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Abstract: Characterizing brain dynamic functional connectivity (dFC) patterns from func-

tional Magnetic Resonance Imaging (fMRI) data is of paramount importance in neuroscience

and medicine. Recently, many graph neural network (GNN) models, combined with trans-

formers or recurrent neural networks (RNNs), have shown great potential for modeling the

dFC patterns. However, these methods face challenges in effectively characterizing the mod-

ularity organization of brain networks and capturing varying dFC state patterns. To address

these limitations, we propose dFCExpert, a novel method designed to learn robust represen-

tations of dFC patterns in fMRI data with modularity experts and state experts. Specifically,

the modularity experts optimize multiple experts to characterize the brain modularity orga-

nization during graph feature learning process by combining GNN and mixture of experts

(MoE), with each expert focusing on brain nodes within the same functional network mod-

ule. The state experts aggregate temporal dFC features into a set of distinctive connectivity

states using a soft prototype clustering method, providing insight into how these states sup-

port different brain activities or are differentially affected by brain disorders. Experiments
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2 1 INTRODUCTION

on two large-scale fMRI datasets demonstrate the superiority of our method over existing

alternatives. The learned dFC representations not only show improved interpretability but

also hold promise for enhancing clinical diagnosis. The code can be accessed at MLDataAn-

alytics/dFCExpert on GitHub. 1
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Figure 1: (a) The Schaefer atlas (Schaefer et al., 2018) with seven functional networks (modules). Each
black-line-bordered region represents a brain node, while regions of the same color belong to a single
functional module, collectively associated with specific brain functions. (b) dFC states represent a set of
recurring patterns of dFC measures, capturing the evolving FC dynamics of the brain.

1 Introduction

The human brain is a dynamic network system that generates complex spatiotemporal dynamics of

brain activity. Analyzing such dynamics holds promise to provide insights into the brain’s functional

organization and its relationship with human cognition (Greicius, 2008; K. Wang et al., 2007), behaviors

(Smith et al., 2015), and brain disorders (Greicius, 2008; K. Wang et al., 2007). Among many brain

imaging techniques, functional Magnetic Resonance Imaging (fMRI) is a particularly powerful tool that

models the spatiotemporal patterns of brain activity by measuring fluctuations in blood-oxygen level-

dependent (BOLD) signals (Matthews & Jezzard, 2004). Since brain activity often exhibits strong

spatial correlations, the BOLD signals generally are parcellated into a collection of pre-defined brain

regions (ROIs), and the pairwise correlations between those ROIs are referred as functional connectivity

(FC), which has emerged as a key tool for understanding the brain function.

Based on the FC, the brain can be modeled as a functional network with graph theory approaches,

where brain regions of interest serve as network nodes and the FC strengths between them act as edges.

Leveraging this graph-structured nature of the brain, many fMRI data analytic methods have employed

1This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after
which this version may no longer be accessible
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graph neural networks (GNNs) to learn brain network representations, enabling tasks such as decoding

human traits or diagnosing diseases (Kan et al., 2022; Kawahara et al., 2017; X. Li et al., 2021).

Generally, these methods fall into two categories: static FC and dynamic FC methods. The static-FC

methods characterize the FC between nodes based on the entire fMRI scan, i.e., the full time series (B.-H.

Kim & Ye, 2020; Ktena et al., 2018). However, these methods are not equipped to characterize the

dynamic properties of FCs (fluctuate over time), which are crucial for capturing the brain’s evolving states.

Differently, the dynamic-FC methods split the whole fMRI time series into temporal segments and quantify

the FC based on each segment so that time-varying FC measures can be derived. A typical pipeline for

dynamic FC methods involves extracting brain network representations using GNNs for each temporal

FC segment, followed by the applications of RNNs or transformers for temporal dynamics learning (Jing

et al., 2023; B.-H. Kim et al., 2021; Lin et al., 2023; Q. Wang et al., 2023). Although promising, these

methods still face challenges, primarily due to the unique characteristics of brain functional networks and

dFC measures.

Firstly, most GNN brain functional network analysis methods overlook the intrinsic brain

modularity organization, leading to suboptimal graph representation learning. Both theoretical and

empirical studies highlight that the brain functions as a modular system, comprising specialized cognitive

and topological modules. Each module consists of tightly connected brain network nodes (ROIs) that

collaboratively perform specific functions (Bertolero et al., 2015; Sporns & Betzel, 2016), as illustrated in

Figure 1(a). However, existing GNN-based methods typically treat all brain nodes uniformly, employing

the same aggregation mechanism regardless of variations in node features. This limitation prevents these

methods from effectively capturing modularity-specific features. Secondly,most known approaches fail

to capture distinctive dFC state patterns. Evidence suggests that dFC measures often correspond

to distinctive dynamic states (Figure 1(b)), which can be identified by clustering dFC measures from

temporal segments of fMRI scans (Damaraju et al., 2014). Studies on brain disorders have revealed that

disease-specific alterations are confined to certain dynamic states (Damaraju et al., 2014), underscoring

that capturing dFC states can potentially improve the detection of functional brain changes associated

with brain disorders.

To address these challenges, we propose a novel GNN-based dFC learning framework, called dFCExpert,

aiming to enhance the representation learning of dynamic functional connectome of fMRI data. The

framework consists of two key components: modularity experts and state experts, specifically designed

to characterize the brain modularity and the dFC state patterns. The modularity experts are built

upon GNN and Mixture of Experts (MoE) for learning brain graph features of each FC segment, which

characterize the brain modularity organization in the graph learning process by optimizing multiple experts

at each graph layer. Each of the experts focuses on specific subsets of nodes that exhibit similar behaviors
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4 2 RELATED WORKS

and interactions, enabling fine-grained modeling of the brain’s modular structure. On top of the graph

representations learned by the modularity experts, the state experts aggregate the temporal features of

dFCs into a compact set of distinctive states based on a soft prototype clustering method, where each

state has similar FC patterns and reflects different activities of the dFCs related to human behaviors

or brain diseases. Finally, the clustering-derived state features are used for task prediction. With the

modularity and state experts, our dFCExpert introduces two novel strategies for learning-based fMRI

analysis: modeling the brain functional network modularity and dynamic FC states. This pioneering

approach presents a first-of-its-kind method for learning informative and explainable features of dFC

patterns from fMRI data, offering significant potential for advancing neuroscience research and clinical

applications.

We evaluated the performance of dFCExpert on two large-scale fMRI datasets: the Human Connec-

tome Project (HCP) (Van Essen et al., 2013) and the Adolescent Brain Cognitive Development (ABCD)

(Casey et al., 2018). Across tasks such as sex classification and cognitive intelligence prediction, dFC-

Expert consistently outperformed known methods, achieving state-of-the-art performance. To validate

the framework’s design, we conducted comprehensive ablation studies to analyze the contribution of

individual components of dFCExpert. Visualization results revealed that the modularity experts effec-

tively target distinct brain modules and the state experts identify unique dynamic brain states, indicating

that the method was capable of learning interpretable representations of dFC measures for prediction

tasks. Moreover, we demonstrated that the brain modules and dynamic states identified by dFCExpert

are biologically meaningful, bridging the gap between deep learning-based functional network modeling

and traditional functional network analytic methods, highlighting the potential of dFCExpert to deliver

both robust predictive performance and valuable insights into the brain’s functional organization.

2 Related Works

2.1 Dynamic Functional Connectivity Learning

To capture the time-varying FC patterns of the brain, a spatio-temporal graph convolutional network (ST-

GCN) is developed to incorporate both spatial and temporal convolutions to model the non-stationary

nature of dFC measures (Gadgil et al., 2020). Many methods have adopted a GNN-RNN pipeline to

learn graph-level features from each FC segment with the GNNs, followed by RNNs or transformers to

capture temporal FC patterns (Campbell et al., 2022; B.-H. Kim et al., 2021; Said et al., 2023; Q.

Wang et al., 2023). Particularly, STAGIN utilizes GNNs with spatial attention and transformers with

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2024. ; https://doi.org/10.1101/2024.12.20.629773doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629773
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.2 Brain Modularity Organization 5

temporal attention to model the dynamics of brain networks (B.-H. Kim et al., 2021). DynDepNet

introduces a dynamic graph structure learning method to capture the time-varying structures of fMRI

data (Campbell et al., 2022). NeuroGraph systematically evaluates the effectiveness of different GNN

designs for modeling dynamic functional networks (Said et al., 2023). While these methods have shown

promise in modeling the dynamics of brain functional connectivity, they often overlook the brain’s intrinsic

modular organization and fail to capture distinctive dFC states. This limitation hinders their ability to

provide deeper insights into the brain’s functional organization and its evolving connectivity states.

2.2 Brain Modularity Organization

The human brain functions as a modular system composed of many cognitive/topological modules.

Brain regions within the same modules are often tightly connected and tend to perform similar functions

(Q. Wang et al., 2023). For instance, salience network (SN) and default mode network (DMN) are

two crucial neurocognitive modules in the brain, where SN mainly detects internal or external stimuli

and coordinates the brain’s response to those stimuli, and DMN is responsible for self-related cognitive

functions (Bertolero et al., 2015; Sporns & Betzel, 2016). A few existing methods have incorporated

the brain modular organization into graph representation learning. BRAINNETTF introduces a novel

graph readout function that leverages modular-level similarities between brain nodes to pool graph-level

embeddings from clusters of functionally similar nodes (Kan et al., 2022). MSGNN (Q. Wang et al., 2023)

develops a modularity-constrained GNN that enforces node embeddings to align with three functional

network modules (i.e., central executive network, SN, DMN), by applying a modularity constraint loss

after the graph layers to encourage similarity between node-level embeddings within the same module.

However, since these methods incorporate the brain modularity only after the graph model, all brain

network nodes are still processed uniformly within each graph layer. This may be suboptimal for effectively

learning representations of nodes belonging to distinct brain modules. To address this, we propose

modularity experts, a combination of GNN and MoE, to mimic the brain’s modular organization, which

employs multiple experts at each graph layer to guide brain network nodes with similar functions towards

the same experts.

2.3 Dynamic FC States

The dynamic brain states are a compact set of unique patterns derived from dFC measures, which

represent connectivity patterns that repetitively occur during the fMRI acquisition (Preti et al., 2017).

Existing studies typically cluster the dFC measures into different states using clustering methods (e.g.,
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6 3 METHOD

k-means) and then conduct statistic analyses to investigate the relationships between these states and

biological or behavior measures of interest (Damaraju et al., 2014). However, this two-step strategy has

significant limitation that the features used for clustering are not explicitly optimized for the downstream

statistical analyses, leading to a potential mismatch between the identified states and their informativeness

for specific tasks. In contrast, our state experts overcome this limitation by adopting an end-to-end

learning framework, simultaneously learning distinctive dFC states and optimizing representations of dFC

graphs for specific tasks. By integrating state discovery and task optimization, our method ensures that

the resulting states are both highly informative and tailored to the requirements of the analysis, enhancing

their interpretability and utility in studying dFC patterns.

2.4 Expert Models

The concept of Mixture of Experts (MoE) is a well-established machine learning technique that employs

multiple expert layers, each specializing in solving a specific subtask or learning a particular sub-structure

(Jacobs et al., 1991). Over the years, MoE has demonstrated remarkable success and been widely applied

across diverse domains, including multi-modal learning (Akbari et al., 2024), computer vision (Jain et al.,

2024), and machine translation (Shen et al., 2019). In the context of graph classification, TopExpert

integrates MoE on top of extracted graph features, leveraging topology-specific prediction experts for

molecule property prediction (S. Kim et al., 2023). Moving beyond applying MoE post-feature extraction,

a graph MoE (GMoE) model incorporates multiple experts within each graph layer to scale GNN model’s

capacity (H. Wang et al., 2024). Building upon the principles of MoE, we propose modularity experts, a

novel approach designed to capture the brain’s modular organization within the graph learning process.

By integrating modularity experts directly into the learning of dynamic FC graphs, our method functions

just like a brain, advancing the representation learning of dFCs.

3 Method

We begin by introducing the preliminaries of the proposed dFCExpert framework, including the concepts

of GNNs and the construction of dFC graphs from fMRI data (Section 3.1), followed by a detailed

description of the framework, including an overview, modularity experts, state experts, and the overall

loss function (Section 3.2).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2024. ; https://doi.org/10.1101/2024.12.20.629773doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629773
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.1 Preliminaries 7

3.1 Preliminaries

3.1.1 Graph Neural Networks

To glean useful information from graph-structured data, GNNs iteratively compute node features by

aggregating information of neighbor nodes and updating the node features with non-linear functions in

a layer-wise manner. The propagation mechanism for a node i at the (l)-th GNN layer is formulated as:

h
(l)
i = F (l)

u

(
h
(l−1)
i , F (l)

a

(
{(h(l−1)

i , h
(l−1)
j , eij) : j ∈ Ni}

))
, (1)

where h
(l−1)
i denotes the features of node i at the (l − 1) layer, Ni is the set of neighbors of node i,

eij denotes the edge between nodes i and j, and Fa and Fu are differentiable functions for aggregating

information and updating node features, respectively. Different choices of these two functions lead to

various GNN architectures. For instance, Graph Isomorphism Network (GIN) (Xu, Hu, et al., 2018), a

variant of GNN, uses summation as Fa and a multi-layer perceptron (MLP) as Fu:

h
(l)
i = M (l)(h

(l−1)
i , eij,W

(l)) = MLP(l)

(
(1 + ϵ(l)) · h(l−1)

i +
∑
j∈Ni

h
(l−1)
j

)
. (2)

We simplify the two functions described above into a single operation M (l), where W (l) represents

the trainable weight of the multi-layer perceptron (MLP), and ϵ is a learnable parameter initialized to

zero. Given its strong ability for graph representation learning, we adopt GIN as our dFC graph feature

extractor, following the approach in (B.-H. Kim et al., 2021).

3.1.2 Dynamic Graph Definition

To construct dFC graphs from fMRI scans, we first use a brain atlas to transform the 4D fMRI data into a

time-course matrix P ∈ RN×Tmax . This matrix is created by averaging the fMRI signals within each brain

region defined by the atlas, yielding fMRI signals of N brain network nodes at each time point. Next,

using a sliding-window approach, the time-course matrix is divided into T = ⌊Tmax − Γ/S⌋ temporal

segments, where Γ is the window length and S is the stride size. For each segment t, an FC matrix

Xt ∈ RN×N(t = 1, . . . , T ) is computed by calculating Pearson correlation coefficients between the time

series of all brain region pairs, yielding T FC matrices. Following (Said et al., 2023), the correlation

matrices can be informative node features, where the features for the i-th node in segment t correspond

to the elements of the i-th row in Xt. Additionally, a binary adjacent matrix At ∈ {0, 1}N×N is derived

from Xt by retaining the top 30-percentile correlation values as connected and setting the remaining
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8 3 METHOD

Figure 2: The dFCExpert framework consists of modularity experts and state experts. The modularity
experts include L layers of MoE-GIN, which route node features hi to a specific GIN expert with a gating
score G(hi) for learning graph-level features hGt for each temporal segment t, yielding hmodularity =
(hG1 , . . . ,hGT

) across all T segments. The state experts aggregate the learned temporal graph features
into dynamic states using prototype gating and embedding projection. Finally, the state features hstate

are processed through an MLP layer for task prediction.

values as unconnected, as described in (B.-H. Kim & Ye, 2020). Thus, the input dFC graphs for each

subject are represented as Gt = {At, Xt}(t = 1, . . . , T ) (Figure 2).

3.2 dFCExpert

3.2.1 Overview

As illustrated in Figure 2, dFCExpert consists of modularity experts and state experts. Taking the dFC

graphs as input, the modularity experts leverage a combination of GIN and MoE to learn brain graph

features for each FC segment, aiming to capture the brain modularity mechanism effectively. Building

upon the outputs of the modularity experts, the state experts adaptively group the temporal graph

features into distinctive states using a soft prototype clustering method. This approach allows the model

to learn expressive state features by assigning soft clusters to the temporal graph features. Finally, the

learned state features are passed through an MLP layer to predict a specific task, such as predicting sex in

a classification setting or predicting an intelligence measure in a regression setting. Formally, the objective

of dFCExpert is to train a neural network f : (G1, . . . ,GT ) → hstate, whereGt = {At, Xt}(t = 1, . . . , T )

represents the sequence of constructed dFC graphs with T segments, and hstate ∈ RK×D is the output

features from the state experts. The framework combines the modularity experts m and state experts s

to define f = m ◦ s, where m learns dFC graph representations hmodularity = (hG1 , . . . ,hGT
) for each of
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3.2 dFCExpert 9

T segments and s aggregates these learned temporal graph features into the final state features hstate:

m : (G1, . . . ,GT ) → (hG1 , . . . ,hGT
),

s : (hG1 , . . . ,hGT
) → hstate.

(3)

3.2.2 Modularity Experts

The modularity experts are designed to emulate the human brain’s modular organization, enabling effec-

tive learning of brain graph representations. The modularity experts are implemented using a combination

of GIN and MoE, referred to as MoE-GIN, consisting of L layers of MoE-GIN. Specifically, each MoE-GIN

layer includes a gating function and multiple GIN experts, as illustrated in Figure 2. The gating function

determines which experts are most suitable for processing a given node, while the multiple experts are

independent GIN propagation functions (Eq. (2)), each with its own trainable parameters. This design

of MoE-GIN enables nodes that are tightly connected or behaviorally similar to be routed to the same

expert. Consequently, each GIN expert specializes in learning representations for a specific brain module

to effectively capture distinct brain activities. By organizing the brain nodes into specialized groups,

the modularity experts mimic the way the brain operates, where tightly connected regions interact to

perform specific functions or activities. This design allows the model to reflect the brain’s modularity,

improving its ability to learn meaningful and interpretable representations of brain networks. Formally,

the operation of a single MoE-GIN layer is described as:

h
(l)
i =

C∑
c=1

G(l)
c (h

(l−1)
i )M (l)

c (h
(l−1)
i , eij,W

(l)) (4)

where C is the number of experts, and M denotes the node propagation function of GIN as defined

in Eq. (2). G is a gating function to generate assignment scores based on the input of node features

h
(l−1)
i , and Gc(h

(l−1)
i ) denotes the score for the c-th expert. We implement a simple gating function

by multiplying the input with a trainable weight matrix Wg, followed by the application of the softmax

function (Jordan & Jacobs, 1994): G(hi) = softmax(hiWg). Given that each node typically belongs to a

single brain module, we adopt a simplified top-1 gating scheme as in (Fedus et al., 2022), where each node

is routed to only one expert, corresponding to the expert with the highest gating score. This simplification

reduces computational overhead of routing while maintaining model quality and interpretability.

The graph-level representation h
(l)
Gt

for segment t at layer l is computed by averaging the updated node

features {h(l)
i , i ∈ N}, and the final graph representation hGt is then obtained by concatenating the

graph representations from all L layers (Xu, Li, et al., 2018) followed by an MLP layer for dimension
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10 3 METHOD

reduction: hGt = MLP(concatenate(h
(l)
Gt
|l ∈ {1, · · · , L})) ∈ RD. Finally, we obtain hmodularity =

(hG1 , . . . ,hGT
) ∈ RT×D.

Auxiliary Loss Functions for Training MoE-GIN. If the model is trained solely using the task-

specific prediction loss, the gating network may converge to trivial solutions where only a few experts are

consistently selected (Shazeer et al., 2017). This imbalance in expert selection becomes self-reinforcing,

as the favored experts dominate the learning process, further increasing their frequency of selection.

Another trivial situation is that the gating network may produce similar assignment scores across all

experts for a given node, resulting in a lack of specialization in experts. In our scenario, we expect the

gating network to be capable of effectively distinguishing nodes of different brain functional modules and

enable sparse gating so that the selected expert receives a significantly higher score than the others. To

achieve this, we introduce two auxiliary loss functions to promote balanced loading and enforce sparse

gating, respectively. Given a batch B, each containing T graphs, the loading balance loss is computed

as:

Lbalance =
1

BTC

B∑ T∑ C∑
c=1

pc log(pc), pc =
1

N

N∑
i=1

Gc(hi), (5)

where N is the number of nodes, and pc represents the fraction of nodes routed to expert c. By

minimizing the negative entropy of the pc distribution, the Lbalance encourages a uniform distribution of

nodes across all experts. To promote sparse gating in G(hi), we introduce a sparse gating loss:

Lsparse =
1

BTN

B∑ T∑ N∑ 1

C

C∑
c=1,g∈G(hi)

−gclog(gc), (6)

where gc represents the gating score for assigning a given node to expert c. Minimizing the entropy of

the gating scores across all experts encourages sparsity, ensuring each node is strongly associated with

a specific expert. We implement these two loss functions similar to (Huang et al., 2020), as they are

fundamentally deep clustering-based losses and act in opposition during training.

3.2.3 State Experts

The state experts follow the traditional dFC analysis in neuroscience to adaptively group the temporal

graph features hmodularity into a small number of states, each reflecting distinct dynamic states of dFC

measures associated with human behaviors or brain diseases. From another perspective, representing dFC

measures with a smaller set of states simplifies the model, reduces data complexity, and makes it easier

to interpret the FC dynamics. Specifically, we design the state experts using a soft prototype clustering

method, where temporal FC graph features are softly assigned to clusters in an unsupervised manner. As
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3.2 dFCExpert 11

illustrated in Figure 2, distinctive dFC states are characterized through prototype gating and embedding

projection. The prototype gating introduces K trainable prototype centroids U = [u1, . . . , uK ], each

with D dimensions (U ∈ RK×D), to adaptively learn the feature centers of each state. Given the learned

graph features hmodularity = (hG1 , . . . ,hGT
), the prototype gating calculates the assignment score Ptk

for assigning segment t to state k using a Softmax projection:

Ptk =
e⟨hGt ,uk⟩∑K
k′ e

⟨hGt ,uk′ ⟩
, (7)

where ⟨·, ·⟩ denotes the inner product. The embedding projection aggregates the temporal graph features

hmodularity ∈ RT×D into state features hstate under the guidance of the obtained soft assignment score

P ∈ RT×K . Specifically, to compute features for a single state (e.g., State 1 as in Figure 2), the em-

bedding projection integrates features of the temporal segments assigned to that state using soft gating,

performed as P⊤
:1hmodularity. This process ensures that the state features are derived by aggregating the

temporal FC features with high probabilities assigned to a specific state, thus enabling the model to

effectively capture the dynamic nature of FC patterns and associate them with interpretable states.

Since the clustering lacks explicit guidance labels, we optimize the temporal FC features and cluster

centroids in a self-supervised manner by leveraging orthonormal initialization of U (Kan et al., 2022) and

optimizing the cluster distribution for cohesive clustering. Specifically, we define a target distribution

Qtk for each hGt based on the current cluster assignment distribution Ptk, which therefore enhances

high-confident assignments (Xie et al., 2016) through a squaring operation, defined as:

Qtk =
P 2
tk/
∑

t Ptk∑
k′(P

2
tk′/
∑

t Ptk′)
. (8)

This target distribution strengthens the cluster cohesion, refining temporal FC representations to become

more discriminative with respect to their state patterns. Finally, we minimize a KL divergence loss to

align P and Q, boosting the cohesion of the clusters:

Lstate = KL(Q||P ) =
1

T

T∑
t=1

K∑
k=1

Qtk log
Qtk

Ptk

. (9)

3.2.4 Overall Loss Function

The final loss combines a task-specific loss (Ltask), two auxiliary losses for the modularity experts (Lbalance

and Lsparse), and a loss for state experts (Lstate), yielding the overall optimization objective. Two scaling
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12 4 EXPERIMENTS

Table 1: Performance comparison with alternatives and baselines. (“M”= Modularity, “S” = State)

Method
HCP ABCD

FC TypeSex Intelligence Sex Cognition
ACC(%) AUC(%) MSE(↓) CORR(↑) ACC(%) AUC(%) MSE(↓) CORR(↑)

BrainNetCNN (Kawahara et al., 2017) 84.56±1.87 91.97±1.33 1.130±0.039 0.200±0.071 85.38±0.07 92.67±0.33 0.474±0.031 0.442±0.011 Static
BRAINNETTF (Kan et al., 2022) 85.42±2.36 92.51±2.01 1.015±0.052 0.205±0.074 84.55±0.64 91.38±0.21 0.462±0.022 0.465±0.024 Static
NeuroGraph (Said et al., 2023) 84.38±2.60 92.03±2.39 1.321±0.043 0.198±0.065 85.71±0.60 93.75±0.61 0.512±0.013 0.423±0.015 Static
STAGIN (B.-H. Kim et al., 2021) 87.74±1.75 92.09±0.93 1.002±0.042 0.215±0.078 86.93±0.45 91.57±0.57 0.452±0.012 0.477±0.008 Dynamic
MSGNN (Q. Wang et al., 2023) 86.25±2.03 92.37±1.42 1.073±0.057 0.206±0.070 87.13±0.63 92.67±0.42 0.453±0.024 0.483±0.017 Dynamic
NeuroGraph (Said et al., 2023) 84.66±3.30 93.14±2.23 1.017±0.032 0.207±0.069 87.37±1.08 94.64±0.69 0.441±0.031 0.482±0.005 Dynamic
Baseline 88.11±4.26 96.68±1.71 0.978±0.079 0.238±0.086 87.25±0.70 94.86±0.70 0.442±0.021 0.484±0.013 Dynamic
Baseline + M 89.61±4.22 96.91±1.68 0.946±0.041 0.272±0.059 88.09±0.76 95.16±0.54 0.425±0.026 0.499±0.018 Dynamic
Baseline + S 89.98±2.83 97.23±1.32 0.967±0.074 0.248±0.083 88.56±1.25 95.81±0.53 0.419±0.014 0.496±0.013 Dynamic
dFCExpert 91.03±1.71 97.40±1.30 0.932±0.036 0.296±0.049 89.28±0.83 95.99±0.52 0.412±0.012 0.513±0.009 Dynamic

factors, α and β, are used to balance the contributions of these components:

Loverall = Ltask + α(Lbalance + Lsparse) + βLstate. (10)

After experimenting with various scaling ratios, we set α = 1 and β = 10 for optimal performance.

Note that the auxiliary losses for modularity experts are computed as the summation across all MoE-GIN

layers.

4 Experiments

4.1 Experimental Settings

4.1.1 Datasets

We conducted experiments on two fMRI datasets. (a) Human Connectome Project (HCP): We used

data from the HCP S1200 release (Van Essen et al., 2013), which includes preprocessed and ICA de-

noised (Glasser et al., 2013) resting-state fMRI scans of 1071 individuals with 578 females and 493

males. Following (B.-H. Kim et al., 2021), we selected data from the first run and excluded scans with

fewer than 1200 time points. All the resting-state fMRIs used in this study contain exactly 1200 time

points. To build functional networks, we parcellated the brain into 400 regions using the Schaefer atlas

(Schaefer et al., 2018), which is organized into seven intrinsic connectivity networks. (b) Adolescent Brain

Cognitive Development Study (ABCD): The study is a multi-site investigation of brain development and

its relationship with behavioral outcomes in children aged 9-10 years (Casey et al., 2018). In our study,

we used preprocessed baseline resting-state fMRI data from the ABCD BIDS Community Collection

(ABCC) (Feczko et al., 2021). As in (Keller et al., 2023), participants with incomplete data, excessive

head motion, or fewer than 600 remaining time points after motion censoring were excluded. After quality
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4.1 Experimental Settings 13

control, our final dataset included resting-state fMRI scans of 6,165 children, with the time points ranging

from 626 to 3516. The Gordon atlas with 352 regions (N = 352) was used for brain parcellation, as

defined by the ABCC.

Both datasets are publicly available, with all identification information anonymized. We created 5 strat-

ified splits for both datasets with a train-validation-test ratio of 7:1:2. Average results and standard

deviations across the 5 splits were reported.

4.1.2 Targets and Metrics

We selected two evaluation tasks: sex classification and cognitive intelligence prediction (“fluid intelli-

gence” for HCP and “general cognition” for ABCD). The sex classification task is a binary classification

problem, and the cognitive intelligence prediction is a regression problem. These tasks were chosen to

explore brain-biology and brain-cognition associations. For the sex classification task, we used accuracy

(ACC) and AUC (Area Under ROC Curve) as evaluation metrics. For the regression task, the regression

targets were z-normalized and the performance was evaluated using Mean Squared Error (MSE) and

correlation coefficient (CORR) between the measured and predicted values.

4.1.3 Implementation Details

Our method was implemented using PyTorch (Paszke et al., 2019) and trained on an NVIDIA A100

GPU with 80 GB memory. We set the number of MoE-GIN layers to L = 3 and the embedding

dimension to D = 256. For dFC graph construction, we used a window length of Γ = 50 and a window

stride of S = 3, following common protocols for sliding-window-based dFC analyses (Preti et al., 2017;

Zalesky & Breakspear, 2015). Consistent with (B.-H. Kim et al., 2021), we randomly selected 600 time

points at each training step for the dFC graph computation. This procedure reduced computational and

memory overhead while augmenting the training data. For testing, we utilized the full time-course matrix

P ∈ RN×Tmax to construct dFC graphs and evaluate the model. The sex classification and cognitive

intelligence regression tasks were trained using cross-entropy and MSE losses, respectively. To ensure

a fair comparison, we trained both dFCExpert and known methods under comparison in an end-to-end

supervised fashion using a similar configuration:

• Optimizer : Adam.

• Learning rate: A learning rate of 5e−4 for training the classification task, and a learning rate of

1e−3 for training the regression task.
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14 4 EXPERIMENTS

Table 2: Impact of the number of experts in the modularity experts on performance.

#Experts
HCP ABCD

Sex Intelligence Sex Cognition
ACC(%) AUC(%) MSE(↓) CORR(↑) ACC(%) AUC(%) MSE(↓) CORR(↑)

1 (baseline) 88.11±4.25 96.68±1.71 0.978±0.079 0.238±0.086 87.25±0.70 94.86±0.70 0.442±0.021 0.484±0.013
3 88.68±2.57 96.46±1.58 0.961±0.067 0.266±0.061 87.57±0.94 95.16±0.70 0.435±0.019 0.481±0.005
5 89.25 ±3.46 96.41±1.27 0.953±0.054 0.279±0.042 88.09±0.76 95.16±0.54 0.425±0.026 0.499±0.018
7 89.61±4.22 96.91±1.68 0.946±0.041 0.272±0.059 87.80±1.06 94.85±0.65 0.429±0.023 0.481±0.016
9 88.73±3.48 95.26±2.10 0.963±0.036 0.224±0.051 87.65±0.87 94.98±0.69 0.425±0.020 0.479±0.010
17 87.83±3.83 95.87±1.47 0.976±0.032 0.209±0.069 87.19±1.30 94.84±0.53 0.431±0.024 0.477±0.020

• Mini-batch size: mini-batch size of 8 for the HCP dataset and mini-batch size of 16 for the ABCD

dataset.

• Epochs: 50 epochs for the HCP dataset, and 30 epochs for the ABCD dataset.

• Number of experts: C = 7 for HCP dataset and C = 5 for ABCD dataset.

• Number of states: K = 7 for HCP dataset and K = 5 for ABCD dataset.

Based on our experiments, C can be set to 5 or 7, and K can range from 5 to 7. These values for C

and K fall within a reasonable and effective range for our model’s performance.

4.2 Sex Classification and Cognitive Intelligence Regression Results

4.2.1 Comparison with Existing Methods

We evaluated the performance of dFCExpert against alternative static- and dynamic-FC methods on

both the sex classification and cognitive intelligence regression tasks. The results of these alternative

methods are summarized in the top two blocks of Table 1. For the sex classification task, dFCExpert

outperformed all the alternative methods under comparison on both the HCP and ABCD datasets. On

the regression task, our method demonstrated a significant performance improvement, particularly on the

HCP dataset, achieving an increase of nearly 7 points. These quantitative results highlight the importance

and effectiveness of incorporating brain modularity and learning state patterns to model brain dynamics

in fMRI data, underscoring the advantages of our approach.

4.2.2 Ablation Studies

We conducted ablation experiments to evaluate the contributions of individual components of dFCExpert,

specifically the modularity experts and state experts. For fair comparison, the baseline model was a 3-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2024. ; https://doi.org/10.1101/2024.12.20.629773doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629773
http://creativecommons.org/licenses/by-nc-nd/4.0/


4.3 Modularity Experts Analysis 15

(a) Schaefer Atlas - 7 Networks (c) Male (d) Female(b) Averaged

Figure 3: Visualization of the learned brain modules (nodes assignment results) averaged across all
subjects (b) and for two randomly selected individuals (c) and (d) from the test dataset, compared to
the seven intrinsic functional networks from the atlas (a). Regions with matching colors in (a) and
(b)(c)(d) indicate consistent assignments.

layer GIN followed by an MLP layer. The GIN was used to learn graph-level features, and the MLP made

predictions for each segment t, which were then averaged to generate the final result. The baseline model

was chosen for the following reasons: 1) Generating predictions for each temporal segment provides

stronger supervision, potentially improving prediction compared to the alternatives that use RNNs or

transformers on top of the GIN layer (e.g., STAGIN (B.-H. Kim et al., 2021) and NeuroGraph (Said

et al., 2023), as shown in Table 1); 2) Since the state experts aggregate the temporal graph features

into K state features, the use of RNNs or transformers for final predictions is unnecessary.

Based on this baseline, we introduced modularity experts (“Baseline + M”) by replacing GIN with

MoE-GIN and state experts (“Baseline + S”) by aggregating temporal features before the MLP layer,

respectively. The third block of Table 1 summarizes the ablation study results, from which several key

observations can be made: 1) Compared with the baseline model, the modularity experts achieved signif-

icantly improved performance, particularly for the regression task on the HCP dataset, highlighting the

effectiveness of characterizing brain modularity for learning more informative brain graph features; 2) By

grouping the temporal FC measures into several states, the state experts achieved better performance

across both tasks and both datasets, underscoring the benefit of using this new approach to explore the

dynamics of FC measures; 3) Incorporating both the modularity and state experts, dFCExpert outper-

formed the baseline model, validating the overall effectiveness of our method. These results demonstrate

that both components play a crucial role in improving the model’s ability to capture dynamic brain

connectivity and its association with cognitive and biological outcomes.

4.3 Modularity Experts Analysis

We evaluated the effectiveness of our modularity experts from the following perspectives: 1) the impact

of the number of experts in the MoE-GIN layer; 2) the ability of modularity experts to learn specific
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16 4 EXPERIMENTS

brain modules; 3) the performance of modularity experts when applied to static-FC measures; and 4) the

effect of different scaling ratios for the auxiliary losses.

4.3.1 Different Number of Experts

To evaluate the effect of modularity experts on model performance, we investigated the impact of the

number of experts (C) in the MoE-GIN layer. Specifically, we tested C values of 3, 5, 7, 9, 17, where

C = 7 and C = 17 are widely used settings in large-scale functional network studies (Yeo et al., 2011).

The results are summarized in Table 2 and reveal the following insights: 1) On the HCP dataset, the

model’s performance improved as the number of experts increased from 3 to 7 but began to decline when

the number of experts increased further from 7 to 17, suggesting that a smaller number of experts is not

only optimal for performance but also beneficial for reducing computational cost and model complexity.

2) On the ABCD dataset, the modularity experts outperformed the baseline across all settings. While

the number of experts had a smaller effect on the classification task, the performance on the regression

task improved significantly as C increased, peaking at C = 9. From these results, C = 5 or C = 7

emerged as reasonable choices, aligning with the typical number of functional modules in neuroscience.

We ultimately selected C = 7 for the HCP dataset and C = 5 for the ABCD dataset. The differing

optimal number of experts between the datasets may be attributed to two factors: the brain atlas used

for brain parcellation and the intrinsic characteristics of the datasets, as HCP (young adults) and ABCD

(young kids) represent different age groups and developmental stages.

4.3.2 Learned Brain Modules Visualization

To further evaluate the effectiveness of the modularity experts, we visualized the node assignment results

produced by the modularity experts with C = 7 on the classification task (HCP dataset) and compared

them with the Schaefer Atlas (Schaefer et al., 2018) that defines 7 functional networks (Figure 3 (a)).

Specifically, the modularity experts generated 7 learned modules, each consisting of nodes assigned

to a specific expert. Since the correspondence between these expert-learned modules and the 7 atlas

networks was unknown, we matched them based on the maximum overlap of their respective nodes,

and the matched results are visualized in Figure 3. The visualization demonstrates a strong overlap

between the Schaefer atlas networks and the modules learned by the modularity experts, indicating that

the modularity experts effectively grouped tightly connected nodes into the same module, allowing each

expert to specialize in capturing nodes corresponding to a particular brain functional module. Moreover,

because the modularity experts were optimized for specific tasks, they could potentially learn node-expert
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4.3 Modularity Experts Analysis 17

Table 3: Performance of modularity experts (MoE-GIN) applied to static-FC measures.

Method GNN Type
HCP ABCD

Sex Intelligence Sex Cognition
ACC(%) AUC(%) MSE(↓) CORR(↑) ACC(%) AUC(%) MSE(↓) CORR(↑)

NeuroGraph (Said et al., 2023) GIN 84.38±2.60 92.03±2.39 1.321±0.043 0.198±0.065 85.71±0.60 93.75±0.61 0.512±0.013 0.423±0.015
NeuroGraph (Said et al., 2023) MoE-GIN 87.30±1.33 95.56±1.68 0.989±0.035 0.243±0.052 87.08±0.74 93.12±0.52 0.486±0.021 0.477±0.017

Table 4: Performance of modularity experts with different scaling ratios α (αb and αs represent the
scaling ratios for Lbalance and Lsparse, respectively).

α αb, αs
Sex Intelligence

ACC(%) AUC(%) MSE(↓) CORR(↑)
0 αb = 0, αs = 0 88.56±3.45 94.67±1.68 0.962±0.022 0.256±0.048
0.1 αb = 0.1, αs = 0.1 89.16±4.12 95.52±2.01 0.948±0.032 0.270±0.036
1 αb = 1, αs = 1 89.61±4.22 96.91±1.68 0.946±0.041 0.272±0.059
- αb = 1, αs = 0 87.83±4.05 94.84±2.19 0.965±0.028 0.252±0.050
- αb = 0, αs = 1 88.65±3.52 95.13±1.53 0.956±0.023 0.261±0.043

(or node-network) assignments that go beyond the prior knowledge encoded in the Schaefer Atlas. From

Figure 3 (c)(d), we observed individual differences in the resulting learned modules across subjects,

highlighting the potential of modularity experts to learn personalized functional networks (H. Li et al.,

2017, 2023), adapting to the unique FC patterns of each individual.

4.3.3 Modularity Experts in Static-FC Method

To investigate the effectiveness of modularity experts in static FC analysis, we integrated the MoE-GIN

layer into Neurograph framework(Said et al., 2023) that employs a GNN architecture with residual con-

nections and combines hidden representations from message passing at each layer by concatenation.

These combined representations are then processed by an MLP layer for predictions. In Table 3, in-

corporating the modularity experts into a static-FC method enhanced brain graph representations and

improved performance, particularly on the HCP dataset. This highlights the versatility of modularity

experts in various FC analyses.

4.3.4 Scaling Ratio α Analysis for Auxiliary Losses

We analyzed the impact of different scaling ratios α for the two auxiliary losses in the modularity experts

on the HCP dataset, experimenting with α ∈ {0.1, 1}. The results are summarized in Table 4. When

α = 0.1, performance improved on both tasks, highlighting the importance of the auxiliary losses for

balance expert loading and sparse gating. With α = 1, classification performance further improved,

although the enhancement on the regression task was less significant. For consistency, we used α = 1

in all subsequent experiments. To further validate the effectiveness of the proposed loading balance loss
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Figure 4: a) and b) Probabilities of temporal segments of individual males and females assigned to
specific states, with the x-axis representing individuals in the testing dataset; c) Boxplots summarizing
a) and b), where each box corresponds to a row in a) or b), and ⋆ indicates statistically significant
difference; d) Model performance with different numbers of the dFC states.

Lbalance and sparse gating loss Lsparse, we conducted experiments by removing either Lbalance or Lsparse.

The results showed that the model’s performance decreased, underscoring their role in enabling balanced

selection and specialization of experts.

4.4 State Experts Analysis

To assess the impact of prototype learning for identifying dFC states, we conducted experiments on HCP

dataset to explore the performance of different numbers of states, visualize how these learned states

provide insights for interpretability, and analyze the effect of the scaling factor β for Lstate.

4.4.1 Different Numbers of States

We examined the effect of varying the number of states K within the range of 3, 5, 7, 9, 10, and

20. Figure 4(d) shows how the classification and prediction performance changed with the number of

states. Consistent with observations from the modularity analysis, performance initially improved as K

increased but began to degrade beyond a certain number of states. The best performance was achieved

with K = 7 for the classification task and K = 5 for the regression task. This also aligns with the

findings in existing dFC studies, which suggest that the typical number of dynamic states ranges from 5

to 7 (Damaraju et al., 2014).
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Figure 5: Visualization of the averaged FC measures of temporal segments for males and females assigned
to a specific state. The first row represents the female group, the second row represents the male group,
and the third row illustrates the FC differences (female-male) between the two groups for each state.
The y-axis corresponds to the seven networks: FPN, DMN, DAN, LN, SN, SMN, and VN (also see
Figure 1(a)).

4.4.2 Visualization of Learned dFC States

We visualized the state assignment results to assess whether the learned states provide interpretable

evidence for distinguishing males from females. Specifically, we averaged the soft assignment results P

across the T dimension, such that each resulting value represented the fraction of T temporal segments

for a subject assigned to a specific state (e.g., the k-th state). We computed these values for all subjects

in the HCP test dataset and visualized them separately for males and females. The results shown in

Figure 4 (a) and (b), along with the boxplots in Figure 4 (c) reveal clear patterns. Male dFC graphs

(temporal segments) were more frequently assigned to States of 4 and 6, while female dFC graphs were

more frequently allocated to States of 2 and 3. Additionally, Wilcoxon rank-sum tests showed significant

differences at State 3 and State 4 between males and females, with p-values less than 0.05. These

findings validate that the dFC states reflect explainable evidence of sex differences, highlighting distinct

brain FC patterns associated with each state. Overall, these results demonstrate the effectiveness of

grouping dynamic FC measures into a smaller set of dFC states. They also illustrate that the state

experts can identify distinctive dFC states comparable to findings from conventional dFC studies, despite

utilizing a learning strategy that differs from traditional approaches.

We further visualized the averaged FCs of temporal segments assigned to each state for males and
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20 5 CONCLUSIONS AND DISCUSSIONS

Table 5: Results for state experts with different scaling ratios β.

β
Sex Intelligence

ACC(%) AUC(%) MSE(↓) CORR(↑)
0 86.75±2.43 93.52±1.12 1.023±0.065 0.210±0.072
1 88.23±2.12 96.28±1.85 0.974±0.044 0.268±0.063
10 89.98±2.83 97.23±1.32 0.967±0.074 0.248±0.083

females. As shown in Figure 5, the state experts effectively captured distinct dynamic patterns in the

dFC measures. For instance, dFC graphs (networks) for females exhibited stronger FC in State 2 and

also in States 1, 4, and 7, while males had more stronger FC in States 3, 5, and 6. These observed sex

differences and FC strength differences in these averaged state FC measures underscore the interpretability

of state experts, highlighting the state experts’s ability to capture meaningful variations in dFC.

4.4.3 Scaling Factor β Analysis for Lstate

We investigated the impact of the scaling factor β for the clustering loss Lstate on the HCP dataset.

As shown in Table 5, β = 1 resulted in improved performance compared to β = 0, demonstrating the

critical role of the clustering loss Lstate in learning meaningful state patterns. Since Lstate is relatively

small in magnitude, we also tested a larger scaling factor, β = 10, to amplify its influence. The resulting

performance showed further improvement, indicating enhanced state assignment.

5 Conclusions and Discussions

We developed dFCExpert, a novel method for learning effective representations of dFC measures, which

consists of modularity experts and state experts, designed to reflect the brain’s modular organization

and dFC states that have been extensively studied in fMRI research on functional neuroanatomy, brain

development and aging, and brain disorders, but underexplored in the machine learning community for

functional brain networks. As demonstrated by extensive experiments on two large-scale fMRI datasets,

the modularity experts automatically routed network nodes with similar brain functions to the same

expert, enabling specialization of experts and promoting effective representation learning of dFC measures.

Meanwhile, the state experts grouped the learned temporal graph features into distinctive states, each

characterized by similar dFC patterns. This facilitated the effective modeling of temporal dynamics

in brain functional networks, revealing insights into different brain states and biological characteristics.

These results highlight not only the superior performance of dFCExpert compared to state-of-the-art

alternative methods but also its enhanced interpretability, offering a promising tool for understanding

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2024. ; https://doi.org/10.1101/2024.12.20.629773doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.20.629773
http://creativecommons.org/licenses/by-nc-nd/4.0/


21

and analyzing functional brain networks.

While dFCExpert demonstrates strong performance and interpretability, several limitations offer oppor-

tunities for future improvements. First, the model has been evaluated on two large-scale fMRI datasets

(HCP and ABCD), but its generalizability to other datasets with different acquisition protocols, par-

cellation schemes, or population characteristics remains unverified. Future studies could evaluate the

model on diverse datasets, including task-based fMRI, multimodal imaging (e.g., combining fMRI with

EEG), or smaller datasets to assess robustness and adaptability. Second, while the modularity and state

experts improve interpretability, connecting these findings to specific clinical or neurological outcomes

remains a challenge. Integrating the model with clinical datasets and leveraging the learned features

for diagnostic or prognostic tasks would enhance its clinical relevance. Third, the framework currently

uses predefined atlases, which limit the resolution of brain parcellation. High-resolution parcellation

could increase the number of nodes and exacerbate computational challenges. Future research could

focus on adapting dFCExpert for finer-grained parcellations or voxel-wise analysis to enable fine-grained

investigations. Fourth, while the model captures dFC states effectively, it does not explicitly model

state transitions or the temporal relationships between states. Incorporating temporal sequence models,

such as Markov chains or advanced sequence-learning architectures (e.g., transformers or RNNs), could

provide deeper insights into the dynamics of state transitions. Lastly, the current implementation for

sliding window adopts a window length of 50, and window stride of 3. Although it’s a standard setting

for dFC analysis used in many methods (B.-H. Kim et al., 2021; Preti et al., 2017), different settings

of sliding windows need to be further explored, since these settings may yield different dynamics and

fluctuations for the brain activities or FCs and have different performance. Addressing these limitations

through future research will enhance the robustness, efficiency, and applicability of dFCExpert, paving

the way for broader adoption in both scientific and clinical settings.

6 Data and Code Availability

The fMRI data used for the experiments of this paper should be downloaded from the Human Connectome

Project and ABCD. The code can be accessed at MLDataAnalytics/dFCExpert on GitHub.
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