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Abstract
Background: The integration of conventional omics data such as genomics and transcriptomics data
into arti�cial intelligence models has advanced signi�cantly in recent years; however, their low
applicability in clinical contexts, due to the high complexity of models, has been limited in their direct use
inpatients. We integrated classic omics, including DNA mutation and RNA gene expression, added a
novel focus on promising omics methods based on A>I(G) RNA editing, and developed a drug response
prediction model.

Methods: We analyzed 104 patients from the Breast Cancer Genome-Guided Therapy Study
(NCT02022202). This study was used to train (70%) with 10-fold cross-validation and test (30%) the drug
response classi�cation models. We assess the performance of the random forest (RF), generalized
linear model (GLM), and support vector machine (SVM) with the Caret package in classifying therapy
response via various combinations of clinical data, tumoral and germline mutation data, gene expression
data, and RNA editing data via the LASSO and PCA strategies.

Results: First, we characterized the cohort on the basis of clinical data, mutation landscapes, differential
gene expression, and RNAediting sites in 69 nonresponders and 35 responders to therapy. Second,
regarding the prediction models, we demonstrated that RNA editing data improved or maintained the
performance of the RF model for predicting drug response across all combinations. To select the �nal
model, we compared the F1 score between models with different data combinations, highlighting an F1
score of 0.96 (95% CI: 0.957--0.961) and an AUC of 0.922, using LASSO for feature selection. Finally, we
developed a nonresponse risk score on the basis of features that contributed to the selected model,
focusing on three RNA-edited sites in the genes KDM4B, miRNA200/TTLL10-AS1, and BEST1. The score
was created to facilitate the clinical translation of our �ndings, presenting a probability of therapy
response according to RNA editing site patterns.

Conclusion: Our study highlights the potential of RNA editing as a valuable addition to predictive
modeling for drug response in patients with breast cancer. The nonresponse risk score could represent a
tool for clinical translation, offering a probability-based assessment of therapy response. These �ndings
suggest that incorporating RNA editing into predictive models could enhance personalized treatment
strategies and improve decision-making in oncology.

Introduction
The integration of arti�cial intelligence (AI) into clinical decision-making holds immense promise for
enhancing health outcomes across diverse diseases, including cancer [1]. AI tools have demonstrated
potential in early diagnosis, comprehending intricate biological mechanisms, and facilitating the
development of novel therapeutic strategies [2]. However, the successful translation of AI models into
clinical practice for cancer treatment faces substantial challenges.
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The heterogeneity of the response to anticancer drugs and the development of therapeutic resistance
represent signi�cant clinical challenges, leading to increased mortality rates worldwide [3, 4]. Resistance
to therapy in BC is multifactorial, with contributing mechanisms including increased drug e�ux,
alterations in the tumor microenvironment, epithelial‒mesenchymal transition, tumor heterogeneity,
therapeutic target alterations, adaptive responses, and DNA damage repair [4–7]. Between 30% and 50%
of BC patients may develop therapy resistance, resulting in a drastically reduced survival time of 2 to 3
years compared with 5 years in responders [8]. Therefore, early prediction of the therapeutic response is
crucial for timely and effective clinical decision-making.

Recent advancements have integrated conventional omics data, such as germline and tumoral DNA
mutation data and RNA expression data, into AI drug response models. Nevertheless, these approaches
often overlook crucial factors in�uencing tumor complexity. This limitation, compounded by
methodological issues such as poor data quality, missing data, and small sample sizes, contributes to
the di�culty in replicating cancer study �ndings across independent cohorts [9]. These factors introduce
biases into AI predictive models, complicate the interpretation of machine learning’s “black box” concept,
and hinder the translation of AI models into clinical practice [10, 11].

In this context, RNA editing, a posttranscriptional modi�cation mediated by ADAR enzymes, presents a
promising avenue to address some of these challenges. This process, involving the conversion of
adenosine to inosine (A > I(G)) in RNA, can signi�cantly impact gene product structure and function,
in�uencing tumor biology and drug response [12]. Despite its potential relevance, research on RNA
editing in cancer, particularly its integration into AI models, remains limited. While pancancer studies
have described certain RNA edited sites [13] and preliminary work has explored the role of RNA editing in
the drug response of patients with breast cancer (BC) via cell lines [14, 15], its clinical implications
remain largely unexplored. Notably, RNA editing has not been systematically incorporated into AI models
for predicting clinical outcomes in cancer [16].

Recent studies have highlighted the potential of RNA editing-based predictive models in various cancers,
including gastric cancer [17], lung cancer [18], acute myeloid leukemia (AML) [19], and lower-grade
gliomas [20]. However, the utilization of RNA editing for predicting drug response in BC remains
underexplored.

This study addresses these critical gaps by integrating multiomics data, with a novel focus on A > I(G)
RNA editing, to enhance the prediction of drug response in BC. We leverage clinical trial data to develop a
machine learning-based risk score for nonresponse and a probability-based score to assess the
likelihood of therapy response, with the ultimate goal of more precise and actionable clinical decision-
making in BC, improving patient outcomes.

Methods

Dataset and breast cancer patients
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One hundred and four patients were analyzed from the Breast Cancer Genome-Guided Therapy Study
(ClinicalTrials.gov: NCT02022202) out of one hundred and eighteen BC patients according to data
availability. The clinical characterization of these patients was based on therapy response, which was
de�ned as a response to therapy when reported as a pathological complete response in the breast and
nodes (path-CR) after 24 weeks of chemotherapy (adriamycin and cyclophosphamide or epirubicin and
cyclophosphamide or 5-�urouracil, epirubicin and cyclophosphamide), whereas nontherapy response
referred to when there was no pathological complete response [21, 22]. Additionally, the molecular
subtype was de�ned based on baseline Ki67 results, estrogen receptor levels, and HER2 status (by
immunohistochemistry (IHC) or �uorescence in hybridization (FISH)) from the original study.

Whole Exome Sequencing (WES) Analysis and Variant Calling
WES data from paired tumor and normal samples were analyzed via an automated pipeline deployed on
the SevenBridges cloud platform (https://www.sevenbridges.com/). The raw sequencing reads in FASTQ
format underwent initial processing with Trim Galore [23] to remove low-quality bases and adapter
sequences, ensuring high-quality input for downstream analysis. The trimmed FASTQ �les were then
converted into unmapped BAM (uBAM) format via Picard’s FatsqToSam tool [24], which added the read
group information necessary for alignment. The uBAM �les were subsequently aligned to the GRCh38
reference genome via BWA-MEM [25]. Following alignment, the BAM �les were processed following
GATK Best Practices [26–28] to produce high-quality analysis-ready BAM �les. This included marking
duplicate reads with Picard’s MarkDuplicates to mitigate biases from PCR ampli�cation and performing
base quality score recalibration (BQSR) via GATK’s BaseRecalibrator and ApplyBQSR, incorporating
known variant sites to ensure accuracy.

Somatic variants were identi�ed via GATK Mutects2 in tumor-normal mode. The matched normal
samples were utilized to distinguish somatic mutations from germline variants and sequencing artifacts.
GATK’s FilterMuectCalls was applied to re�ne the somatic variant calls further. Germline variants were
called via GATK’s HaplotypeCaller in GCVF mode on the normal samples. The resulting gVCFs were
combined via CombineGVCFs, and the joint genotyping step was performed with GenotypeGVCFs to
produce a multisample VCF. The genotyped VCF was �ltered using GATK’s VariantRecalibrator and
ApplyVQSR separately for both SNPs and InDels. The VCFs were subsequently split into individual VCFs
to facilitate downstream analyses.

Annotation of both somatic and germline variants was conducted via the Ensembl Variant Effect
Predictor (VEP) [29], which adds functional and clinical information, including gene impact, variant
consequences, and pathogenicity predictions. Finally, the annotated VCFs were converted into mutation
annotation format (MAF) �les via the vcf2maf tool [30] to enable compatibility with downstream
analysis.

RNA-seq analysis
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The RNA sequencing data were preprocessed and analyzed via the nf-core/rnaseq pipeline (v3.14.0)
implemented in NextFlow (v23.04.2). The analysis was performed with GRCh38 as the reference genome
and followed standard best practices for RNA-seq data analysis. Initially, raw FASTQ �les were subjected
to quality control and adapter trimming via Trim Galore v0.6.7, ensuring that low-quality bases and
adapter sequences were removed. Trimmed FASTQ �les were then aligned to the reference via STAR in
two-pass mode, which improves splicing accuracy by using junction information obtained from the �rst
pass during the second pass of alignment. Salmon quanti�cation was performed alongside STAR
alignment to estimate transcript abundance via quasimapping and expression quanti�cation. Gene
annotation for alignment and quanti�cation was based on the GENCODE v43 annotation �le, ensuring
compatibility with the reference genome. Multiple quality control steps were performed on the BAM �les
via RSeQC, SAMtools, Dupradar and Qualimap to ensure the integrity of the data. MultiQC [31] was used
to report the results.

Tumoral and germline DNA variant characterization
We considered tumor variants reported in genes listed in the Cancer Gene Census (CGC) from COSMIC
[32]. We evaluated differences per variant and gene mutation in the responder and nonresponder groups
via Fisher’s exact test for germline mutations and focused on genes related to high-risk cancer
predisposition: ATM, BAPI, BMPR1A, BRCA1, BRCA2, BRIP1, MSH2, MSH6, MUTYH, DICER1, PALB2,
RUNX1, SDHAF2, SDHB, SDHC, and SDHD as Tier 1 of high risk; Tier 2: APC, CDH1, MLH1, MEN1, NF1,
NF2, PMS2, POLE, PTEN, PTPN11, RB1, RET, SMAD4, SMARCA4, STK11, TGFBR2, TSC1, TSC2, VHL and
WT1 as intermediate risk; and Tier 3 BARD1, CHECK2, HNF1A, FH, NBN, RAD50, RECQL4, and TP53 [33].

Gene expression abundance estimation
Differential expression analysis (DEA) between the response and nonresponse groups was performed
via the raw transcript-level quanti�cation �les generated by Salmon during the nf-core/rnaseq analysis
[34]. To enable the use of DESeq2 [35] for differential expression analysis, the transcript quanti�cation
values were approximated to the nearest integer. Gene annotations, including HGNC gene symbols, were
retrieved by querying Ensembl Transcript IDs via biomaRt [36]. Differentially expressed transcripts were
visualized via a volcano plot generated with EnhancedVolcano, applying a p-adjusted cutoff of < 0.05 and
a fold-change (FC) threshold of > 2.5. For the creation of predictive models, Salmon's gene-level
quanti�cation �les normalized to transcripts per million (TPM) were utilized.

High-con�dence RNA editing identi�cation
REDITools was used to identify RNA edited sites on the basis of a previously published methodology,
which brie�y consisted of BAM �les from STAR alignment in nf-core/rna-seq [37, 38]. After applying
REDITools to all the BAM �les, we excluded all sites found as mutations A/G or T/C from the DNA
variants called in the tumor and/or germline. For RNA-edited site identi�cation, we consider only sites
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that are the reference/alternate of A/G or T/C. For these sites, we calculated the RNA editing level at
each site, which consists of the ratio between mismatch (A/G on the positive strand or T/C on the
negative strand) reads and total readings at the site (both mismatch and match, represented by A/A on
the positive strand or T/T on the negative strand). The RNA edited level per site was included in the
models. Additionally, we used RNA-editing tests (REDITs) to identify RNA-edited sites between
responders and nonresponders via the beta-binomial distribution for characterization and selection of
RNA-edited sites (FC cutoff > 0.05 and p adjust < 0.01) [39].

Predictive models
We preprocessed the data of the study cohort, which was composed of one hundred and four patients
from the Breast Cancer Genome-Guided Therapy Study. We included in the model only the selected
features from each omics dataset (tDNA/gDNA, DES, DGE) and the most relevant clinical features
(molecular subtype, histological type, TNM stage and age group). These features are the inputs of the
drug response classi�cation models. Once these features were assigned to each patient, we divided the
preprocessed dataset into a training subset (70%) and a test subset (30%). A 10-fold cross-validation
was applied to ensure the robustness of the model. We performed random forest (RF), generalized linear
model (GLM), and support machine vector (SMV) analyses for the classi�cation of response or
nonresponse to therapy.

This is due to the high number of predictors in the input dataset (Fig. 2). For selecting features, we
implemented two strategies. For principal component analysis (PCA), we selected PCAs with a variance
explained in an elbow plot or least absolute shrinkage and selection operator (LASSO). With respect to
model training, all classi�cation models were subjected to tenfold cross-validation. We trained the
models when we determined the best value for the hyperparameter to improve the accuracy, and we
retrained the model, which was selected as the �nal model. For these models, we evaluated different
combinations of features:

Model 1: Therapy response ∼ Clinical + Gene Expression (DGE)

Model 2: Therapy response ∼ Clinical + Gene Expression (DGE) + RNA editing (DES)

Model 3: Therapy response ∼ Clinical + tDNA/gDNA

Model 4: Therapy response ∼ Clinical + tDNA/gDNA + RNA editing (DES)

Model 5: Therapy response ∼ Clinical + Gene Expression (DGE) + tDNA/gDNA

Model 6: Therapy response ∼ Clinical + Gene Expression (DGE) + tDNA/gDNA + RNA editing (DES)

For the meta-analysis, we calculated metrics (accuracy, recall, precision and F1 score) that represent the
performance of the models via the prediction of each model on the test dataset without the therapy
response information. The metrics were calculated from a confusion matrix de�ned as follows:
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where TP is the true positive rate, TN is the true negative rate, FP is the false positive rate, and FN is the
false negative rate. To calculate the con�dence interval for the F1 score, bootstrapping was performed
1000 times. We selected the best model from the F1 score information. Finally, for the selected best
model, we identi�ed and ranked the most informative features determined by varImp from the Caret
package in the �nal models.

Design of a nonresponse risk score based on features from machine
learning models
A risk score for nonresponse to drugs was created on the basis of the methodology published by
Sullivan [40] to facilitate the translation of the model to clinical settings with the fewest possible
features. Brie�y, this approach involves estimating parameters from a multivariable logistic regression
model. In this model, the 𝛽 coe�cient is taken in its absolute value and approximated to the smallest
absolute value, which serves as the score for each variable. To calculate the total score, all individual
scores are summed. Additionally, the probability of nonresponse is determined as:

where 𝛽 corresponds to the smallest beta in the model.

Results

Clinical and molecular characterization of the training and
testing cohorts
The clinical characteristics analyzed included molecular subtype, tumor size, nodal status, histological
type, and age group. Molecular subtype was signi�cantly different between the groups (p < 0.001),
whereas other variables, such as tumor size, nodal status, histological type, and age, were not
signi�cantly different (Fig. 1A). Through differential transcript expression analysis, we identi�ed 996
differentially expressed genes (DEGs). We highlighted transcripts of SNX14, RHOT2, PIK3R1, SLC7A4,
DTNA, and even RAD51 in the nonresponders, whereas genes such as IFITM3, CYP2T1P, TMUB2, and
PAX6 were prominent in the responders (Fig. 1B). However, we did not �nd signi�cant differences in
ADAR1 (ENST00000492630.2) expression between the groups (Table S1). With respect to the
differentially expressed RNA edited sites, 500 sites were identi�ed as signi�cantly different between
responders and nonresponders to therapy (DES). Among these, we highlight speci�c sites within genes

Precision : TP/(TP + FP)

Recall : TP/(TP + FN)

F1 − score : 2 x((Precision x Recall) / (Precision + Recall))

1/e−(intercept+ β ∗ point total)
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such as ALPL (COSV66379629), DHTKD1, ABCC4 (COSV65312135), GAA (COSV56406822), USP34,
ZNF662, and NFKBIZ (COSV58198879). These sites result in missense mutations, have been previously
reported in the COSMIC database, and are predicted to be potentially damaging by PolyPhen and
deleterious by SIFT (Fig. 1C, Table S2).

Among the 290 somatic variants identi�ed in the cancer gene consensus (CGC) cohort, the most altered
genes in nonresponders were somatic variants in TP53, PIK3CA, and MUC16, whereas responders
presented mutations in genes such as ATR, MAP2K1, and FAT3 (Fig. 1D). We did not �nd signi�cant
differences by gene or by variant between the responder and nonresponder groups. (Table S3-S4). In
terms of germline mutations, we selected 47 variants from the list of high-risk cancer predisposition
genes; only 44 patients (42.31%) had at least one germline mutation. Notably, responder patients
presented alterations in genes such as ATM, RECQL4, and BRCA2, whereas APC and NF2 were
prominent in nonresponders (Fig. 1E).

Models of machine learning for drug response
We developed ML models to predict drug response in BC patients via clinical and omics data. Data from
whole-exome sequencing (WES), RNA sequencing (RNA-seq), and clinical variables were preprocessed
and reduced via PCA or LASSO. Models, including GLM, RF and SVM, were trained and tested on various
omics data combinations, with performance evaluated via the F1 score and AUC through cross-
validation and bootstrapping. Relevant features were identi�ed to design a risk score for nonresponse to
therapy, enabling interpretable predictions with a probability-based assessment of therapy outcomes
(Fig. 2).

The RF model incorporating clinical data, RNA editing, and gene expression data was selected via the
LASSO variable selection technique, achieving an F1 score of 0.96 (95% CI: 0.957–0.961) (Fig. 3A),
representing the best-performing model with fewer variables than the other models and data
combinations (Figure S2). This pattern was also observed in the GLM and SVM models with LASSO.
However, when PCA was used, the results were inconsistent across models, with some combinations
showing improvement, others maintaining the same performance, and some experiencing a decrease in
the F1 score (Figure S2). This selection also supports parsimony and facilitates the model's translation
to clinical settings. In all the RF models with LASSO, RNA editing was observed to enhance model
performance (Fig. 3A). Similarly, we found that models including RNA editing sites presented improved
F1 scores, suggesting that RNA edits provide key information for predicting therapy response.

We further analyzed the selected model, which includes 23 features, highlighting �ve RNA edited sites
and sixteen transcripts (Fig. 3B). We detected the demethylation of histones via gene ontology analysis
at the RNA editing level in �ve DESs (Figure S3), and sixteen DGE features strongly affected metal ion
homeostasis and related cellular processes in the studied context (Figure S4).

From the selected model, we can prioritize the variables that contribute most signi�cantly by analyzing
their importance. The key contributors include ENST00000634769.1 (lnc-PCSK9-4:7),
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ENST00000613438.3 (CTCF-DT), ENST00000503525.2 (TCL1), ENST00000668520.1 (IL21-AS1-204),
and ENST00000685148.1 (PLCB4-216), which are associated with molecular subtypes luminal A and B.
Additionally, RNA-edited sites in KDM4B, miRNA200, and BEST1 further strengthen the model.

Score of risk of nonresponse to therapy
We developed a risk score for nonresponse to therapy using the variables with the greatest contribution
in the ML model. A logistic regression model was then employed to calculate beta coe�cients and odds
ratios. With this information, a weighted score was assigned to each variable, where the total sum
generated a predictive risk index for nonresponse to therapy. However, most of the variable scores were
near zero. Surprisingly, three edited sites presented high odds ratios and therefore had nonzero scores.
The procedure was then repeated with these three variables to create the index, which had a maximum
score of 50 points and a minimum of 0 points. The �nal point score was signi�cantly lower in
responders, with a mean of 16 (SD 15.4) points, than in nonresponders, who had a mean of 35.7 (SD
12.6) points (Figure S5).

To study the associations of features with nonresponse to therapy, we calculated the 𝛽 coe�cient, odds
ratio (OR) and 95% con�dence interval (95% OR), p value and points (Table 1). To interpret this index, the
risk of nonresponse to therapy was calculated and aligned with the score obtained: a higher score
indicates a greater risk of nonresponse to therapy, which is concordant with the therapy response
observed and predicted by the score (Fig. 4A). The combined index demonstrated superior performance,
achieving an area under the curve (AUC) of 0.823, indicating a high predictive ability to differentiate
between responders and non-responders (Fig. 4B). Among individual features, the chr19_5111983_A/G
variant achieved an AUC of 0.710, the chr11_61954112_T/C variant obtained an AUC of 0.705, and the
chr1_1168162_T/C variant presented an AUC of 0.684, all showing acceptable predictive capacity
(Fig. 4C).

Table 1
Association of features with nonresponse to therapy

Chromosome:
position

Gene name Beta
coe�cient

p
value

OR 95% IC
OR

Point of
index

Chr19:5111983 KDM4B 1.36 0.02 3.90 1.26–
12.04

14

Chr1:1168162 MiRNA200/TTLL10-
AS1

1.94 < 
0.001

6.99 2.10-
23.27

19

Chr11:61954112 BEST1 1.64 0.01 5.14 1.62–
16.29

16

Discussion
Our comprehensive clinical and molecular characterization of the training and testing subsets of BC
patients has provided insights into the factors associated with drug response. We identi�ed signi�cant
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differences in clinical and molecular features between responders and nonresponders. The integration of
RNA editing data provided valuable improvement, enhancing the performance of machine learning
models, with the RF model achieving the best F1 score when LASSO-selected features were used. Our
�ndings suggest that RNA editing sites, particularly those in KDM4B, miRNA200/TLL10-AS1, and BEST1,
provide critical predictive information for therapy response. The risk score model we developed allows
for the assessment of nonresponse risk, with higher scores correlating with increased risk. The score
represents a step toward practical clinical application, providing a probability-based assessment of
nonresponse to therapy.

The use of RNA editing sites improved the performance of most GLM, RF and SVM models in LASSO.
DES with DGE and DES, DGE and tDNA/gDNA were the models with the highest performance. According
to recent studies, independently, gene expression and variants in DNA have similar effects on drug
response in breast cancer patients [41]. Additionally, when we trained the models with only clinical and
DNA data, the F1 score was lower; these data support the decision concerning the �nal model of the DES
and DGE data.

Our risk score of nonresponse to therapy on the basis of three RNA-edited sites achieved an AUC of
0.823. Similarly, another model for predicting the prognosis of lower-grade gliomas, which is based on
four RNA-edited sites (PRKCSH chr19:11561032, DSEL chr18:65174489, UGGT1 chr2:128952084, and
SOD2 chr6:160101723), also reported an AUC of 0.823 [20]. In BC, four RNA editing sites (ARSD A2874 > 
I, ZNF791 A2280 > I, MED18 A1552 > I, and RAD1 A1415 > I) were included in the assessment of survival
prognosis. Although the study reported the C-index, a metric for survival prediction, it can be considered
comparable to the AUC, as both evaluate discriminatory ability. The C-index was 0.742 in the testing
cohort (n = 311) and 0.869 in the external cohort (n = 197) [42]. Additionally, a signature based on 35
RNA-edited sites had an AUC of 0.907 for predicting chemotherapy response [43]. Overall, across all
studies, RNA editing-based models exhibited high performance. However, these models initially include
only RNA editing data, and the potential improvement in predictive outcomes by incorporating
epitranscriptomic data has not yet been described.

KDM4B disrupts the DNA damage repair (DDR) machinery, leading to cellular transformation and
immortalization, a key step in cancer development [44]. Similarly, miRNA-200 plays a pivotal role in the
drug response by regulating c-MYB expression, which affects epithelial‒mesenchymal transition (EMT)
and tamoxifen resistance in estrogen receptor-positive BC cells [45]. Notably, RNA editing of miRNA-200
has been proposed as a novel oncogenic mechanism, and the overexpression of miR-200b reduces its
tumor suppressive activity by regulating ZEB1, which is relevant [46]. The level of editing of miR-200b has
been described as inversely correlated with the expression of miR-200b, and it has also been associated
with a worse prognosis than nonedited miR-200b [47]. In a related context, TTLL10-AS1, an autophagy-
related long noncoding RNA, is part of a prognostic signature for ovarian cancer; its expression is
associated with immune cell in�ltration, PD-L1 levels, and chemotherapy sensitivity, ultimately
in�uencing clinical outcomes [48]. Additionally, BEST1 promotes BC cell proliferation by facilitating
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calcium in�ux and activating the EGFR/AKT signaling pathway, highlighting its potential as a therapeutic
target [49].

This study has several limitations related to the primary study. The identi�cation of RNA edited sites
within the cohort was performed via a previously reported methodology for detecting RNA editing sites
[14, 50]. However, attempts to validate these �ndings in external cohorts were ineffective, likely because
of differences in the preanalytic process and RNA sequencing methodologies used [11]. These
discrepancies may have affected the detection of RNA-edited sites, limiting external validation in two
trials of PARP inhibitors with rucaparib [51] and talozaparib [52]. Additionally, our models lack
information on speci�c therapies received by each patient, complicating predictions for responses to
individual drugs, as most cancer studies involve multiple drug combinations, even in clinical trials.

A probability risk score based on only 3 features could enable the development of a clinical tool to
assess the risk of nonresponse to therapy. This tool could be implemented in daily clinical practice to
guide clinical decisions when selecting personalized treatments and adjusting therapies according to
each patient's risk level. The identi�cation of a few editing sites has the potential to be translated into
clinical practice via RESqPCR, a modi�ed PCR technique designed to detect speci�c edited sites [53].
This, in turn, could lead to signi�cant improvements in outcomes for BC patients, such as higher
response rates to selected treatments and a reduction in side effects associated with ineffective
therapies. Furthermore, by identifying patients at high risk of nonresponse to certain therapies in a timely
manner, it would be possible to explore alternative or more innovative treatment options, optimize
resources and reduce the costs associated with prolonged or ineffective treatments. Similarly, this tool
could help improve patients' quality of life by reducing uncertainty about treatment effectiveness and
avoiding unnecessary additional procedures.

Conclusion
Our study emphasizes the potential of RNA editing as a valuable enhancement to predictive models for
drug response in BC. By incorporating RNA editing alongside traditional omics data, including germline
and tumoral DNA mutation data and RNA expression data, into machine learning models, we achieved
high accuracy in predicting therapy response. The nonresponse risk score offers a practical tool for
clinical application, providing a probability-based evaluation of therapy response. These �ndings indicate
that integrating RNA editing into predictive models could advance personalized treatment approaches
and support better decision-making in oncology.
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Figure 1

Clinical and molecular characterization of the training and testing cohorts. A) Table of clinical
characterization by drug response; B) Differential expression transcript in Volcanoplot FC cutoff >2.5 and
p-adjust cutoff <0.05; C) Differential RNA edited level in Volcanoplot FC cutoff >0.05 and p-adjust cutoff
<0.01; D) landscape of somatic mutations in genes from the Cancer Gene Census (CGC) and E)
landscape of germline mutations in genes related tohigh-risk cancer predisposition in Oncoplot by drug
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response, each row represents a gene, and each column represents a patient with at least one variant
(n= 44 subjects). The colors indicate different types of mutations and the molecular subtypes of the
patients.

Figure 2

Design of a drug response risk score based on omics and clinical data via machine learning models.
Scheme of work�ow for predicting response to therapy via machine learning models.
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Figure 3

The use of RNA editing sites improved the performance of random forest with LASSO models in
predicting therapeutic response. A) Summary of the F1 scores of all the models by RF with LASSO and B)
important features of the selection of the �nal model.
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