1 expression linked to increased CD4651

T cell dysfunction in EBV-positive DLBCL (Fig. 4). While652

this biological mechanism has not been described in EBV-653

positive DLBCL, it is supported by data from prior stud-654

ies across various biological systems (56–61). Our find-655

ings additionally support the prevalent and consistent as-656

sociation between EBV positivity, poor prognosis, and in-657

ferior outcomes in DLBCL (62–69), as well as the rela-658

tionship between immunosuppressive macrophages and659

ineffective immune responses in other cancers (30, 70–660

76). We apply IN-DEPTH here to contextualize the func-661

tional diversity of macrophages in situ, which coupled662

with SGCC integrative analysis uniquely enabled addi-663

tional functional assessment of macrophages based on664

their spatial organization within the tumor-macrophage-665

CD4 T cell immunomodulatory axis, uncovering a tumor666

virus-dependent rewiring of this tripartite interaction in the667

DLBCL TME (Fig. 5). The differences in EBV-stratified668

T cell immune dysfunction may in part explain the differ-669

ent responses to immune checkpoint blockade in DLBCL670

(57, 77, 78). The ability of IN-DEPTH and SGCC to deci-671

pher nuanced cellular functional states demonstrated here672

highlights their potential in advancing our understanding of673

spatially organized immune interactions and their impact674

on tumor progression and immune dysfunction.675

Several exciting opportunities exist for further develop-676

ment. The preservation of tissue integrity enables future677

integration of histological features and other spatial modal-678

ities. We focused here on cell-type specific transcriptome679

capture for resource efficiency, but expansion to single-680

cell or subcellular resolution is certainly possible (Fig. 1C)681

and will necessitate additional advancements in computa-682

tional approaches. IN-DEPTH datasets will also be fun-683

damental as ground truth in future computational devel-684

opments for a variety of tasks, including bulk deconvolu-685

tion, multi-modal integration, and beyond. The experimen-686

tal and computational advances presented herein demon-687

strate the potential for comprehensive tissue analysis with688

new insights gained through same-slide integrated spatial689

multi-omics. We anticipate this approach to be broadly ap-690

plicable across spatial platforms, to accelerate discovery691

and mechanistic research across multiple diseases.692

Materials & Methods693

Human Tissue Acquisition and Patient Consent.694

All formalin-fixed paraffin-embedded (FFPE) tissues used695

in this study were sectioned 5 µm thick on SuperFrost696

glass slides (VWR, 48311-703) and obtained from the fol-697

lowing sources. The tonsil tissues in Figs. 1 & 2 were gen-698

erously provided by S.J.R. from the Brigham and Women’s699

hospital (IRB# 2016P002769 and 2014P001026), the DL-700

BCL tissue for SignalStar-GeoMx (Fig. 1C, row 3) was701
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purchased from amsBio (amsBio, AMS-31010), the kid-702

ney cancer (Fig. 1C, row 4) and lymph node tissues703

(Fig. 1C, row 5) were generously provided by S.S. from704

the Dana Farber Cancer Institute (IRB# DFCI 13-425),705

the periodontal disease tissue for CODEX-VisiumHD (Fig.706

1C, row 6) was generously provided by D.M.K. from Har-707

vard Dental School (IRB# 22-0587), the DLBCL tissue708

for CODEX-CosMx (Fig. 1C, row 8) was obtained from709

W.R.B. from University of Rochester Medical Center (IRB#710

STUDY159), and the uterine cancer tissues (Supp Fig.711

1B) were generously provided by B.H. from Stanford Uni-712

versity Medical School.713

For comparing EBV-positive vs EBV-negative DLBCL (Fig.714

4), 30 patient samples (17 EBV-positive, 13 EBV-negative)715

were sectioned from two tissue microarrays (TMA). The716

Dana-Farber Cancer Institute TMA, constructed by S.S.717

and S.J.R. (IRB# 2016P002769 and 2014P001026), in-718

cludes 1 core from each patient (10 EBV-positive, 9 EBV-719

negative) and 1 tonsil control core, with each core measur-720

ing 1.5 mm in diameter. The University of Rochester Med-721

ical Center TMA, constructed by D.N., P.R., and W.R.B.722

(IRB# STUDY159), includes 1 core from each patient (13723

EBV-positive, 6 EBV-negative) and 1 tonsil control core,724

with each core measuring 2.0 mm in diameter. For vali-725

dating EBV-positive vs EBV-negative signatures (Fig. 5E),726

one 1.5mm diameter core from each of 18 patient samples727

(8 EBV-positive, 10 EBV-negative) were sectioned from a728

TMA from University Hospital and Comprehensive Cancer729

Center Tübingen that was constructed by L.F., L.K., and730

C.M.S. EBV status for all DLBCL biopsies were verified731

using in-situ hybridization for EBER as part of the routine732

clinical pathology process. Detailed de-identified informa-733

tion for the DLBCL patients are in Supp Table 5.734

Antibody Panel Selection, Conjugation, and Titration.735

Antibodies used in the CODEX experiments were conju-736

gated in-house and include previously validated antibody737

clones (10, 21, 33). In brief, the specificity of antibody738

candidates were first validated via immunohistochemistry739

(IHC) on FFPE cell pellets or FFPE lymphoid tissues to en-740

sure robustness of staining. The selected antibody clones741

were then conjugated by either maleimide, lysine, or bi-742

otinylation chemistries, and each conjugated antibody was743

titrated and validated via immunofluorescence on FFPE744

lymphoid tissues. Readers of interest are referred to the745

following publications for a more detailed guide on an-746

tibody target selection and optimization (20, 79). Anti-747

bodies used for the SignalStar, Polaris, and Orion exper-748

iments were obtained from their respective commercial749

sources. Details regarding the antibody clones, vendors,750

conjugated channels, titers, exposure times, and assigned751

channels throughout the study are in Supp Table 6.752

Maleimide-based conjugations were performed with minor753

modifications from a previously published protocol (28).754

Briefly, 50 or 100 µg of carrier-free antibody was concen-755

trated using a PBS-T pre-wetted 50kDa filter (Sigma Milli-756

pore, UFC5050BK) and then incubated with 0.9 µM TCEP757

(Sigma, C4706-10G) for 10-30 minutes in a 37°C water758

bath to reduce the thiol groups for conjugation. Reduc-759

tion was quenched by two washes with Buffer C (1mM760

Tris pH 7.5, 1mM Tris pH 7.0, 150mM NaCl, 1mM EDTA)761

supplemented with 0.02% NaN3. Maleimide oligos were762

resuspended in Buffer C supplemented with NaCl (Buffer763

C, 250mM NaCl). The reduced antibody was next incu-764

bated with 100 or 200 µg (for 50 or 100 µg of antibody,765

respectively) of maleimide oligos (Biomers, 5’-Maleimide)766

in a 37°C water bath for 2 hrs. The resulting conjugated767

antibody was purified by washing for three to five times768

with the 50kDa filter with high-salt PBS (1× DPBS, 0.9M769

NaCl, 0.02% NaN3). The conjugated antibody was quanti-770

fied in IgG mode at A280 using a NanoDrop (Thermo Sci-771

entific, ND-2000). The final concentration was adjusted by772

adding >30% v/v Candor Antibody Stabilizer (FisherScien-773

tific, NC0414486) supplemented with 0.2% NaN3, and the774

antibody was stored at 4°C.775

Lysine-based conjugations were performed with minor776

modifications from the official Alexa Fluor™ 532 / 594 / 647777

Labeling Kit protocols (ThermoFisher, A20182 & A20185 &778

A20186). Briefly, 100 µg of carrier-free antibody was ad-779

justed to a concentration of 1 mg/mL and mixed with 10 µL780

of 1M sodium bicarbonate buffer with gentle agitation for 5781

min. The basic pH antibody was then transferred into the782

Alexa Fluor™ reactive dye with gentle pipetting to dissolve783

the dye. The labeling reaction proceeded in the dark for784

1 hr at room temperature (RT), and the vial was gently in-785

verted 5 times every 15 min. A purification resin bed was786

prepared by thoroughly resuspending the resin by violent787

agitation, and then centrifuging the resin through the pro-788

vided filters at 1200 ×g for 8 min until there was minimal789

residual buffer remaining in the resin bed. The conjugated790

antibody was then pipetted into the resin bed and allowed791

to absorb into the bed for 1 min. The antibody was col-792

lected by centrifuging at 1200 ×g for 5 min and then stored793

at 4°C.794

Biotinylation was performed using a commercial rapid bi-795

otinylation kit (Biotium, 92244) according to manufacturer’s796

instructions. Briefly, 75 µg of carrier-free antibody was bi-797

otinylated, with a conjugation time of 15 min. The con-798

jugated antibody was diluted in 300 µL provided Storage799

Buffer and then stored at 4°C.800

Spatial Proteomics: Antibody Staining and Imaging.801

The tissue antigen retrieval and photobleaching steps802

were standardized across all spatial proteomics assays ac-803

cordingly. Briefly, FFPE tissue slides were baked in an804

oven (VWR, 10055-006) at 70°C for 1 hr, then thoroughly805

deparaffinized by immersing in xylenes for 2× 5 minutes.806

The slides were then subject to a series of graded solu-807

tions for rehydration using a linear stainer (Leica Biosys-808

tems, ST4020), with each step proceeding for 3 min: 3×809

xylene, 2× 100% EtOH, 2× 95% EtOH, 1× 80% EtOH,810

1× 70% EtOH, 3× UltraPure water (Invitrogen 10977-023),811

and finally left in UltraPure water (Invitrogen 10977-023).812

Antigen retrieval was then performed at 97°C for 20 min813
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with pH 9 Target Retrieval Solution (Agilent, S236784-814

2) using a PT Module (ThermoFisher, A80400012), after815

which the slides were cooled to room temperature on the816

benchtop and washed in 1× PBS for 5 min. Tissue re-817

gions were circled with a hydrophobic barrier pen (Vector818

Laboratories, H-4000), rinsed in 1× PBS to remove resid-819

ual ink, then washed in 1× TBS-T prior to photobleaching820

and antibody blocking. For assays that include staining821

with a biotinylated antibody, an extra biotin blocking step822

was included at this point with a commercial Biotin Block-823

ing kit (Biolegend, 927301). Briefly, slides were first incu-824

bated with the avidin solution for 30 min at RT followed by825

two quick rinses 1× TBS-T and one 2 min wash with 1×826

TBS-T, and next incubated with the biotin solution for 30827

min at RT followed by two quick rinses 1× TBS-T and one828

2 min wash with 1× TBS-T. Photobleaching and antibody829

blocking was then performed by first washing the slides830

in S2 Buffer (2.5 mM EDTA, 0.5× DPBS, 0.25% BSA,831

0.02% NaN3, 250 mM NaCl, 61 mM Na2HPO4, 39 mM832

NaH2PO4) for 20 min, then blocking using BBDG (5% nor-833

mal donkey serum, 0.05% NaN3 in 1× TBS-T wash buffer834

(Sigma, 935B-09)) supplemented with 50 µg/mL mouse835

IgG (diluted from 1 mg/mL stock (Sigma, I5381-10mg) in836

S2), 50 µg/mL rat IgG (diluted from 1 mg/mL stock (Sigma,837

I4141-10mg) in S2), 500 µg/mL sheared salmon sperm838

DNA (ThermoFisher, AM9680), and 50 nM oligo block (di-839

luted from stock with 500 nM of each oligo in 1× TE pH840

8.0 (Invitrogen, AM9849). The blocking occurred in a hu-841

midity chamber on ice while being photobleached for 90842

min using Happy Lights (Verilux, VT22), with the tempera-843

ture continuously monitored to ensure that it was kept be-844

low 40°C. After photobleaching and antibody blocking, tis-845

sues were stained and imaged accordingly based on the846

respective assay, as described below. Note that the pho-847

tobleaching and blocking setup was different for the Orion848

(more details below).849

CODEX: Tissues were stained for 1 hr at RT in a humid-850

ity chamber, and then washed in S2 Buffer twice for 2 min851

each at RT. The slides were first fixed in 1.6% PFA (diluted852

from 16% stock (EMS Diasum, 15740-04) in S4 Buffer (4.5853

mM EDTA, 0.9× DPBS, 0.45% BSA, 0.02% NaN3, 500 mM854

NaCl)) twice for 5 min each at RT, after which the slides855

were rinsed twice in 1× PBS followed by a 2 min wash in856

1× PBS. The slides were next fixed with ice-cold methanol857

for 5 min on ice (while intermittently lifted to scrape off the858

hydrophobic barrier using a cotton-tipped applicator start-859

ing from the 3 min timepoint), after which the slides imme-860

diately rinsed twice in 1× PBS followed by a 2 min wash in861

1× PBS. The slides were finally fixed in 4 µg/µL of BS3 Fi-862

nal Fixative (diluted from 200 µg/µL stock (ThermoFisher,863

21580) in 1× PBS) twice for 10 min each in the dark at RT,864

after which the slides were rinsed twice in 1× PBS followed865

by a 2 min wash in 1× PBS.866

To prepare the slides for imaging in the automated Pheno-867

Cycler Fusion platform (Fig. 1C, row 1), flow cells (Akoya868

Bioscience, 240205) were mounted by securely pressing869

them on each tissue slide for 30 s, followed by 10 min of870

incubation in 1X CODEX Buffer. A reporter plate was also871

prepared for each tissue slide such that each well corre-872

sponds to each imaging cycle. Briefly, a 96-well black re-873

porter plate (BRAND Tech, 781607) was prepared by fill-874

ing each well with plate buffer (500 µg/mL sheared salmon875

sperm DNA in 1× CODEX buffer (10mM Tris pH 7.5, 0.02%876

NaN3, 0.1% Triton X-100, 10 mM MgCl2-6H2O, 150mM877

NaCl)) supplemented with 1:300 (54.11 mM) of Hoechst878

33342 (ThermoFisher, H3570), and adding complemen-879

tary reporter oligos conjugated with ATTO550 or Alex-880

aFluor647 (GenScript, HPLC purified) to a final concen-881

tration of 100 nM each. The wells were then sealed using882

aluminum plate seal (ThermoFisher, AB0626) and mixed883

by inverting the plate several times. Low DMSO (80% 1×884

CODEX buffer, 20% DMSO) and High DMSO (10% 1×885

CODEX buffer, 90% DMSO) buffers were also prepared886

fresh each run by mixing 1× CODEX Buffer in DMSO887

(Sigma, 472301-4L), which was used by the PhenoCy-888

cler Fusion to strip and hybridize the reporter oligos. After889

imaging, the flow cell was removed prior to RNA probe hy-890

bridization by using a razor blade to pry the flow cell and891

gently scrape off any adhesive while repeatedly dipping892

in 1× PBS. Personal protective equipment was worn at all893

times at this step. After the flow cell and adhesive were894

removed, slides were washed twice in 1× PBS.895

For the data acquired by manual cycling imaging (Fig. 1C,896

row 2), the slides were first rinsed in 1× CODEX Buffer fol-897

lowed by an initial stripping cycle in stripping buffer (25%898

10x CODEX Buffer, 75% DMSO) twice for 5 min each.899

The slides were subsequently washed twice in 1× CODEX900

buffer for 5 min each, incubated for 10 min with plate901

buffer supplemented with 100 nM SYTO13 (ThermoFisher,902

S7575), then washed twice again for 5 min each in 1×903

CODEX buffer. The slides were then loaded into the Ge-904

oMx and scanned as the initial blank cycle. Subsequent905

cycles were carried out as follows: 2× 5 min incubation906

in stripping buffer, washing twice in 1× CODEX for 5 min907

each, 10 min incubation in plate buffer supplemented with908

100nM SYTO13 and three 100nM reporter oligos conju-909

gated to Alexa Fluor 532, 594, or 647 (GenScript, HPLC910

purified), and finally washing in 1× CODEX Buffer twice911

for 5 min each. After all marker cycles, a final blank cy-912

cle stained with only 100 nM SYTO13 was also included913

to ensure clearance of signal. All steps were performed at914

RT on the benchtop, all stripping and washing steps were915

performed in polypropylene Coplin jars (Tedpella, 21038),916

while all reporter oligo incubations were performed in a917

humidity chamber. For all imaging, slides were loaded into918

the provided slide holder in the GeoMx and hydrated with919

3 mL of Buffer S prior to operating the instrument. After920

imaging, slides were washed twice in 1× PBS.921

SignalStar: The SignalStar reaction occurs in two rounds922

with four antibodies imaged per round, and was performed923

using the commercial buffers (Cell Signaling Technology,924

63043S) unless otherwise mentioned. Briefly, during each925

round, tissues were first incubated with SignalStar Ampli-926

fication Solution 1 (1:100 of each SignalStar complemen-927
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tary oligo diluted in amplification buffer) for 2 hr (round 1928

that includes 1:100 of each antibody) or 40 min (round 2929

that does not contain antibodies) at 4°C, and then rinsed930

in 1× TBS-T for 30 s. Tissues were then fixed in 4% PFA931

(diluted from 16% stock (EMS Diasum, 15740-04) in 1×932

PBS) for 5 min at RT. After washing using UltraPure wa-933

ter (Invitrogen 10977-023), eight rounds of amplification934

was performed accordingly using the corresponding am-935

plification solution (1:50 of each amplification oligo diluted936

in amplification buffer), with a 30 s UltraPure water (Invit-937

rogen 10977-023) rinse between each round of amplifica-938

tion. A 20 min ligation step was performed accordingly939

using SignalStar Ligation Solution (50% Ligation Buffer,940

2% T4 ligase (from a stock “5 units per mL”), and 1 mM941

ATP prepared using UltraPure water (Invitrogen 10977-942

023)), followed by another 30 s Ultrapure water (Invitro-943

gen 10977-023) rinse. Tissues were then stained with944

1:300 of Hoechst 33342 (ThermoFisher, H3570) for 5 min945

at RT, rinsed with 1× TBS-T, and coverslipped with Pro-946

Long™ Gold Antifade Mountant (P36930). Tissues were947

then imaged on the corresponding 4-color channels using948

the PhenoCycler Fusion platform. After imaging, the cov-949

erslip was removed by dipping in 1× TBS-T followed by950

incubation with the SignalStar Fluorescent Removal Solu-951

tion for 2 hr at 37°C and rinsed with UltraPure water (Invit-952

rogen 10977-023) for 30s. To ensure complete removal of953

signal, tissues were stained with 1:300 of Hoechst 33342954

(ThermoFisher, H3570) for 5 min at RT and then imaged955

again. The coverslip was similarly removed by dipping in956

1× TBS-T. After both SignalStar reactions, slides were fi-957

nally washed five times in 1× PBS to ensure complete re-958

moval of glycerol.959

Polaris: An optimized tissue staining assay was performed960

on a Bond RX Autostainer (Leica Biosystems) using the961

Akoya Biosciences Opal tyramide signal system. The an-962

tibody:fluorophore pairings are: CD8 on Opal Polaris 480963

(1:50), PD-1 on Opal Polaris 690 (1:100), TIM-3 on Opal964

Polaris 620 (1:150), LAG-3 on Opal Polaris 570 (1:50),965

CD20 on Opal Polaris 520 (1:150), and CD163 on Opal Po-966

laris 780 (1:25)/TSA-DIG (1:100). Prior to imaging, slides967

were mounted using 1× PBS and sealed with nail polish.968

Whole-slide multispectral images were acquired at 20×969

magnification using the PhenoImager HT automated quan-970

titative pathology imaging system (Akoya Biosciences),971

while implementing the Inform 3.0 software was then used972

to deconvolute the multispectral images. After imaging, a973

cotton swab dipped with xylenes was used to remove the974

nail polish and unmount the coverslip, and slides were then975

washed twice in 1× PBS.976

Orion: After antigen retrieval, the autofluorescence977

quenching, blocking, and antibody staining steps were in-978

stead performed according to the manufacturer’s protocol.979

After antibody staining, tissues were coverslipped using980

1× PBS and sealed with nail polish. Whole-slide images981

were acquired using the Orion (Rarecyte). After imaging,982

a cotton swab dipped with xylenes was similarly used to983

unmount the tissue, followed by washing twice in 1× PBS.984

Spatial Proteomics: Cell Segmentation and Annota-985

tion.986

The following paragraphs describe real-time analyses of987

the multiplexed images that were performed in parallel with988

the overnight RNA probe hybridization after image acqui-989

sition. Note that these steps are only performed for Fig.990

2 and Fig. 4. Details of the thorough analyses performed991

after completing the IN-DEPTH experiment are described992

in the Spatial Proteomics Analysis section.993

Cell segmentation: For both the tonsil (Fig. 2) and DL-994

BCL (Fig. 4) datasets, cell segmentation was only per-995

formed on the CODEX image using the MESMER model996

of DeepCell (v0.12.2) (80, 81), with maxima_threshold set997

to 0.075 and interior_threshold set to 0.05. The nuclear998

channel input of MESMER was DAPI for both datasets.999

The membrane channel input of MESMER for the ton-1000

sil dataset (Fig. 2) was a summation of CD11b, CD68,1001

CD20, CD163, CD31, and CD3, while for the EBV-positive1002

vs EBV-negative DLBCL dataset (Fig. 4), it was a summa-1003

tion of HLA1, HLA-DR, and CD31.1004

Image registration between CODEX and GeoMx: Scale-1005

Invariant Feature Transform (SIFT) algorithm was used1006

(82) for feature detection and feature description of the Fu-1007

sion DAPI image and the GeoMX SYTO13 image. Then,1008

a brute-force matcher was used to match the features be-1009

tween the two images. A ratio test was used to determine if1010

a specific match should be considered as a “good match”.1011

The source point (the CODEX image) and the destination1012

point (the GeoMx image) of the “good matches” were used1013

to calculate the affine transformation matrix that would reg-1014

ister the CODEX image’s coordinates into the GeoMx im-1015

age’s coordinate system. The software used and the spe-1016

cific hyperparameters for the algorithm and ratio test are in1017

Supp Table 7.1018

Single-cell feature extraction: For each marker, the pixel1019

value within the area of each cell (determined by the seg-1020

mentation mask) was summed and then divided by the1021

area of each cell, and the resulting cell-size scaled sum1022

was set as the expression value for a given marker. For the1023

DLBCL dataset (Fig. 4) where 3 markers were acquired1024

on the GeoMx, the segmentation mask generated from the1025

CODEX image was applied to the GeoMx image to ensure1026

that the same cell imaged between the two instruments1027

contained the same cell label, from which the cell features1028

were similarly extracted and scaled to cell size. Finally,1029

the scaled single-cell features extracted from the Fusion1030

and GeoMx images were joined together by cell label and1031

tissue core ID.1032

Cell phenotyping: The extracted features were first scaled1033

to a standardized range of [0,1], and cell phenotyping1034

was then performed through an iterative clustering and1035

annotating process with PhenoGraph (83). For the ton-1036

sil dataset (Fig. 2), the 12 phenotyping markers used1037

were CD20, Pax5, BCL6, CD3, CD8, CD4, FoxP3, CD11c,1038

CD31, CD68, CD163, and CD11b, which allowed the an-1039

notation of BCL6+ B cells, BCL6- B cells, CD4 T cells,1040
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CD8 T cells, endothelial cells, Tregs, dendritic cells (DCs),1041

M1-like macrophages, M2-like macrophages, and other1042

myeloids. For the EBV-positive vs EBV-negative DLBCL1043

dataset (Fig. 4), the phenotyping markers used were1044

CD20, Pax5, CD3, CD8, CD4, FoxP3, CD11c, CD31,1045

CD68, and CD163, which allowed the annotation of CD41046

T cells, CD8 T cells, endothelial cells, Tregs, DCs, M1-1047

like macrophages, M2-like macrophages, and tumor cells.1048

Cells that showed unclear marker enrichment patterns1049

were annotated as “Other” cells.1050

During the annotation process, clustering results were first1051

visualized using a heatmap showing the Z-score of each1052

marker within each cluster. This was used as a basis to1053

annotate each cluster based on their marker Z-score com-1054

binations while visually inspecting the original images to1055

confirm annotation accuracy. After an initial round of clus-1056

tering with PhenoGraph was performed, clusters with clear1057

enrichment patterns were annotated, while clusters with1058

mixed patterns underwent additional rounds of clustering1059

and annotation using a targeted set of phenotyping mark-1060

ers. This process was iterated until all identifiable cells1061

were annotated. To visualize and confirm the assigned1062

annotations, Mantis Viewer (84) was utilized to overlay the1063

annotation onto the segmentation mask and the marker1064

image for visual inspection. The final annotations were1065

then examined by visually inspecting with multiplexed im-1066

ages and H&E stains and verified by S.K. and S.J.R..1067

For the Tonsil experiment (Fig. 2), we annotated one tis-1068

sue section using the above-described procedure. Lever-1069

aging upon the advantage of adjacent tissue sections and1070

the reproducible high-quality tissue staining, annotation of1071

the the adjacent section was guided by MAPS (85), fol-1072

lowed by further refinement using the same procedures as1073

described above.1074

Spatial Transcriptomics: Probe Hybridization and1075

Transcriptome Capture.1076

At this point, all tissues were equilibrated in 1× PBS, in-1077

cluding the control slides that were paused after antigen1078

retrieval. Tissues were then hybridized for transcriptome1079

capture accordingly based on the respective assay, as de-1080

scribed below.1081

GeoMx: The RNA probe staining cocktail was pre-1082

pared using the Nanostring RNA Slide Prep kit (Nanos-1083

tring, 121300313) using the Nanostring Human Whole1084

Transcriptome Atlas detection probe set (Nanostring,1085

121401102). The RNA probe cocktail was then applied1086

to the tissue slides, sealed with a hybridization cover1087

slip (EMS Diasum, 70329-40), and incubated overnight1088

(around 18 hrs) at 37°C. After RNA probe hybridization, tis-1089

sue slides were first washed twice in Stringent Wash Buffer1090

(2× saline-sodium citrate (SSC) (Millipore Sigma, S6639)1091

in 50% formamide (Millipore Sigma, 344206-1L-M) for 51092

min each at 37°C, and subsequently washed twice with 2×1093

SSC for 5 min each at RT on a belly dancer. Tissues were1094

then stained with SYTO13 (100 nM) for 10 min at RT, and1095

washed twice in 2× SSC for 2 min each at RT to visualize1096

nuclear morphology. Slides were then scanned on the Ge-1097

oMx for region of interest (ROI) selection, while ensuring1098

that the IN-DEPTH stained and control slides were always1099

scanned in parallel. Square 484×484 µm ROIs were drawn1100

for each experiment: 18 in Fig. 1C rows 1-2, 24 in Fig. 1C1101

row 3, 16 in Fig. 1C row 4, 8 in Fig. 1C row 5, and 25 in1102

Supp Fig. 1B.1103

For the tonsil biological validation component (Fig. 2), a1104

few adjustments were incorporated. Sixteen 660×760 µm1105

rectangular ROIs were selected on each adjacent tissue1106

section with emphasis on lymphoid nodules (Fig. 2B and1107

Supp Fig. 2B). The location of each ROI on the GeoMx1108

was then recorded by their four vertices, and these co-1109

ordinates were used to crop out one sub-region for each1110

ROI from the CODEX-to-GeoMx registered full-tissue seg-1111

mentation mask. Within each sub-region for each ROI,1112

a segmentation mask for each annotated cell population1113

was iteratively generated to enable cell-type specific RNA1114

collection. Each cell-type specific segmentation mask was1115

then converted into a binary mask by setting the pixel value1116

of all the cell areas to 255 and pixel value for all back-1117

ground areas to 0. These masks were then re-uploaded1118

onto the GeoMx instrument to guide cell-type specific RNA1119

genome-wide transcriptome extraction, ranked from the1120

lowest to highest cell proportion within each ROI, such that1121

transcript collection would proceed in this order.1122

For the EBV-positive vs. EBV-negative DLBCL com-1123

ponent (Fig. 4), more adjustments were incorporated.1124

The Nanostring Human Whole Transcriptome Atlas de-1125

tection probe was combined with a custom spike-in1126

panel of probes against 14 targeted EBV genes (EBER1,1127

EBER2, EBNA1, EBNA2, EBNALP, LMP1, RPMS1,1128

BALF1 BCRF1, BHRF1, BNLF2A, BNLF2B, BNRF1,1129

BZLF1). After 2× SSC and formamide washing, slides1130

were stained with antibodies against Tox1/2, c-Myc for 1 hr1131

at RT, followed by SYTO13 (100 nM) streptavidin (used to1132

visualize the biotinylated PD-L1 antibody) for 10 min at RT.1133

The stained slides were then washed twice in 2× SSC for1134

2 min each at RT prior to GeoMx scanning. One 660×7851135

µm rectangular ROI was drawn for each patient core with1136

emphasis on tumor-enriched regions. The location of each1137

ROI on the GeoMx was similarly recorded by their four ver-1138

tices and used to crop out the corresponding sub-regions,1139

from binary 0/255 segmentation masks for each annotated1140

cell population were iteratively generated, ranked, and up-1141

loaded onto the GeoMx for transcriptome extraction.1142

After transcriptome capture, unique molecular barcodes1143

for the RNA probes were aspirated from each cell pop-1144

ulation to 96-well collection plates (Nanostring, 100473),1145

except for the first aspirate for each plate which is the de-1146

fault negative control. Collection plates that were fully filled1147

were dried according to official Nanostring protocol and1148

stored at -20°C until transcript collection for all other col-1149

lection plates within each experiment was completed. Se-1150

quencing library preparation was then performed starting1151

from the dried collection plates. Each aspirate was first re-1152

suspended in 10 µL of UltraPure water (Invitrogen 10977-1153

16 | bioRχiv Yeo & Chang & Qiu et al. | IN-DEPTH

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2024. ; https://doi.org/10.1101/2024.12.20.629650doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629650
http://creativecommons.org/licenses/by-nc-nd/4.0/


023) and then uniquely indexed using the Illumina i5×i71154

dual indexing system as part of the Nanostring NGS library1155

preparation kits (Nanostring, 121400201 & 121400202 &1156

121400203 & 121400204). The PCR reaction was pre-1157

pared in 96-well PCR plates (ThermoFisher 4306737),1158

where each well contained 4 µL of aspirate, 1 µM of each1159

i5 and i7 primers, and 1× library preparation PCR Master1160

Mix, adding up to 10 µL per well. The PCR reaction condi-1161

tions were 37 °C for 30 min, 50 °C for 10 min, 95 °C for 31162

min, followed by 18 cycles of 95 °C for 15 s, 65 °C for 60 s,1163

68 °C for 30 s, followed by a final extension of 68 °C for 51164

min before holding indefinitely at 12°C. Next, 4 µL of PCR1165

product from each well was pooled into DNA LoBind tubes1166

(Eppendorf 022431021) for purification, with 1 LoBind tube1167

used per collection plate. For the first round of purifica-1168

tion, 1.2× volume of AMPure XP beads (Beckman Coulter1169

A63881) were first added to the pooled PCR products and1170

incubated at RT for 5 min. Beads were then pelleted on1171

a magnetic stand (ThermoFisher 12321D), washed twice1172

with 1 mL of 80% ethanol, and eluted with 54 µL of elu-1173

tion buffer (10 mM pH 8.0 Tris-HCl, 0.05% Tween-20). The1174

second round of purification was performed using 50 µL of1175

eluted DNA from the first round, incubated with 1.2× vol-1176

ume of AMPure XP beads and washed twice in 1 mL of1177

80% ethanol. A final elution was done at 2:1 ratio of aspi-1178

rate (number of wells) to elution buffer (volume in µL), and1179

0.5 µL of the final eluate was diluted in 4.5 µL of UltraPure1180

water (Invitrogen 10977-023) (1:10 dilution) to confirm li-1181

brary purity and concentration on the Agilent TapeStation.1182

For each experiment, the same concentration of each1183

sub-library (eluted in individual DNA LoBind tubes) was1184

pooled into one LoBind tube to be sent for next-generation1185

sequencing. PhiX sequencing control (Illumina FC-110-1186

3002) was added into the library, with amount adjusted1187

based on the percentage of total reads allocated for PhiX1188

as per the sequencing platform used (5% on the NovaSeq1189

X Plus, 20% on the NextSeq2000). Paired-end sequenc-1190

ing was then performed on the NovaSeq X Plus (Tonsil1191

tissue experiments, Figs. 1 & 2) or NextSeq2000 (DLBCL1192

experiment, Fig. 4), with a total sequencing depth calcu-1193

lated as:1194

1.2×100× Total ROI Area(µm2)× 1
100− (PhiX%) .

VisiumHD: Slides were first subjected to H&E staining and1195

imaging as described in the next section. Afterwards, tis-1196

sues were dried at 37°C for 3 min using a thermal cycler.1197

Tissues were then destained with 0.1 M HCl at 42°C for1198

15 min, followed by 3× washes and incubations with TE1199

buffer, and finally submerged in 1× PBS.1200

As the default VisiumHD workflow has a de-crosslinking1201

step prior to probe hybridization, the control VisiumHD-1202

only slide was subjected to de-crosslinking at 80°C for 301203

min using the Decrosslinking Mix provided by the manufac-1204

turer followed by probe hybridization at 50°C overnight fol-1205

lowing manufacturer protocols (10X Genomics #10006681206

and #1000466). For the CODEX-VisiumHD slide, tissues1207

were incubated with 2 µg/mL Proteinase K (Thermo Fisher1208

Scientific, AM2546) prepared with 1× PBS at 40C for 201209

min, followed by three washes in UltraPure water (Invit-1210

rogen 10977-023). Tissues were then fixed in 10% NBF1211

(EMS Diasum, 15740-04) at RT for 1 min, and the fixation1212

process was stopped by incubating the tissue twice in NBF1213

stop buffer (0.1M Tris and 0.1M Glycine) for 5 min each at1214

RT, followed by a 1× PBS wash for 5 min at RT. The tissues1215

were then similarly subjected to probe hybridization (10X1216

Genomics #1000466) at 50°C overnight following manu-1217

facturer protocols.1218

Following post-hybridization wash, the tissues were sub-1219

jected to probe ligation at 37°C for 1 hr,washed with post-1220

ligation wash (10X Genomics #1000668) at 57°C for 5 min,1221

and finally with 2× SSC buffer. The tissues were then1222

stained with 10% Eosin at RT for 1 min and washed with1223

1× PBS. The tissues were loaded into the Visium CytAs-1224

sist, adjusted to align with the slide subjected to Visium1225

HD, followed by probe release. Two square 6.5×6.5 mm1226

ROIs were drawn for this experiment in Fig. 1C, row 61227

due to the inherent size of each cassette (10X Genomics1228

#1000669 and #1000670). Probes were then extended1229

with a thermal cycler and eluted with 0.08 M KOH. Probes1230

from each of the tissue samples were amplified with indi-1231

vidual Dual Index TS Set A (10X Genomics #PN-1000251)1232

in a thermal cycler followed by PCR-clean up with SPRIs-1233

elect Reagent (Beckman Coulter #B23317). The libraries1234

were QC-ed through High Sensitivity DNA Assay (Agilent1235

Technologies) and sequenced paired-end on a HiSeq20001236

(Illumina).1237

CosMx: An incubation frame was first applied on each1238

slide to ensure that liquid remains on the tissue surface.1239

Tissues were then digested with 2 µg/mL Proteinase K1240

(Thermo Fisher Scientific, AM2546) prepared with 1× PBS1241

for 20 min at 40°C, followed by three washes in UltraPure1242

water (Invitrogen 10977-023). Fiducial solution (0.001% of1243

fiducials in 2× SSC-T) was applied afterwards for 5 min at1244

RT, which is immediately followed by tissue fixation in 10%1245

NBF (EMS Diasum, 15740-04) for 1 min at RT. The fixation1246

process was quenched twice in NBF stop buffer (0.1M Tris1247

and 0.1M Glycine) for 5 min each at RT, followed by a 1×1248

PBS wash for 5 min at RT. To block nonspecific probe and1249

antibody binding, a 100 mM NHS-acetate mixture was pre-1250

pared immediately prior to application and incubated for1251

15 min at RT in a humidified chamber. Slides were then1252

washed twice in 2× SSC for 5 min each at RT.1253

The RNA detection probes were prepared by denaturing at1254

95°C for 2 min using a preheated thermal cycler and then1255

immediately chilled in an ice bucket for 1 min. Note that dif-1256

ferent detection probe panels were used, with a 1k panel1257

for Fig. 1C, row 7 and a 6k panel for Fig. 1C row 8. Af-1258

terwards, the RNA probe cocktail was prepared according1259

to manufacturer guidelines. The upper layer of the incuba-1260

tion frame was carefully removed to apply the probe cock-1261

tail while ensuring the liquid remains within the incuba-1262

tion frame boundary without any bubbles introduced, after1263
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which an incubation frame cover was used to seal the RNA1264

probe cocktail within. Probes were allowed to hybridize1265

at 37°C for 16 hrs. After RNA probe hybridization, tissue1266

slides were first washed twice in Stringent Wash Buffer1267

(2× saline-sodium citrate (SSC) (Millipore Sigma, S6639)1268

in 50% formamide (Millipore Sigma, 344206-1L-M)) for 251269

min each at 37°C, and subsequently washed twice with 2×1270

SSC for 5 min each at RT on a belly dancer. Tissues were1271

then stained with SYTO13 (100 nM) buffered in blocking1272

buffer for 15 min at RT, washed in 1× PBS for 5 min, fol-1273

lowed by staining with a designated antibody cocktail for1274

1 hr at RT to demarcate cell boundaries. After antibody1275

staining, slides were washed thrice in 1× PBS followed by1276

another round of incubation using freshly-prepared NHS-1277

acetate mixture for 15 min at RT. Slides were then washed1278

twice in 2× SSC for 5 min each at RT. Slides were then1279

scanned on the CosMx for region of interest (ROI) selec-1280

tion, while ensuring that the IN-DEPTH stained and control1281

slides were always scanned in parallel. Square 500×5001282

µm ROIs were drawn for each experiment: 36 in Fig. 1C,1283

row 7, and 18 in Fig. 1C, row 8.1284

Hematoxylin & Eosin Staining and Imaging.1285

VisiumHD: H&E staining was part of the VisiumHD pro-1286

tocol. Slides were first immersed twice in UltraPure wa-1287

ter (Invitrogen 10977-023) for 20 s each. H&E staining1288

was performed a serial incubation in hematoxylin (Stat-1289

Lab, HXMMHPT), blueing buffer (StatLab HXB00588E),1290

and eosin (StatLab STE0243) for 1 min each at RT, with1291

three UltraPure water (Invitrogen 10977-023) washes be-1292

tween each incubation. Next, glycerol was used to cov-1293

erslip the VisiumHD only slide while UltraPure water (In-1294

vitrogen 10977-023) was used to coverslip the Codex-1295

VisiumHD slide. Slides were then scanned using the1296

Grundium Ocus40 slidescanner (Grundium MGU-00003).1297

After scanning, the coverslip was removed by immersing1298

the slides in UltraPure water (Invitrogen 10977-023) and1299

continued with drying and destaining and detailed in the1300

previous section.1301

GeoMx & CosMx: All slides were stored in 2× SSC at 4°C1302

after transcriptome capture for H&E staining to visualize1303

and confirm tissue morphology immediately after complet-1304

ing quality control evaluation of the captured transcripts.1305

Slides were first equilibrated in UltraPure water (Invitrogen1306

10977-023) at RT prior to staining with Modified Mayer’s1307

Haematoxylin (StatLab HXMMHPT) for 5 min at RT, fol-1308

lowed by rinsing thrice with UltraPure water (Invitrogen1309

10977-023). Slides were then treated with Bluing Solu-1310

tion (StatLab HXB00588E) to develop the blue coloration,1311

and subsequently rinsed thrice with UltraPure water (Invit-1312

rogen 10977-023) at RT. The slides were then equilibrated1313

in 95% ethanol for 1 min prior to staining with a solution of1314

Eosin Y and Phloxine B (StatLab STE0243) for 1 min, fol-1315

lowed by rinsing by dipping 12 times each in three changes1316

of fresh 95% ethanol. Finally, the slides underwent graded1317

dehydration by dipping once in 70% ethanol, once in1318

100% ethanol, and once in two changes of xylenes. Ex-1319

cess xylenes was gently dabbed off and glass coverslips1320

(Creative Waste Solutions CSM-2450) were mounted with1321

xylene-based mounting medium (OptiClear Xylene, SSN1322

Solutions, CSM1112). The slides were left to dry overnight1323

at RT, after which they were scanned using the Grundium1324

Ocus40 slidescanner (Grundium MGU-00003). The H&E1325

stains were verified by S.K. and S.J.R. for tissue quality1326

and morphological consistency with the multiplexed spa-1327

tial proteomics images.1328

Spatial Transcriptomics: Batch Correction.1329

GeoMx data: The demultiplexed FASTQ output files from1330

next-generation sequencing were used to map and quan-1331

tify the human probes (and EBV probes for DLBCL data)1332

through the GeoMx Data Analysis software pipeline (8).1333

The .dcc files produced were then uploaded onto the Ge-1334

oMx to generate gene counts tables using the default “QC”1335

and “Biological probe QC” settings without filtering out any1336

genes.1337

The original cell-type annotations distinguished multiple1338

T cells (CD4 memory, CD4 naive, CD8 memory, CD81339

naive), macrophage (M1-like, M2-like), endothelial, and1340

several tumor subtypes (including subsets defined by1341

BCL2, BCL6, and Myc expression level), as shown in1342

Supp Fig. 5. To streamline the analyses, closely related1343

cell subsets were merged into broader categories: mem-1344

ory and naive T cell subpopulations were combined into1345

respective CD4 or CD8 T cells, and tumor subpopulations1346

(originally BCL2+, BCL6+, Myc+, and other tumors) were1347

aggregated to represent a collective malignant B-cell pop-1348

ulation. Following the merging of related cell subpopula-1349

tions, gene expression data from both cohorts were com-1350

bined into a single, unified count matrix with genes as1351

rows and spatial segments (ROI × cell type) as columns.1352

Segments matched with fully annotated metadata were re-1353

tained. Raw gene counts were then normalized, and for1354

the EBV-positive vs EBV-negative DLBCL dataset (Fig. 4),1355

additional rigorous batch correction steps were adopted as1356

described below.1357

Rationale for batch correction: Overall, GeoMx datasets1358

often involve samples from multiple cohorts and experi-1359

mental batches, each potentially introducing technical ar-1360

tifacts that can obscure true biological variation. In the1361

context of our DLBCL patient cohort, where samples are1362

derived from diverse sources, correcting for batch effects1363

is critical to ensure that the observed differences in gene1364

expression reflect underlying biology rather than techni-1365

cal or sample processing discrepancies. Batch correction1366

methods help to remove these unwanted sources of vari-1367

ation while preserving genuine differences arising from bi-1368

ological conditions and cell types. This step is important1369

for downstream analyses such as differentially expressed1370

gene (DEG) analysis and gene signature validation, as it1371

ensures that identified biomarkers and signatures are ro-1372

bust and not confounded by technical and other unwanted1373

factors.1374

Normalization methods, negative control genes, and1375
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unwanted covariant factor preparation for batch correction:1376

The standR (86) (v.1.9.3) pipeline was used for nor-1377

malization and reducing patient-level batch effects us-1378

ing the RUV4 method. Two normalization methods were1379

adopted, including log counts-per-million reads (CPM) via1380

the logNormCounts function of scater package (v.1.28.0)1381

and quantile normalization via geomxNorm function of1382

standR. Batch effect correction was implemented via a grid1383

searching strategy to optimize parameter combinations for1384

minimizing individual patient-level variations (e.g. tissue1385

sources) while retaining biological variations due to EBV1386

condition and cell types. Five grids of the number of neg-1387

ative control genes (NCG) were selected: 1000, 2000,1388

3000, 4000, and 5000 via findNCGs function. The three1389

grids of the number of unwanted factors (i.e. k-values) for1390

the RUV4 method (87) were set to 1, 2, and 3 using the1391

geomxBatchCorrection function. The result of each batch1392

correction run was a normalized and adjusted expression1393

matrix for DEG.1394

DEG parameter settings: Following batch correction, a1395

two-step approach was employed to evaluate and refine1396

DEG parameters. First, the suitability and effectiveness1397

of batch correction strategies were assessed by examin-1398

ing their ability to produce biologically interpretable DEGs.1399

To do this, pairwise comparisons were conducted between1400

key cell populations of interest (e.g. tumor, CD4T, CD8T,1401

and macrophage compared with endothelial cells, respec-1402

tively) across different EBV status subsets (EBV-positive,1403

EBV-negative, and combined). These contrasts aimed1404

to reveal condition-dependent DEGs that are biologically1405

meaningful.1406

Second, the DEG model parameters were optimized to1407

recover cell-type-specific gene signatures robustly. DEG1408

analyses were performed using a pipeline that integrated1409

edgeR (48) (v.3.42.4) and limma (88) (v.3.56.2). The mod-1410

eling framework allowed for the inclusion of weight matri-1411

ces from RUV4 in the design matrix of the linear model as1412

covariates. Four confounder sets were tested:1413

1. No confounders1414

2. One confounder if the k-value is equal to or greater1415

than 1: one weight matrix from RUV4.1416

3. Two confounders if the k-value is equal to or greater1417

than 2: two weight matrices from RUV4.1418

4. Three confounders if the k-value is equal to 3: three1419

weight matrices from RUV4.1420

Additionally, each confounder set was tested with two sce-1421

narios: with and without controlling for cell-type abundance1422

(i.e. including or excluding cell counts as a covariate).1423

DEGs were then identified using moderated linear mod-1424

eling (limma) and empirical Bayes shrinkage. Significance1425

thresholds included an adjusted p-value threshold of 0.01.1426

P-values were adjusted for multiple testing using the false1427

discovery rate (FDR) method.1428

Benchmarking and Signature Validation: To systemat-1429

ically assess the combined influence of batch correc-1430

tion and DEG model parameters, all combinations (N =1431

540) of number NCGs, k-values for unwanted variation,1432

EBV status subsets, confounder sets, and cell-type abun-1433

dance adjustments were evaluated. The DEGs identi-1434

fied under each parameter setting were then evaluated1435

against known cell-type-specific signatures. Signatures1436

(Supp Table 8) included well-established lineage and1437

function markers for CD4 T cells (89), CD8 T cells (89),1438

macrophages (90, 91), and DLBCL tumor cells (92). En-1439

richment of known markers within each DEG list was as-1440

sessed via hypergeometric tests, confirming whether the1441

parameters chosen successfully recovered expected bio-1442

logical signatures.1443

VisiumHD data: The demultiplexed FASTQ output files1444

from next-generation sequencing were used to map and1445

quantify the human probes through the 10x Genomics1446

Space Ranger v3.1.1 count pipeline. Manual alignment1447

and tissue detection was first performed with 10x Ge-1448

nomics Loupe Browser v8.0.0 using the CytAssist im-1449

age and the H&E stained microscope image. These im-1450

ages, together with the human transcriptome reference1451

GRCh38, Visium probe set v2.0, and the FASTQ files,1452

were input into the Space Ranger’s count pipeline. Due to1453

varying ROI sizes in the tissue samples, unique molecular1454

identifier (UMI) counts were normalized by the number of1455

bins within each ROI, with a scaling factor of 10,000. Note1456

that batch effect correction was similarly not performed for1457

the analysis in Fig. 1C.1458

CosMx data: The acquired data was automatically up-1459

loaded onto the AtoMx spatial informatics platform, with1460

the normalized transcript counts of each FOV generated in1461

the platform, as well as image pre-processing and feature1462

extraction, To identify single-cell features, a pre-trained1463

neural network model Cellpose was used for segmentation1464

(93). Single-cell RNA expression profiles were generated1465

by counting transcripts of each gene falling within different1466

segmented areas. Cells with fewer than 20 total transcripts1467

were removed from downstream data analysis.1468

SGCC Development Rationale.1469

The spatial distribution of cell phenotypes in tissues pro-1470

vides vital insights into cellular interactions, functional1471

states, and tissue microenvironment organization. Spa-1472

tial autocorrelation, commonly quantified using metrics like1473

Moran’s I or Geary’s C, is a well-established measure1474

for evaluating the degree of similarity in values across1475

spatially adjacent locations for a single signal (e.g. cell1476

phenotype distribution pattern). However, these methods1477

are limited in their ability to compute cross-correlation be-1478

tween two spatial signals, particularly in scenarios involv-1479

ing graph-based data structures. In addition, traditional1480

correlation methods such as Pearson and Spearman cor-1481

relation, while effective for linear or rank-based relation-1482

ships, are inadequate for measuring spatial relationships1483

between two graph signals. To address this gap, we intro-1484
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duce Spectral Graph Cross-Correlation (SGCC), a method1485

that quantifies the similarity between two graph signals by1486

analyzing and comparing their spectral components in the1487

frequency domain.1488

SGCC addresses these limitations by leveraging the1489

Graph Fourier Transform (GFT) to analyze graph signals1490

in the frequency domain. The rationale for SGCC lies in its1491

ability to:1492

1. Extend beyond single-signal analysis: While spatial1493

autocorrelation measures like Moran’s I evaluate the1494

spatial coherence of a single signal, SGCC quan-1495

tifies cross-correlation between two graph signals,1496

capturing their spatial relationship in terms of com-1497

plementarity or co-occurrence.1498

2. Incorporate graph structure: SGCC operates directly1499

on graph-structured data, integrating spatial adja-1500

cency information into the analysis. This allows it1501

to adapt to both regular (e.g. pixel grids) and irregu-1502

lar (e.g. cell-cell adjacency) spatial graphs, ensuring1503

an accurate representation of spatial relationships.1504

3. Focus on k-bandlimited signals to study spatially1505

organized structures: A k-bandlimited signal refers1506

to a smooth and slow graph signal, which can be1507

biologically defined as a spatially organized struc-1508

ture (19) (e.g. germinal center pattern in a reactive1509

tonsil). Such signal can be effectively captured by1510

first k Fourier modes (FM), which are eigenvectors1511

of graph Laplacian to capture broad, large-scale pat-1512

terns in the graph data, such as gradual and orga-1513

nized distributions. In contrast, high-frequency sig-1514

nals represent rapid, small-scale variations that of-1515

ten correspond to noise or localized fluctuations. By1516

focusing on k-bandlimited signals, SGCC isolates bi-1517

ologically meaningful spatial relationships while min-1518

imizing the influence of noise. This approach en-1519

sures that the analysis highlights overarching spatial1520

trends, such as how two cell types are distributed1521

across tissue regions, rather than being confounded1522

by random variations.1523

4. Provide a quantitative and interpretable metric:1524

SGCC calculates the cosine similarity of Fourier co-1525

efficients (FC) of first k FM, offering a robust and1526

interpretable metric for spatial co-localization. This1527

measure effectively captures the similarity of large-1528

scale spatial patterns while accounting for the graph1529

structure.1530

5. Enable cross-sample comparisons: By standardiz-1531

ing spatial data into a pixel graph and ensuring all1532

regions of interest (ROIs) are represented within the1533

same linear space, SGCC allows for consistent and1534

comparable measurements across multiple samples1535

or conditions.1536

6. Link spatial patterns to functional insights" SGCC1537

integrates spatial cross-correlation with functional1538

analyses, enabling the identification of spatially dy-1539

namic genes associated with the spatial arrange-1540

ment of specific paired cell phenotypes. By connect-1541

ing spatial patterns to gene expression, SGCC pro-1542

vides a comprehensive view of how spatial organiza-1543

tion influences cellular behavior and tissue function.1544

SGCC Development.1545

Binning cell phenotype data into a grid: Note that all the1546

notations of matrices and vectors are bolded, and all the1547

vectors are treated as column vectors in the following de-1548

scription. Given a set of spatial coordinates (xs,ys) for1549

each cell s, the tissue area is discretized into a regular1550

grid. Each bin (or cell of the grid) aggregates cells of1551

various types. For each cell phenotype, a count is com-1552

puted per bin, resulting in a cell phenotype-specific spa-1553

tial map. This step converts a potentially irregular distribu-1554

tion of cells into a uniform representation suitable for graph1555

construction. Specifically, a one-hot encoded matrix C is1556

first constructed, where rows represent cells and columns1557

correspond to cell phenotypes, with each element cs,r set1558

to 1 if the cell s belongs to cell phenotype r, and 0 other-1559

wise, where s = 1,2, . . . , c, and r = 1,2, . . . ,m. This ma-1560

trix is then transformed into a bin-by-cell phenotype matrix1561

P, where rows represent bins in the grid, columns cor-1562

respond to cell phenotypes, and each element pi,r indi-1563

cates the count of cells of phenotype r within bin i, where1564

i = 1,2, . . . ,n, and n < c. This transformation ensures that1565

spatial cell phenotype distributions are uniformly repre-1566

sented across the grid for downstream graph-based anal-1567

yses. Based on the benchmarking results in Supp Figs.1568

3A & B, the default grid size is set as 60×60.1569

k-nearest neighbor (KNN) graph construction: Given a1570

binned grid containing n pixels, including their spatial co-1571

ordinates and cell type phenotype counts, SpaGFT first1572

calculates the Euclidean distances between each pair of1573

pixels based on spatial coordinates. Subsequently, an1574

undirected graph G = (V,E) is constructed, where V =1575

{v1,v2, . . . ,vn} is the node set corresponding to the n pix-1576

els, and E is the edge set. An edge eij exists between1577

vi and vj in E if and only if vi is the KNN of vj or vj1578

is the KNN of vi based on Euclidean distance, where1579

i, j = 1,2, . . . ,n, and i ̸= j. Based on the benchmarking1580

results in Supp Figs. 3A & B, the default K is defined as1581

400.1582

An adjacency binary matrix A = (aij) is defined, where1583

rows and columns represent the n pixels:1584

aij =
{

1 if eij ∈ E,

0 otherwise.

A diagonal degree matrix D = diag(d1,d2, . . . ,dn) is then1585

defined, where the degree of each node vi is given by:1586

di =
n∑

j=1
aij .
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Fourier mode calculation: Using the adjacency matrix A1587

and the degree matrix D, a Laplacian matrix L is defined1588

as:1589

L = D−A.

The Laplacian matrix L can be decomposed using spectral1590

decomposition:1591

L = UΛU⊤,

where Λ = diag(λ1,λ2, . . . ,λn) is a diagonal matrix con-1592

taining the eigenvalues of L, ordered such that λ1 ≤ λ2 ≤1593

· · · ≤ λn, and U = (µ1,µ2, . . . ,µn) is a matrix whose1594

columns are the unit eigenvectors of L. Note that λ1 is1595

always equal to 0, regardless of the graph topology, and is1596

excluded from the subsequent analysis. Each eigenvector1597

µk corresponds to a Fourier mode (FM), where µk ∈ Rn,1598

k = 1,2, . . . ,n, and the set {µ1,µ2, . . . ,µn} forms an or-1599

thogonal basis for the linear space.1600

For µk = (µ1
k,µ2

k, . . . ,µn
k ), where µi

k indicates the value of1601

the kth FM on node vi, the smoothness of µk reflects the1602

total variation of the kth FM in all mutual adjacent nodes.1603

This smoothness is formulated as:1604

1
2

∑
vi∈V

∑
vj∈V

aij(µi
k −µj

k)2.

This expression can be derived using matrix operations:1605

1
2

∑
vi∈V

∑
vj∈V

aij(µi
k −µj

k)2 =

1
2

 ∑
vi∈V

di(µi
k)2 −2

∑
vi∈V

∑
vj∈V

aijµi
kµj

k +
∑

vj∈V

dj(µj
k)2

 .

Simplifying further:1606

=
∑

vi∈V

di(µi
k)2 −

∑
vi∈V

∑
vj∈V

aijµi
kµj

k

= µ⊤
k Dµk −µ⊤

k Aµk

= µ⊤
k Lµk

= λk,

where µ⊤
k is the transpose of µk.1607

According to the definition of smoothness, a small eigen-1608

value λk indicates a low variation in FM values between1609

adjacent nodes, corresponding to low-frequency FMs.1610

Conversely, larger eigenvalues correspond to higher os-1611

cillations in the eigenvectors, representing high-frequency1612

FMs. Thus, the eigenvalues and eigenvectors of L are in-1613

terpreted as frequencies and FMs in SpaGFT. Intuitively,1614

low-frequency FMs capture broad, large-scale spatial pat-1615

terns, while high-frequency FMs reflect finer, localized vari-1616

ations.1617

First k bandwidth determination by Kneedle algorithm: The1618

eigenvalue λt is converted as follows:1619

λct = max{λ1,λ2, . . . ,λn}−λt, t = 1,2, . . . ,n,

where λct is the converted value of λt. Each point (xct =1620

t,λct), where xct is the rank number of λct , is processed1621

by a smoothing spline to preserve the curve shape and1622

obtain (xst ,λst), t = 1,2, . . . ,m. Denote the coordinate set1623

as:1624

Ds = {(xst ,λst) | t = 1,2, . . . ,n},

which can be normalized to the coordinate set Dn as fol-1625

lows:1626

Dn = {(xnt ,λnt) | t = 1,2, . . . ,n},

where:1627

xnt = xst −min(xs)
max(xs)−min(xs) , λnt = λst −min(λs)

max(λs)−min(λs) ,

and min(xs), max(xs) are the minimum and max-1628

imum of {xs1 ,xs2 , . . . ,xsn}, respectively. Similarly,1629

min(λs) and max(λs) are the minimum and maximum of1630

{λs1 ,λs2 , . . . ,λsn}, respectively. Additionally, let Dd rep-1631

resent the set of points corresponding to the differences1632

between the x- and λ-values:1633

Dd = {(xdt ,λdt) | xdt = xnt , λdt = λnt −λnt−1 , t = 1,2, . . . ,n}.

The determination of the cutoff yz can then be converted1634

to identifying the inflection point λz , which satisfies:1635

λdz−1 < λdz , λdz+1 < λdz , λdh
< Tz, h = z,z +1, . . . ,n,

where:1636

Tz = λdz −S

∑n
t=1(xnt −xn1)

n−1 .

In the equation above, S is a coefficient that controls the1637

level of aggression in identifying the inflection point; here,1638

S is set to 2.1639

Graph Fourier Transform: The graph signal of a cell phe-1640

notype pattern p is defined as:1641

fp = (f1
p ,f2

p , . . . ,fn
p ) ∈ Rn,

which is an n-dimensional vector representing the cell1642

count values across n bins. The graph signal fp is trans-1643

formed into Fourier coefficients f̂p by:1644

f̂p = (f̂1
p , f̂2

p , . . . , f̂n
p ) = U⊤fp,

where f̂k
p is the projection of fp onto the k-th Fourier mode1645

µk, representing the contribution of µk to the graph signal1646

fp, with k = 1,2, . . . ,n. This Fourier transform aligns the1647

cell phenotype pattern with its spatial distribution, repre-1648

senting the pattern in the frequency domain.1649

SGCC calculation: After transforming the graph signals of1650

two cell phenotype patterns p·,1 and p·,2 into their respec-1651

tive low-frequency representations, SGCC is computed1652

by evaluating the cosine similarity of their k-bandlimited1653

Fourier coefficients (FCs), capturing large-scale spatial1654

distributions.1655

The SGCC score is calculated as:1656

SGCC(p·,1,p·,2) =
f̂ (1:k)
p·,1 · f̂ (1:k)

p·,2

∥f̂ (1:k)
p·,1 ∥∥f̂ (1:k)

p·,2 ∥
,

where:1657
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• f̂ (1:k)
p·,1 and f̂ (1:k)

p·,2 are the vectors of the first k-1658

bandlimited FCs for cell phenotype patterns p·,1 and1659

p·,2, respectively.1660

• ∥f̂ (1:k)
p·,1 ∥ and ∥f̂ (1:k)

p·,2 ∥ are the Euclidean norms of1661

these coefficient vectors.1662

This measure yields a normalized similarity score between1663

-1 and 1:1664

• A high SGCC score (close to 1) indicates that the1665

two cell phenotypes exhibit similar large-scale spa-1666

tial structures.1667

• A low or negative SGCC score (close to -1) suggests1668

that the two cell phenotypes have inversely related1669

spatial patterns at these scales.1670

For the IN-DEPTH data with m cell phenotypes, there are1671 (m
2

)
= m(m−1)

2 SGCC scores.1672

SGCC Validation Analysis.1673

Simulation 1 (ring pattern): The simulation process begins1674

by defining a regular 60 by 60 grid to represent the spatial1675

domain, with each cell having x and y coordinates. An in-1676

ner circle is generated with a fixed radius from a predefined1677

range (2.5, 5, 7.5, 10, 12.5, 15, 17.5, and 20), centered in1678

the middle of the grid (x=30, y=30). To simulate the dy-1679

namic behavior of an outer ring shrinking toward the inner1680

circle, a sequence of radii is defined for the outer ring in 101681

incremental steps, starting from a large initial radius and1682

progressively decreasing to slightly larger than the inner1683

circle’s radius. For each step, the grid is analyzed to clas-1684

sify points as either inside the inner circle, within the outer1685

ring (defined as the area between the shrinking outer ra-1686

dius and the inner circle), or outside both regions. The1687

spatial distribution of these classifications is aggregated1688

for all steps, resulting in a set of data that captures the in-1689

teraction between the inner circle and the shrinking outer1690

ring at different stages of the simulation. This process en-1691

ables the generation of 80 datasets to demonstrate local1692

and global complementary patterns.1693

Simulation 2 (moving pattern): The simulation method1694

generates data to model the spatial interactions between1695

two dynamically moving circular regions on a 60 by 601696

grid. For each simulation, the radius of the first circle is1697

varied within a specified range (6,7,8,9,10,11,12,13, and1698

14), while the radius of the second circle is set to be 1.51699

times the radius of the first circle. Initially, the centers of the1700

two circles are positioned symmetrically at a distance of 301701

units from the centerline of the grid. Over 10 incremental1702

steps, the centers of the circles move inward toward the1703

grid’s center. At each movement step, the Euclidean dis-1704

tance from every grid point to the centers of the circles is1705

calculated to determine whether a point lies within the first1706

circle, the second circle, both circles or outside both. This1707

classification is updated at each step to reflect the move-1708

ment of the two circles. The resulting data for each sim-1709

ulation step includes the binary indicators for points being1710

within each circle and the overlap between the two. This1711

process enables the generation of 80 datasets to demon-1712

strate moving pattern of two cell types.1713

Space-gene covarying analysis: To investigate spatially1714

covarying gene expression in relation to cell-cell spa-1715

tial pattern dynamics across multiple samples, SGCC1716

scores are leveraged as spatial factors and treated as1717

time-series variables within the ImpulseDE2 framework1718

(47) (v0.99.10). ImpulseDE2 is a statistical tool de-1719

signed for differential expression analysis, employing a1720

sigmoid-based impulse model to represent continuous1721

trends across time. By utilizing SGCC scores as a con-1722

tinuous spatial variable, this approach facilitates the iden-1723

tification of genes whose expression systematically corre-1724

lates with spatially defined paired cell phenotype patterns,1725

enabling the exploration of underlying molecular mecha-1726

nisms associated with changed spatial organization across1727

multiple samples or ROIs.1728

The workflow begins by addressing batch effects using1729

previously established batch correction methods (as de-1730

tailed above and also in (21)). Following this, the input con-1731

sists of a gene expression matrix, sample metadata, and1732

SGCC scores, which represent the spatial relationships1733

between paired cell phenotypes. The dataset is prepro-1734

cessed by subsetting to include relevant cell phenotypes1735

and experimental conditions while correcting for batch fac-1736

tors using default ImpulseDE2 settings. In Fig. 3E, CD4T1737

cells and BCL6-positive B cells were selected. If meta-1738

data is available, it is constructed for each sample, incor-1739

porating binary conditions (e.g. case vs. control), SGCC1740

scores as continuous spatial factors, and batch informa-1741

tion. SGCC scores are then discretized into time bins1742

to represent progression along the spatial factor for time-1743

series modeling. Using ImpulseDE2, a sigmoid-based im-1744

pulse model is applied to capture non-linear gene expres-1745

sion dynamics across SGCC-defined time bins. Genes1746

are ranked based on their temporal expression trends1747

and categorized into patterns such as increasing, de-1748

creasing, or transient, and significant genes are identified1749

using an adjusted p-value threshold based on the Ben-1750

jamini–Hochberg (BH) method. The output consists of a1751

ranked list of genes that covary with the spatial factor, clas-1752

sified patterns of gene expression, and insights into spa-1753

tially regulated molecular mechanisms linked to changes1754

in paired cell phenotypical patterns.1755

Spatial Proteomics Analysis.1756

Image processing: For functional markers included in the1757

analysis in Fig. 4 (HLA-1, HLA-DR, CD45RO, CD45RA,1758

Ki-67, PD-1, LAG3, Granzyme B), the 16-bit intermedi-1759

ate QPTIFFs, generated by the Phenocycler Fusion, were1760

used to ensure optimal dynamic range of data. The QP-1761

TIFFs were processed firstly by subtracting the last blank1762

cycle scaled by the ratio between current channel cycle1763

and total cycle number, i.e.,1764
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X ′
i,j = Xi,j,0 −

(
i

N

)
×Xε,

where X ′
i,j is the blank-subtracted image of marker j in1765

cycle i; Xi,j,0 is 16-bit intermediate image of marker j in1766

cycle i; and Xε is the last blank cycle. Then, the last-1767

blank-subtracted image were processed in imageJ using1768

the “Math” and “Subtract Background” functionalities under1769

“Process”:1770

1. Subtract the mean pixel value of the image to get rid1771

of most of the “salt and pepper” noise.1772

2. Subtract the background generated by the sliding1773

paraboloid algorithm with a 5 pixel radius.1774

Since GeoMx images were outputted as 16-bit images by1775

default and were already fully processed internally by the1776

instrument, Tox and PD-L1 were not processed by the1777

above-mentioned pipeline. Finally, for each core and each1778

marker, a lower bound and an optional upper bound (in1779

case of high pixel intensity artifacts) were applied to re-1780

move the remaining unspecific staining, noise, and arti-1781

facts. The lower bound and upper bound were determined1782

by visual inspection of the images in QuPath and the val-1783

ues can be found in Supp Table 9.1784

Note that cell phenotyping was performed based on the1785

final 8-bit QPTIFF generated by the Phenocycler Fusion.1786

Since the 8-bit QPTIFF was processed completely by the1787

Phenocycler Fusion’s software, the blank subtraction and1788

the imageJ processing were not applied. However, similar1789

to the 16-bit images, lower bounds were set for each core1790

and each marker in order to get rid of as much of unspe-1791

cific staining (for example, nuclear signal of a supposedly1792

membrane marker) as possible. The lower bound values1793

can be found in Supp Table 9.1794

Data processing: The aforementioned functional markers1795

(HLA-1, HLA-DR, CD45RO, CD45RA, Ki-67, PD-1, LAG3,1796

Granzyme B, Tox, PD-L1), were scaled by the respective1797

median nuclear signal (DAPI for markers captured on Fu-1798

sion and SYTO13 for markers captured on GeoMx) of each1799

tissue sample in order to adjust for different binding effi-1800

ciency of markers. Then, a global min-max scaling was1801

applied to scale the marker expression levels to be within1802

[0,1].1803

For phenotyping markers (Pax5, CD20, CD3, CD8, CD4,1804

FoxP3, CD11c, CD68, CD163, CD31), the same median1805

nuclear signal scaling was applied. Then, the markers1806

were further scaled within each tissue sample by a (0.001,1807

0.999) quantile scaling and then truncated at 0 and 1. Un-1808

like the functional markers, the phenotyping markers were1809

scaled at a local level to compensate for tissue samples1810

with an overall weaker pixel intensity.1811

Marker enrichment heatmap: The marker enrichment1812

heatmap showed the Z-score of a given (marker, cell type,1813

EBV status) tuple. In other words, it showed how many1814

standard deviations away is the mean of marker A expres-1815

sion of cell type B given an EBV condition from the popu-1816

lation mean of marker A expression:1817

Zi,j,k =
(
µi,j,k −µi

)
σi

,

where Zi,j,k stands for the Z-score for marker i, cell type1818

j, and EBV status k; µi,j,k stands for the mean expression1819

for for marker i, cell type j, and EBV status k; µi stands1820

for the population mean of marker i; and σi stands for the1821

population standard deviation of marker i.1822

Cell type proportion and enrichment: Cell type enrichment1823

was presented as log2 of the ratio between the propor-1824

tion of cell types in EBV-positive and EBV-negative DLBCL1825

samples:1826

log2
Pi,EBV+

Pi,EBV−
,

where Pi,EBV+ is the proportion of cell type i in EBV-1827

positive and Pi,EBV− is the proportion of cell type i in1828

EBV-negative.1829

Dysfunction score:The T cell dysfunction score con-1830

structed to measure the overall dysfunction of a cell in-1831

cludes markers that are differentially expressed. PD-1 was1832

not included due to its lower staining quality in this tissue1833

cohort, as well as its additional biological function as an1834

activation marker (94).1835

S =
∑

i∈M+
Xi −

∑
j∈M−

Xj ,

where S stands for the dysfunction score; Xi and Xj1836

stands for the expression level of marker i or marker1837

j of a cell; M+ stands for a set of markers that1838

signify contributive effects to cell dysfunction, M+ =1839

{LAG3,CD45RO,Tox}; M− stands for a set of mark-1840

ers that signify counteractive effects to cell dysfunction,1841

M− = {CD45RA,Ki67,GZMB}.1842

Cell motif analysis: For a tissue sample, each cell’s spatial1843

location was recorded as the (x,y) of the centroid of its seg-1844

mentation mask. Using the set of centroids, a Delauney1845

triangulation was first performed. Then a graph was con-1846

structed using the simplices. Two nodes were connected if1847

and only if the Euclidean distance between the two nodes1848

is less than or equal to 20um. For each node of interest,1849

for example, all CD4 T cell nodes, its immediately adjacent1850

nodes, i.e. one-hop neighbors, were identified. Then, the1851

composition of a given one-hop neighborhood was sum-1852

marized into a vector representing the count of each cell1853

type. For example, a one-hop neighborhood might con-1854

sist of 2 CD4 T cells and 1 CD8 T cells, while there were1855

4 annotated cell types in total, the summary vector would1856

be (2, 1, 0, 0). These vectors were then clustered using1857

K-means clustering to find repeating motifs.1858

Negative binomial regression: Two negative binomial re-1859

gression models were fitted to explore the effect of EBV1860
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status, membership of motif, and their interaction on M1-1861

like macrophage and M2-like macrophage counts within1862

the one-hop neighborhood anchoring on CD4 T cells. The1863

proposed model is:1864

lnE [Yi] = β0 +β1IEBV +
5∑

i=2
βiIi +

4∑
i=1

γiJEBV,i

where1865

IEBV =
{

1,EBV+

0,EBV-
,

Ii =
{

1,Motif i

0,Not Motif i
,

JEBV,i =
{

1,EBV+, Motif i+1

0,Not EBV+, Motif i+1
.

Tumor density score: Tumors were first classified into three1866

categories:1867

• EBV-positive, LMP1 high: if a tumor is in an EBV-1868

positive sample and its LMP1 expression is greater1869

than the median LMP1 expression of all tumors.1870

• EBV-positive, LMP1 low: if a tumor is in an EBV-1871

positive sample and its LMP1 expression is less than1872

or equal to the median LMP1 expression of all tu-1873

mors.1874

• EBV-negative: if a tumor is in an EBV-negative sam-1875

ple.1876

Tumor density score was then calculated as described in1877

(21). Briefly, within each of these categories, for each non-1878

tumor cell, three tumor scores were calculated, one for1879

each tumor class. The score was calculated based on a1880

cell’s distance to tumors within a closed neighborhood of1881

radius r. Let J = {1, ...,m} denote the indices of all the tu-1882

mors in the dataset and di,j denote the distance from the1883

cell i to tumor j. Then, the tumor score is calculated as1884

Si =
∑

j∈{k|di,j≤r}

1
di,j

.

Then, the score was transformed into1885

S′
i = exp(−Si).

Spatial Transcriptomics Analysis.1886

RNA quantity comparison: The non batch-corrected CPM1887

counts (GeoMx data), UMI counts (VisiumHD data), and1888

transcript counts (CosMx data) were used as gene expres-1889

sion measurements after log1p transformation. Pearson1890

correlation coefficients were calculated for each adjacent1891

IN-DEPTH and control slide pairs, with each datapoint be-1892

ing 1 unique gene. Total RNA quantity, as well as total1893

control RNA quantity, were generated by first summing all1894

the respective gene counts across the ROIs, and then vi-1895

sualized on a log1p scale. Genes labeled as “NegProbe”1896

or “Neg” in the GeoMx and CosMx probe kits were used1897

to determine the control probe counts; note that the Visi-1898

umHD probe panel did not include any internal negative1899

controls.1900

Gene signature curation and scoring: All gene signatures1901

used in this study (95), apart from those that were manu-1902

ally curated, were obtained using the R package ‘msigdbr’1903

(v7.5.1), and the enrichment of gene signatures within1904

cell populations were calculated using Gene Set Varia-1905

tion Analysis (GSVA) (96) through the R package “gsva”1906

(v1.52.3) with the default parameters.1907

The gene signatures used to validate the transcriptomic1908

signature of annotated cell populations (Fig. 2C, middle)1909

were were derived from a tonsil scRNAseq atlas compris-1910

ing over 556,000 cells (35). They were used to (1) cal-1911

culate cell type associated differential expressed genes1912

(DEG) for enrichment analysis of IN-DEPTH captured tran-1913

scriptomics data, and (2) provide scRNA-seq reference for1914

deconvolution analyses. The processing workflow began1915

by loading Seurat objects (97) (v4.4.0). Cells were sub-1916

sampled and refined to merge to reduce dataset complex-1917

ity based on the annotation with 135 cell types. Specif-1918

ically, "SELENOP FUCA1 PTGDS macrophages," "C1Q1919

HLA macrophages," "ITGAX ZEB2 macrophages," and1920

"IL7R MMP12 macrophages" were assigned as M2-like1921

macrophages, “Mono/Macro” and “cycling myeloid” were1922

assigned as myeloid cells. Cell types unrelated to this1923

study, such as "cycling FDC," "cycling T," "granulocytes,"1924

“DN,” “Granulocytes,” “ILC,” “Mast,” “NK,” and "preB/T,"1925

were excluded from the analysis. The major B cell pop-1926

ulations, including naive B cells (NBC), memory B cells1927

(MBC), and germinal center B cells (GCBC), were refined1928

by removing corresponding cell subsets with fewer than1929

100 cells. Overall, NBC, MBC, GCBC, CD4 T cell, CD81930

T cell, Treg, M2-like macrophages, M1-like macrophages,1931

myeloid, dendritic cell (DC), and epithelial cells were re-1932

fined and extracted for enrichment and deconvolution anal-1933

yses. Note that endothelial signatures were collected sep-1934

arately (98). Additionally, the Tfh signature used in Fig. 2E1935

was curated using all unique genes from four annotated1936

Tfh populations ("Tfh TB border", "Tfh-LZ-GC", “GC-Tfh-1937

SAP", "GC-Tfh-OX40") in the same atlas resource (35).1938

DEG analysis was subsequently performed using Seurat1939

(97) (v4.4.0) to identify gene signatures associated with1940

specific cell types. Followed by the log-count-per-million1941

(LogCPM) normalization method, the “FindMarkers” func-1942

tion was applied with default parameters, including a log1943

fold-change threshold (log2FC > 0.25) and an adjusted p-1944

value threshold (p adj < 0.05). For each cell type, DEGs1945

were calculated by comparing the target cell population1946

to all other cell types. Specifically, DEGs of NBC, MBC,1947
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GCBC, CD8 T cells, DC, and epithelial cells were identified1948

by comparing each cell type with other cell types. DEGs1949

of CD4 T cell and Treg by comparing each other. DEGs1950

of M2 macrophage was compared with M1 macrophage.1951

GSVA (96) (v.1.52.23) was used to determine enrichment1952

of each gene signature (Fig. 2C). All gene signatures used1953

in Figs. 2C & 2D, for tonsil cell types and Tfh cells, are in1954

Supp Table 1.1955

The source and full names for gene signatures across1956

Figs. 3, 5 and Supp Fig. 7 are in Supp Fig. 3E.1957

The RNA gene signature for T cell dysfunction (Fig. 4G,1958

right and Fig. 4J, right) was curated using a panel1959

of genes that were previously described to be markers1960

expressed on dysfunctional exhausted CD4 and CD8 T1961

cells (51, 52, 99–101): CTLA4, HAVCR2, LAG3, PDCD1,1962

BTLA, TIGIT, CD160, CD244, ENTPD1, VSIR. The EBV1963

score RNA gene signature in Fig. 5A was generated us-1964

ing the average normalized counts for each detected EBV1965

gene: EBER1, EBER2, EBNA1, EBNA2, EBNALP, LMP1,1966

RPMS1, BALF1, BCRF1, BHRF1, BNLF2A, BNLF2B,1967

BNRF1, BZLF1, with the expression of each EBV tran-1968

script also shown in Supp Fig. 7A, top.1969

Lymphocyte spatial distribution: The follicle-high and1970

follicle-low regions were visually identified, with ROIs 3,1971

5, 17 from both tissues used for the former, and ROIs 1,1972

7, 14 from both tissues used for the latter (Supp Fig. 2B)1973

to generate 6 data points for each follicle regions, after1974

which the CD4 T cell Tfh GSVA scores were compared1975

between these two follicle regions. Tfh correlation was de-1976

termined by performing a Spearman correlation across all1977

ROIs between each ROI’s B-cell proportion and CD4 T cell1978

Tfh GSVA score.1979

Gene expression program (GEP) identification: GEPs1980

were identified using consensus non-negative matrix fac-1981

torization (cNMF) (44). The number of highly variable1982

genes to use for cNMF was determined by setting a min-1983

imum threshold of 10% of all genes (at least 1800 genes1984

in this case). The variance for all genes was then deter-1985

mined using the “FindVariableFeatures” function in Seurat1986

(v4.4.0) (97), followed by k-means clustering with 9 cen-1987

ters with the random seed 1, to identify the cluster with1988

the optimal cutoff for the number of highly variable genes.1989

The number of genes chosen was then rounded up to the1990

nearest hundred and used for cNMF. A range of 25 to 301991

components (also known as GEPs) was tested for cNMF,1992

an empirically determined optimum based on prior expe-1993

rience. The number of components with highest stability,1994

where the stability is larger than the error, was chosen; in1995

this case it was 26. The R package ‘enrichR’ (v3.2) (102)1996

was then used to infer the biological function of each GEP1997

by referencing the top 5 enriched GO Biological Process1998

(GOBP) gene signatures (Supp Table 2). GEPs with at1999

least 1 statistically significant (padj < 0.05) GOBP signa-2000

ture were determined to be distinctly enriched and were2001

annotated based on their significant GOBP terms. The2002

annotatable GEPs were then used to determine their rel-2003

ative enrichments across all the tonsil cell subpopulations2004

in Fig. 2F.2005

Macrophage M1/M2 polarization and T cell dysfunction:2006

Within each ROI, the proportion of M1-like and M2-like2007

macrophages was calculated by (M2/(M1+M2)). To deter-2008

mine M2-rich and M1-rich subpopulations, the distribution2009

of M2-like macrophage proportion was first plotted. The in-2010

tersection of EBV-positive and EBV-negative distributions2011

was then identified using the R package ‘pracma’ (v2.5.5),2012

and was used to assign ROIs into the respective M1-rich2013

and M2-rich subpopulations. Analysis on T cell dysfunc-2014

tion was then performed on the corresponding CD4 and2015

CD8 T cell populations using the T cell RNA dysfunction2016

signatur as described above.2017

CosMx cell phenotyping and analysis: Seurat (v4.4.0) (97)2018

was used to perform unsupervised clustering and anno-2019

tation of single cells. Harmony (v1.2.0) (103) was used2020

for batch effect correction across different FOVs. After-2021

wards, the read count for each gene was divided by the2022

total gene counts within each cell, multiplied by a scale2023

factor of 100,000, and natural-log transformed. Principal2024

component analysis (PCA) was performed on the normal-2025

ized expression matrix using 2,000 highly variable genes.2026

The top 15 principal components (PCs) were selected with2027

a resolution parameter equal to 1. The clustering results2028

were visualized using Uniform Manifold Approximation and2029

Projection (UMAP) (104). We annotated cells into 5 major2030

types according to their marker genes: CD3D, CD4, CD8A2031

for T cells, CD79A, MS4A1, MZB1, JCHAIN for B/Plasma2032

cells which were re-annotated as tumor cells, LYZ, CD68,2033

C1Q for myeloid cells, COL1A1, ACTA2 for fibroblasts, and2034

VWF, PECAM1, ENG for endothelial cells. Note that batch2035

correction was only performed for the analysis in Fig. 5E.2036

Afterwards, GSVA (96) (v.1.52.23) was used to calculate2037

T cell dysfunction signature enrichment in the annotated T2038

cell population.2039

Benchmarking of Deconvolution Softwares.2040

CIBERSORT: CIBERSORT (40) is a computational2041

method designed for cell type deconvolution from bulk tis-2042

sue gene expression data using a reference-based ap-2043

proach. It employs a support vector regression framework2044

(nu-SVR) to estimate cell proportions within a mixed tis-2045

sue sample. The input includes a gene expression refer-2046

ence matrix, derived from the create_profile_matrix func-2047

tion of SpatialDecon, and a bulk tissue expression matrix in2048

raw count format, created by combining and merging data2049

across regions of interest (ROIs). The method is executed2050

using the cibersort function, with parameters specifying2051

the reference matrix and bulk expression data, enabling2052

a robust deconvolution process that accurately quantifies2053

cell type proportions.2054

dtangle: dtangle (41) (v2.0.9) is another method based on2055

single-cell reference data that uses a linear scoring ap-2056

proach to estimate cell type proportions in bulk tissue sam-2057

ples. The input consists of a bulk tissue expression matrix2058

and a single-cell dataset, both preprocessed to retain the2059
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most informative genes and cell types. The function dtan-2060

gle facilitates the deconvolution by specifying parameters2061

such as the combined dataset, the number of markers to2062

use, and the data type. This ensures precise estimation of2063

cell type proportions while maintaining compatibility with2064

bulk and single-cell data formats.2065

MuSiC: MuSiC (42) leverages single-cell reference data for2066

cell type deconvolution in bulk gene expression profiles. It2067

employs weighted non-negative least squares to estimate2068

the contributions of distinct cell types within bulk samples.2069

The input includes the same bulk expression matrix used2070

in CIBERSORT and a single-cell expression dataset for-2071

matted as a SingleCellExperiment object. This dataset is2072

preprocessed to include cell types of interest and differ-2073

entially expressed genes to enhance deconvolution accu-2074

racy. The deconvolution process is implemented through2075

the music_prop function, where users specify key parame-2076

ters, including cell type annotations and sample identifiers,2077

ensuring the alignment of single-cell and bulk datasets.2078

SpatialDecon: SpatialDecon (43) (v1.13.2) utilizes a log-2079

normal regression model to perform gene expression de-2080

convolution. Unlike other tools, it can integrate normal-2081

ized bulk expression data and single-cell reference matri-2082

ces. The method aligns genes across datasets to ensure2083

consistency during deconvolution. The spatialdecon func-2084

tion allows users to specify the normalized bulk expres-2085

sion data, background adjustment parameters, and the2086

reference matrix. This method is particularly effective in2087

leveraging both single-cell and bulk datasets to provide ac-2088

curate cell type proportion estimates, while the alignment2089

step enhances consistency across data sources.2090

Application of SGCC on DLBCL Dataset.2091

To analyze DLBCL GeoMX data, we first calculated SGCC2092

scores to capture spatial relationships between the cell2093

phenotypes. Samples were merged and discretized into2094

a uniform 60 by 60 bin grid. Pairwise SGCC scores were2095

computed for all cell types, reflecting their large-scale spa-2096

tial distributions.2097

For DEG analysis between EBV-positive and EBV-2098

negative conditions, we applied edgeR (48) and limma2099

(88) frameworks with batch corrected data (batch correc-2100

tion performed as described in the Batch Correction sec-2101

tion). Batch corrected data were fitted to a linear model2102

using the “mFit” function, incorporating a pre-defined de-2103

sign matrix. Empirical Bayes moderation was applied us-2104

ing the “eBayes” function to stabilize variance estimates,2105

followed by DEG identification with the “topTable” function,2106

ranked by adjusted p-values. Specific normalization strate-2107

gies and batch correction parameters were applied based2108

on cell types:2109

• CD4 T cells: LogCPM normalization, top 50002110

NCGs, k=2, using two weight matrices from RUV42111

batch correction, with cell type number included as2112

a covariate in the design model.2113

• Macrophages: LogCPM normalization, top 10002114

NCGs, k=3, using three weight matrices from RUV42115

batch correction as covariates.2116

• Tumor cells: LogCPM normalization, top 10002117

NCGs, k=3, using one weight matrix from RUV42118

batch correction as a covariate.2119

DEGs between EBV-positive and EBV-negative conditions2120

for CD4 T cells, macrophages, and tumor cells were2121

filtered based on adjusted p-value thresholds (padj < 0.01,2122

BH method). Enrichment analysis was performed for each2123

DEG set using the enrichR (102) (v3.2) database, focusing2124

on "Reactome_2022," "GO_Biological_Process_2023,"2125

and "KEGG_2021_Human". Genes enriched in2126

biologically-meaningful pathways (Fig. 5, Supp Fig.2127

7, and Supp Table 2) were selected for GSVA analysis2128

to refine functional insights. Heatmap visualization was2129

subsequently generated to highlight pathway activity2130

across conditions based on ComplexHeatmap (v2.16.0).2131

ggtern (v3.5.0) was used for visualizing CD4 T cell,2132

Tumor, and Macrophage ternary plots using SGCC scores2133

from CD4 T cell-Tumor, Macrophage-Tumor, and CD4 T2134

cell-Macrophage (Supp Table 4). The adjacency enrich-2135

ment statistic (AES) for each cell pair was determined2136

as described in (54), where the expected number of2137

edges between cell types was computed based on the2138

frequencies of the cell types and the total number of edges2139

in the graph. Specifically, AES was then calculated by2140

comparing the observed number of edges connecting the2141

two cell types to the expected number of edges. An AES of2142

0 indicates no enrichment over expectation, while positive2143

and negative values indicate enrichment and depletion,2144

respectively. Additionally, the density transparency was2145

mapped to contour levels and color-coded by EBV status2146

(i.e. "EBV+" and "EBV-").2147
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