
Page 1/19

Me-LLaMA: Medical Foundation Large Language Models for
Comprehensive Text Analysis and Beyond
Qianqian Xie 

Yale University
Qingyu Chen 

Yale University
Aokun Chen 

University of Florida
Cheng Peng 

University of Florida
Yan Hu 

University of Texas Health Science, Center at Houston
Fongci Lin 

Yale University
Xueqing Peng 

Yale University
Jimin Huang 

Yale University
Jeffrey Zhang 

Yale University
Vipina Keloth 

Yale University
Xinyu Zhou 

Yale University
Lingfei Qian 

Yale University
Huan He 

Yale University
Dennis Shung 

Yale University
Lucila Ohno-Machado 

Yale University
Yonghui Wu 

University of Florida
Hua Xu 

Yale University
Jiang Bian 

University of Florida

Article

Keywords:

https://doi.org/10.21203/rs.3.rs-5456223/v1
https://doi.org/10.21203/rs.3.rs-5456223/v1


Page 2/19

Posted Date: December 18th, 2024

DOI: https://doi.org/10.21203/rs.3.rs-5456223/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.   Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-5456223/v1
https://creativecommons.org/licenses/by/4.0/


Page 3/19

Abstract
Recent advancements in large language models (LLMs) like ChatGPT and LLaMA have shown significant potential in medical
applications, but their effectiveness is limited by a lack of specialized medical knowledge due to general-domain training. In this
study, we developed Me-LLaMA, a new family of open-source medical LLMs that uniquely integrate extensive domain-specific
knowledge with robust instruction-following capabilities. Me-LLaMA comprises foundation models (Me-LLaMA 13B and 70B) and
their chat-enhanced versions, developed through comprehensive continual pretraining and instruction tuning of LLaMA2 models
using both biomedical literature and clinical notes. Me-LLaMA utilized the largest and most comprehensive medical data, including
129B pre-training tokens and 214K instruction tuning samples from diverse biomedical and clinical data sources. Training the 70B
models required substantial computational resources, exceeding 100,000 A100 GPU hours. We applied Me-LLaMA to six medical
text analysis tasks and evaluated its performance on 12 benchmark datasets. To further assess Me-LLaMA’s potential clinical
utility, we evaluated its performance on complex clinical case diagnosis compared with other commercial LLMs, using both
automatic and human evaluations. Me-LLaMA models outperform LLaMA, and other existing open-source medical LLMs in both
zero-shot and supervised learning settings for most text analysis tasks. With task-specific instruction tuning, Me-LLaMA models
also surpass leading commercial LLMs, outperforming ChatGPT on 7 out of 8 datasets and GPT-4 on 5 out of 8 datasets. Moreover,
Me-LLaMA’s performance is comparable to ChatGPT and GPT-4 for diagnosing complex clinical cases. Our findings underscore
combining domain-specific continual pretraining with instruction tuning is essential for developing effective domain-specific large
language models in healthcare, significantly enhancing performance across diverse medical text analysis tasks and applications.
By publicly releasing our models and resources under appropriate user agreements, we aim to foster innovation and facilitate
advancements in medical AI, benefiting researchers and practitioners within the community.

INTRODUCTION
Large language models (LLMs) have shown great potential in improving medical applications such as clinical documentation,
diagnostic accuracy, and patient care management.1,2,3 However, general-domain LLMs often lack specialized medical knowledge

because they are primarily trained on non-medical datasets4, limiting their effectiveness in healthcare settings. Although
commercial LLMs, such as ChatGPT 5 and GPT-4,6 offer advanced capabilities, their closed-source nature restricts the flexible
customization and accessibility required for medical use. This limitation has spurred the research towards developing open-source
LLMs such as LLaMA;7–8 Yet, these models still fall short due to their general-domain training.9–10

To address these challenges, researchers have explored strategies to develop domain specific LLMs for the medical domain.
Instruction fine-tuning of general-domain models, as seen in MedAlpaca,³ ChatDoctor,¹² and AlpaCare,¹³ attempts to enhance
medical capabilities but is limited by the base models’ lack of specialized knowledge; instruction fine-tuning alone cannot
compensate for this deficiency. Training models from scratch using medical corpora, exemplified by GatorTronGPT,¹⁴ overcomes
this limitation but demands substantial computational resources and time. A more cost-effective alternative is continual pretraining,
enabling models to acquire specialized medical knowledge while leveraging existing model architectures; notable examples include
PMC-LLaMA,¹⁸ Meditron¹⁶ and Clinical LLaMA.¹⁷

Table 1. The comparison of Me-LLaMA models and existing open source medical LLMs.
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Despite these advances, existing LLMs of continual pretraining in the medical domain exhibit notable limitations: (1) Although both
domain knowledge and instruction-following capabilities are crucial, only PMC-LLaMA¹⁸ has combined continual pretraining with
instruction fine-tuning, revealing a gap in leveraging the synergy between these two aspects. (2) Only one model (Clinical LLaMA)
used clinical notes from electronic health records, which is crucial for real-world clinical applications as it provides context-specific
information from direct patient care. None of the existing models used both biomedical literature and clinical notes, which is one of
the goals of this project. (3) Due to the limited medical datasets utilized for model development, these models still lack essential
domain knowledge, which hampers their effectiveness. By combining biomedical literature and clinical notes, we generated the
largest biomedical pre-training dataset (129B tokens), compared to the previous efforts (i.e., 79B tokens in PMC-LLaMA as the
highest, see Table 1). (4) Evaluations have predominantly centered on medical question-answering (QA) tasks, lacking
comprehensive assessments on the generalizability of those foundation models across diverse medical tasks.
To overcome these limitations, we present Me-LLaMA, a novel family of open-source medical large language models that uniquely
integrate extensive domain-specific knowledge with robust instruction-following capabilities. Me-LLaMA comprises foundation
models (Me-LLaMA 13B and 70B) and their chat-enhanced versions, developed through comprehensive continual pretraining and
instruction tuning of LLaMA2 models. Leveraging the largest and most diverse medical dataset to date—combining 129 billion
pretraining tokens and 214,000 instruction samples from scientific literature, clinical guidelines, and electronic health record clinical
notes—Me-LLaMA excels across a wide spectrum of medical text analysis and real-world clinical tasks. Unlike prior studies, we
conduct the most extensive evaluation to date, covering six critical tasks—question answering, relation extraction, named entity
recognition, text classification, text summarization, and natural language inference—across twelve datasets from both biomedical
and clinical domains. Our results demonstrate that Me-LLaMA not only surpasses existing open-source medical LLMs in both zero-
shot and supervised settings but also, with task-specific instruction tuning, outperforms leading commercial LLMs such as
ChatGPT on seven out of eight datasets and GPT-4 on five out of eight datasets. Furthermore, to evaluate Me-LLaMA’s potential
clinical utility, we assessed the models on complex clinical case diagnosis tasks, comparing their performance with other
commercial LLMs using both automatic and human evaluations. Our findings indicate that Me-LLaMA’s performance is comparable
to that of ChatGPT and GPT-4, despite their substantially larger model sizes.

Our findings underscore the importance of combining domain-specific continual pretraining with instruction tuning to develop
effective large language models for the medical domain. Recognizing the significant resources required, we have publicly released
our Me-LLaMA models on PhysioNet under appropriate Data Use Agreements (DUAs) to lower barriers and foster innovation within
the medical AI community. Alongside the models, we provide benchmarks and evaluation scripts on GitHub to facilitate further
development. We anticipate that these contributions will benefit researchers and practitioners alike, advancing this critical field
toward more effective and accessible medical AI applications.

METHODS
We utilized LLaMA2 as the backbone model and developed Me-LLaMA through the process of continual pre-training and instruction
tuning of LLaMA2, using 129B tokens and 214K instruction tuning samples from general, biomedical, and clinical domains. Figure 1
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shows an overview of our study.

Continual Pre-Training Data
To effectively adapt backbone LLaMA2 models for the medical domain through continual pre-training, we developed a mixed
continual pre-training dataset, comprised of biomedical literature, clinical notes, and general domain data. It integrates over
3 million full biomedical articles from PubMed Central and over 15 million paper abstracts from PubMed, sourced from the Pile
dataset.14 To incorporate real-world clinical scenarios and reasoning, we included de-identified free-text clinical notes from MIMIC-

III,15 MIMIC-IV,16 and MIMIC-CXR.17 Moreover, to avoid the model forgetting acquired general knowledge, we incorporated a subset
from the RedPajama18 dataset, a replication of LLaMA2’s pre-training data. The dataset was structured with a 15:1:4 ratio of
biomedical, clinical, to general domain data and contains a total of 129 billion tokens, making it the largest pre-training dataset in
the medical domain currently available.

Medical Instruction Tuning Data
To enhance our model’s ability to follow instructions and generalize across diverse medical tasks, we further developed a novel
medical instruction tuning dataset with 214,595 high-quality samples from a wide array of data sources. This dataset stands out
from those used in existing medical LLMs due to its comprehensive coverage of both biomedical and clinical domains. Our data
sources included biomedical literature, clinical notes, clinical guidelines, wikidoc, knowledge graphs, and general domain data, as
shown in Table 2. The diverse tasks aim to refine the model’s ability to process and respond to medical information accurately and
contextually. Detailed prompts for each data and the data example are shown in Appendix 0.1, Table A.1.



Page 6/19

Table 2
The overall instruction tuning dataset.

Task Type Source Size Copy right

General Conversation Alpaca19 20,000 CC-BY-NC 4.0

Dolly20 CC-BY-SA-3.0

    ShareGPT21   Apache-2.0

Biomedical Conversation HealthCareMagic12 20,000 Reserved by HealthCareMagic and
Icliniq

Icliniq12

Instructions MedInstruct13 52,000 CC BY-NC 4.0

Question Answering Medical Flash Cards3 34,000 No commercialized use

MEDIQA22 2,220 CC BY 4.0

MedicationQA23 690 CC BY 4.0

LiveQA24 634 CC BY 4.0

WikiDocPatient3 5,490 CC BY-SA 4.0

GuidelineQA 2,000 Common Crawl (other)

Summarization PubMed Central 10,000 CC BY

Next Sentence Generation PubMed Central 20,000 CC BY

Key words prediction PubMed Central 10,000 CC BY

Causal Relation Detection PubMed25 2,450 CC BY

Relation Extraction UMLS knowledge
graph2

10,000 Openrail

Clinical QA, summarization, classification,
mortality prediction

MIMIC-III,15 MIMIC-
IV16

30,000 PhysioNet credentialed health data
use agreement 1.5.0

Training Details
As shown in Fig. 3, we developed the Me-LLaMA 13B and 70B base models by continual pre-training the LLaMA2 13B and 70B
models. These base models were then instruction-tuned to create the Me-LLaMA-13B-chat and Me-LLaMA-70B-chat models.

Me-LLaMA base models - continual pretraining LLaMA2

This phase aims to adapt LLaMA2 models to better understand and generate text relevant to the medical context using the pre-
training datasets we constructed. The training involves sequences of medical texts, where the model learned to predict the next
token in a sequence, maximizing the likelihood, where is the parameter set of LLaMA2 models. This training was executed on the
University of Florida’s HiPerGator AI supercomputer with 160 A100 80GB GPUs. We employed the AdamW optimizer with
hyperparameters set to to 0.9 and to 0.95, alongside a weight decay of 0.00001 and a learning rate of 8e-6. We used a cosine
learning rate scheduler with a 0.05 warmup ratio for gradual adaptation to training complexity and bf16 precision for computational
efficiency. Gradient accumulation was set to 16 steps, and training was limited to one epoch. We utilized DeepSpeed26 for model
parallelism.

Me-LLaMA chat models - instruction fine-tuning Me-LLaMA: We further fine-tuned Me-LLaMA base models, using the developed
214k instruction samples. The training objective is to maximize the likelihood:
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, where  represents the input instruction, is the ground truth response,
and  is the parameter set of Me-LLaMA. Executed using 8 A100 GPUs, the fine-tuning process was set to run for 3 epochs with a
learning rate of 1e-5. We used a weight decay of 0.00001 and a warmup ratio of 0.01 for regularization and gradual learning rate
increase. We utilized LoRA-based27 parameter-efficient fine-tuning.

Evaluation Benchmark

Biomedical and clinical NLP tasks: Existing studies2,3,10,11 in the medical domain have primarily focused on evaluating the QA task.
In this study, we build an extensive medical evaluation benchmark (MIBE), encompassing six critical text analysis tasks: QA, NER,
RE, Text Classification, Text Summarization and NLI. These tasks collectively involve 12 datasets meticulously sourced from
biomedical, and clinical domains as shown in Table 3.

Table 3
Details of data splits and evaluation metrics of each dataset in the evaluation benchmark.
Data Task Train Valid Test Evaluation

PubMedQA*28 QA 190,143 21,126 500 Accuracy, Macro-F1

MedQA29 QA 10,178 1,272 1,273 Accuracy, Macro-F1

MedMCQA*30 QA 164,540 18,282 4,183 Accuracy, Macro-F1

EmrQA31 QA 122,326 30,581 26,804 Exact match, F1

i2b232 NER 6,0875 7,400 7,451 Entity-level Macro-F1

DDI33 RE 18,779 7,244 5,761 Macro-F1

HoC34 Classification 1,108 157 315 Label-wise Macro-F1

MTSample35 Classification 4,999 500 999 Accuracy, Macro-F1

PubMed36 Summarization 117,108 6,631 6,658 Rouge, BERTScore

MIMIC-CXR17 Summarization 122,014 957 1,606 Rouge, BERTScore

BioNLI37 NLI 5,544 5,000 6,308 Accuracy, Macro-F1

MedNLI38 NLI 11,232 1,422 1,395 Accuracy, Macro-F1

Complex clinical case diagnosis task

we further assessed the effectiveness of Me-LLaMA in diagnosing complex clinical cases, a critical task given the increasing
burden of diseases and the need for timely and accurate diagnosis to support clinicians. Recent studies demonstrate that LLMs
have the potential to address this challenge.39 Specifically, we evaluated the diagnostic accuracy of Me-LLaMA on 70 challenging
medical cases from the New England Journal of Medicine clinicopathologic conferences (NEJM CPCs) published between January
2021 and December 2022, as collected from an existing study.39 The NEJM CPCs are well-known for their unique and intricate
clinical cases, which have long been used as benchmarks for evaluating challenging medical scenarios. In line with previous
research,39, 40 we employed automatic evaluations based on top-K (where k = 1,2,3,4,5) accuracy, defined as the percentage of
cases where the correct diagnosis appeared within the top-K positions of the differential diagnosis list predicted by the assessed
models. We utilized GPT-4o, a state-of-the-art (SOTA) LLM, to automatically assess whether each diagnosis from the model’s
differential diagnosis list matched the gold standard final diagnosis, consistent with these prior studies. Existing studies40 have
shown that LLM-based automatic calculation of top-K accuracy is comparable to human evaluation. Besides automatic evaluation,
we had a clinician specializing in internal medicine perform a manual evaluation of top-k accuracy (k = 1, 5). For more details on
data processing, automatic evaluation, and human evaluation, see Appendix A.3.

L (Θ ) = argmax∑ (xi,yi)∈ (X,Y )logp (yi∣∣ xi; Θ ) xi yi

Θ
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Evaluation Settings
We evaluated Me-LLaMA at two evaluation settings including zero-shot and supervised learning to evaluate their performance and
generalization ability across various tasks compared to baseline models.

Supervised Learning
In the supervised learning setting, we evaluated Me-LLaMA 13/70B base models’ performances adapted to downstream tasks. We
conducted the task-specific finetuning on Me-LLaMA base models (Me-LLaMA task-specific) with each training set of assessed
datasets in Table 6, and then assessed the performance of Me-LLaMA task-specific models on test datasets. We employed the
AdamW optimizer. For datasets with fewer than 10,000 training samples, we fine-tuned the models for 5 epochs, while for larger
datasets, the fine-tuning was conducted for 3 epochs. A uniform learning rate of 1e-5 was used across all datasets. Our baseline
models including LLaMA2 Models (7B/13B/70B)7: they are open-sourced LLMs released by Meta AI. PMC-LLaMA 13B2 is a

biomedical LLM continually pre-trained on biomedical papers and medical books. Meditron7B/70B10: they are medical LLMs based
on LLaMA2-7B/70B, continual pre-trained with a mix of clinical guidelines, medical papers and abstracts.

Zero-shot Learning
We assessed our Me-LLaMA 13/70B-chat models’ zero-shot learning capabilities, which are key for new task understanding and
response without specific prior training. We compared our models and baseline models’ zero-shot, using standardized prompts
(detailed in Table A.2 shown in Appendix 0.2) for each test dataset from Table 2. We compared Me-LLaMA 13/70B-chat models
with the following baseline models: ChatGPT/GPT-44,5: SOTA commercialized LLMs. We used the version of “gpt-3.5-turbo-0301” for
ChatGPT, and the version of “gpt-4-0314” for GPT-4. LLaMA2-7B/13B/70B-chat7 models were adaptations of the LLaMA2 series,

optimized for dialogue and conversational scenarios. Medalpaca-7B/13B3 models were based on LLaMA-7B/13B, specifically fine-
tuned for tasks in the medical domain. The PMC-LLaMA-13B-chat2 model is an instruction-tuned medical LLM based on PMC-
LLaMA-13B. The AlpaCare-13B13 model is specifically tailored for clinical tasks based on LLaMA-2 13B by instruction tuning.

Meditron 70B10 is a medical LLM, continually pre-trained with a mix of clinical guidelines, biomedical papers, and abstracts based
on LLaMA2 70B.

RESULTS

Overall Performance: Medical Text Analysis
Table 4 compares the performance of our Me-LLaMA 13/70B foundation models against other open LLMs in the supervised
setting. We can observe that the Me-LLaMA 13B model surpassed the similar-sized medical foundation model PMC-LLaMA 13B on
11 out of 12 datasets and outperformed the general foundation model LLaMA2 13B on 10 out of 12 datasets. Moreover, it is
noticed that the Me-LLaMA 13B model was competitive with LLaMA2 70B and Meditron 70B, which have significantly larger
parameter sizes, on 8 out of 12 datasets. As for 70B models, Me-LLaMA 70B achieved the best performance on 9 out of 12
datasets, when benchmarked against LLaMA2 70B and Meditron 70B.

 



Page 9/19

Table 4
The supervised fine-tuning performance of various open source LLMs on six tasks.

Task Dataset Metric LLaMA2
13B

PMC-
LLaMA
13B

Me-
LLaMA
13B

LLaMA2
70B

Meditron
70B

Me-
LLaMA
70B

  PubMedQA Acc 0.800 0.778 0.802 0.800 0.800* 0.814

Question
answering

Macro-
F1

0.560 0.544 0.562 0.560 - 0.572

MedQA Acc 0.467 0.456 0.493 0.598 0.607* 0.623

Macro-
F1

0.465 0.454 0.487 0.595 - 0.621

MedMCQA Acc 0.527 0.548 0.557 0.626 0.651* 0.643

Macro-
F1

0.524 0.545 0.551 0.625 - 0.640

EmrQA Acc 0.789 0.810 0.857 0.847 0.850 0.854

F1 0.730 0.738 0.751 0.751 0.751 0.751

Named entity
recognition

i2b2 Macro-
F1

0.904 0.901 0.906 0.913 0.908 0.910

Relation extraction DDI Macro-
F1

0.622 0.622 0.559 0.746 0.737 0.779

Classification HoC Macro-
F1

0.696 0.422 0.684 0.818 0.702 0.841

MTsample Macro-
F1

0.430 0.345 0.451 0.458 0.284 0.544

  PubMed R-L 0.191 0.091 0.197 0.211 0.197 0.209

Summarization BERTS 0.663 0.516 0.679 0.689 0.677 0.700

MIMIC-
CXR

R-L 0.437 0.139 0.453 0.440 0.458 0.476

  BERTS 0.816 0.694 0.821 0.813 0.824 0.828

Natural language
inference

BioNLI Macro-
F1

0.409 0.332 0.447 0.447 0.444 0.566

MedNLI Macro-
F1

0.881 0.868 0.903 0.884 0.897 0.916

*The performance of Meditron 70B on the PubMedQA, MedQA, and MedMCQA datasets is cited from the meditron paper10 to have
a fair comparison.

Table 5 shows the zero-shot performance of Me-LLaMA chat models and other instruction tuned open LLMs with chat ability on
various tasks. Among 13B models, Me-LLaMA 13B-chat outperformed LLaMA2 13B-chat, PMC-LLaMA-chat, Medalpaca 13B in
almost all 12 datasets. Me-LLaMA outperformed AlpaCare-13B in 9 out of 12 datasets. Among models with 70B parameters, Me-
LLaMA 70B-chat consistently outperformed LLaMA2-70B-chat on 11 out of 12 datasets. It is worth noting that Me-LLaMA13B-chat
showed better performance than LLaMA2-70B-chat—a model with a significantly larger parameter size—on 6 out of 12 datasets and
was competitive with the LLaMA2-70B-chat in 3 out of 6 remaining datasets.
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Table 5
The zero-shot performance of various open source LLMs with chat capability.

Task Dataset Metric LLaMA2-
13B-chat

PMC-
LLaMA-
chat

Medalpaca-
13B

AlpaCare-
13B

Me-
LLaMA
13B-
chat

LLaMA2-
70B-chat

Me-
LLaMA
70B-
chat

Question
answering

PubMedQA Accuracy 0.546 0.504 0.238 0.538 0.700 0.668 0.768

Macro-
F1

0.457 0.305 0.192 0.373 0.504 0.477 0.557

MedQA Accuracy 0.097 0.207 0.143 0.304 0.427 0.376 0.523

Macro-
F1

0.148 0.158 0.102 0.281 0.422 0.367 0.521

MedMCQA Accuracy 0.321 0.212 0.205 0.385 0.449 0.339 0.539

Macro-
F1

0.243 0.216 0.164 0.358 0.440 0.273 0.538

EmrQA Accuracy 0.001 0.053 0.000 0.001 0.048 0.050 0.119

F1 0.098 0.304 0.040 0.198 0.307 0.251 0.346

Named entity
recognition

i2b2 Macro-
F1

0.143 0.091 0.000 0.173 0.166 0.321 0.329

Relation
extraction

DDI Macro-
F1

0.090 0.147 0.058 0.110 0.214 0.087 0.283

Classification HoC Macro-
F1

0.228 0.184 0.246 0.267 0.335 0.309 0.544

MTsample Macro-
F1

0.133 0.083 0.003 0.273 0.229 0.254 0.384

  PubMed Rouge-L 0.161 0.028 0.014 0.167 0.116 0.192 0.169

Summarization BERTS* 0.671 0.128 0.117 0.671 0.445 0.684 0.678

MIMIC-
CXR

Rouge-L 0.144 0.139 0.010 0.134 0.400 0.131 0.418

  BERTS* 0.704 0.694 0.502 0.702 0.797 0.696 0.787

Natural
language
inference

BioNLI Macro-
F1

0.173 0.159 0.164 0.170 0.195 0.297 0.436

MedNLI Macro-
F1

0.412 0.175 0.175 0.275 0.472 0.515 0.675

*BERTS: BERTScore.41

Figure 2 further compares the performance of Me-LLaMA models in the zero-shot and supervised learning setting, against ChatGPT
and GPT-4. Due to privacy concerns, which preclude the transmission of clinical datasets with patient information to ChatGPT and
GPT-4, we conducted our comparison across 8 datasets that are not subject to these limitations. The results of ChatGPT and GPT-4
on three QA datasets are referenced from the OpenAI’s paper.1 We compared the Rouge-142 score for the summarization dataset
PubMed, the accuracy score for three QA datasets, and the Macro-F1 score for the remaining datasets. With task-specific
supervised fine-tuning, Me-LLaMA models surpassed ChatGPT on 7 out of 8 datasets and excelled GPT-4 on 5 out of 8 datasets. In
the zero-shot setting, Me-LLaMA models outperformed ChatGPT on 5 datasets; but it fell short on 7 datasets, when compared with
GPT-4. It’s crucial to highlight that Me-LLaMA’s model size is significantly smaller—13/70B parameters versus at least 175B for
ChatGPT and GPT-4. Despite this size discrepancy, Me-LLaMA models have showcased an impressive performance and a strong
ability for supervised learning and zero-shot learning across a broad spectrum of medical tasks, underscoring its efficiency and
potential in the field.

Clinical Application: Complex Clinical Case Diagnosis
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Figure 3 shows the top-K (1 ≤ K ≤ 5) accuracy of Me-LLaMA-70B-chat, ChatGPT, GPT-4, and LLaMA2-70B-chat, in the complex
clinical case diagnosis task. We can see Me-LLaMA-70B-chat model achieved comparable performance with GPT-4 and ChatGPT,
and significantly outperforms LLaMA2-70B-chat. The human evaluation result in Fig. 4 again shows that Me-LLaMA-70B-chat
outperformed GPT-4 in both top-1 and top-5 accuracy. These results demonstrated the potential of Me-LLaMA models for
challenging clinical applications.

Ablation Study: Impact of Continual Pretraining and Instruction Tuning
Table 6 compares the zero-shot performances of Me-LLaMA models and their backbone models LLaMA2, to illustrate the impact of
continual pre-training and instruction tuning. Table 3 clearly demonstrates that both continual pre-training and instruction tuning
significantly enhanced the zero-shot capabilities of models. For example, the Me-LLaMA 70B model showed an improvement in
performance ranging from 2.1–55% across various datasets in comparison to the LLaMA2 13B model, highlighting the benefits of
continual pre-training. The instruction tuning was also found to provide great increases in zero-shot performance. For instance, the
Me-LLaMA-70B-chat model displayed enhancements in performance from 3.7–41.9% relative to the Me-LLaMA 70B foundation
model, which had not undergone instruction tuning. This enhancement suggests the critical role of instruction finetuning in
boosting the model’s ability to leverage context in learning tasks, even without supervised fine-tuning and prior examples.
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Table 6
The comparison of zero-shot performances among Me-LLaMA models and their backbone models LLaMA2.

Dataset Metric LLaMA2 13B
(backbone)

Me-LLaMA
13B

(backbone 
+ pre-train)

Me-LLaMA-13B-
chat (backbone + 
pre-train + 
instruction tuning)

LLaMA2
70B

(backbone)

Me-LLaMA
70B

(backbone 
+ pre-train)

Me-LLaMA-
70B-chat

(backbone + 
pre-train + 
instruction
tuning)

PubMedQA Acc 0.216 0.266 0.700 0.132 0.682 0.768

Macro-
F1

0.177 0.250 0.504 0.152 0.520 0.557

MedQA Acc 0.000 0.000 0.427 0.005 0.281 0.523

Macro-
F1

0.000 0.000 0.422 0.009 0.350 0.521

MedMCQA Acc 0.003 0.003 0.449 0.012 0.447 0.539

Macro-
F1

0.006 0.005 0.440 0.024 0.396 0.538

EmrQA Acc 0.000 0.005 0.048 0.000 0.021 0.119

F1 0.038 0.122 0.307 0.000 0.172 0.346

i2b2 Macro-
F1

0.008 0.030 0.263 0.181 0.224 0.329

DDI Macro-
F1

0.035 0.036 0.214 0.034 0.118 0.283

HoC Macro-
F1

0.253 0.210 0.335 0.255 0.252 0.544

MTsample Macro-
F1

0.042 0.072 0.229 0.066 0.226 0.384

PubMed R-L 0.170 0.168 0.116 0.167 0.119 0.169

BERTS 0.654 0.654 0.445 0.654 0.654 0.678

MIMIC-
CXR

R-L 0.051 0.172 0.400 0.059 0.137 0.418

BERTS 0.566 0.697 0.797 0.577 0.649 0.787

BioNLI Macro-
F1

0.109 0.060 0.195 0.285 0.499 0.436

MedNLI Macro-
F1

0.172 0.206 0.472 0.265 0.256 0.675

DISCUSSION
Model Performance 

We introduced a novel medical LLM family including, Me-LLaMA 13B and Me-LLaMA 70B, which encode comprehensive medical
knowledge, along with their chat-optimized variants: Me-LLaMA-13/70B-chat, with strong zero-shot learning ability, for medical
applications. These models were developed through the continual pre-training and instruction tuning of LLaMA2 models, using the
largest and most comprehensive biomedical and clinical data. Compared to existing studies, we perform the most comprehensive
evaluation, covering six critical text analysis tasks. Our evaluations reveal that Me-LLaMA models outperform existing open-source
medical LLMs in various learning scenarios, showing less susceptibility to catastrophic forgetting and achieving competitive results
against major commercial models including ChatGPT and GPT-4. Our work paves the way for more accurate, reliable, and
comprehensive medical LLMs, and underscores the potential of LLMs on medical applications.
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In the zero-shot setting, medical LLMs including GPT-4 displayed low performance on certain tasks, e.g., NER and RE, which are also
noted by other studies.43,44 When compared with other NLP tasks with higher performance, we noticed that one of the main
reasons for low performance is that LLMs’ responses often lacked the conciseness and precision expected, with instances of
missing outputs noted. The unexpected outputs also cause significant challenges to automatic evaluation metrics. Therefore, more
investigation is needed to further improve medical LLMs’ performance across tasks in the zero-shot setting31 and enhance the
automatic assessment of these medical LLMs’ zero-shot capabilities. For the complex clinical case diagnosis, the Me-LLaMA-chat
model had competitive performance and even outperformed GPT-4 in human evaluation. Existing studies have demonstrated GPT-4
is arguably one of the strongest LLMs in this task.45 The robust performance of Me-LLaMA showed potential in assisting
challenging clinical applications. It is noticed that variations in test sizes and evaluation methods across different studies
contribute to the observed differences in performance between GPT-4 in our paper and other studies. We also noted that both the
Me-LLaMA-chat model and GPT-4 faced difficulties identifying the correct diagnosis within the top ranks, underscoring the difficulty
of this task. Additionally, while the NEJM CPCs offer a rigorous test for these models, they do not encompass the full range of a
physician's duties or broader clinical competence. Therefore, complex clinical diagnosis remains a challenging area that demands
more effective models and improved evaluation benchmarks to better capture the complexities of real-world clinical scenarios.

Model Development

During our model development, we noticed the importance of diversity of the data sources during the pre-training and instruction-
tuning phases. Our empirical results revealed that the PMC-LLaMA 13B model, which employed a data mix ratio of 19:1 between
medical and general domain data, exhibited around 2.7% performance drop across both general and biomedical tasks. On the other
hand, the Meditron models, 7B, and 70B, with a 99:1 mix ratio, demonstrated improvements in biomedical tasks, yet they still saw
around 1% declines in the performance of general tasks. In contrast, our models, which adopt a 4:1 ratio, have shown
enhancements in their performance for both general and medical tasks. This suggests that the integration of general domain data
plays a vital role in mitigating the knowledge-forgetting issue during pre-training.11,24,25 However, determining the optimal balance
between general domain data and specialized medical data is nontrivial, requiring careful empirical analysis. Future studies should
examine methods to better determine the optimal ratio.

Our model development also underscores the balance between cost and effectiveness in pre-training versus instruction tuning of
LLMs. Pre-training, exemplified by the LLaMA2 70B model, is notably resource-heavy, requiring about 700 hours on 160 A100 GPUs
per epoch. Conversely, instruction tuning is far less resource-demanding, needing roughly 70 hours on 8 A100 GPUs per epoch,
making it much more affordable than pre-training. Despite this, instruction tuning alone enhanced the performance of the Me-
LLaMA-13B-chat model, achieving improvements ranging from 12% to 45% across 11 out of 12 datasets when compared to its
backbone model – Me-LLaMA 13B, in the zero-shot setting. This efficiency advocates for prioritizing instruction tuning in scenarios
with limited resources, highlighting its potential for cost-effective model enhancement.

Use of Me-LLaMA Models 

The Me-LLaMA models, available in both 13B and 70B sizes, as well as in base and chat-optimized versions, unlock a wide array of
medical applications, guided by the crucial balance between model size and resource availability. The base models serve as robust
foundations with extensive medical knowledge, adaptable through supervised fine-tuning for specialized tasks. Conversely, the chat
versions excel in instruction-following ability and zero-shot learning, making them highly effective in zero-shot or few-shot learning
scenarios. Larger models, like the 70B, provide deeper understanding and more complex reasoning abilities, ideal for
comprehensive medical analyses. Yet, their deployment requires significant computing resources, posing challenges in resource-
limited settings. On the other hand, the 13B models offer a practical compromise, balancing efficiency with effectiveness, thus
ensuring broader accessibility for various applications. Our findings indicate that the Me-LLaMA 13B achieves performance on par
with the 70B variant across most datasets, suggesting its viability for diverse medical tasks where computational or financial
resources are a concern.

Limitations

It is crucial to acknowledge the limitations of the current versions of Me-LLaMA models. Like all existing LLMs, they are susceptible
to generating information with factual errors or biased information. To mitigate this, future studies could incorporate methodologies
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like reinforcement learning from human feedback (RLHF).46 This approach could align the models’ responses more closely with
human values and ensure they are grounded in factual medical knowledge. Another limitation is the current token handling capacity,
capped at 4096 tokens, which is a constraint inherited from the backbone LLaMA2 model. Addressing this limitation could involve
extending the models’ capability to handle longer contexts. This could be achieved by integrating advanced attention techniques,
such as sparse local attention,47 that are able to handle extensive contexts.
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Figure 1

Overview of the study. Our study has three main components including pre-training, instruction fine-tuning and evaluation. Pre-
training: we firstly developed the Me-LLaMA base models by continual pre-training LLaMA2 with 129 billion tokens from mixed pre-
training text data. Instruction fine-tuning: Me-LLaMA-chat models were further developed by instruction tuning Me-LLaMA base
models with 214K instructions. Evaluation: Finally, we evaluated the Me-LLaMA base models in a supervised learning setting across
six text analysis tasks, and the Me-LLaMA-chat models in a zero-shot setting on both text analysis tasks and a clinical diagnosis
task.
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Figure 2

The performance comparison of Me-LLaMA models in both zero-shot (Me-LLaMA zero-shot) and supervised learning (Me-LLaMA
task-specific) settings, against the zero-shot performance of ChatGPT and GPT-4.

Figure 3

The top-k (1<=k<=5) accuracy of different LLMs in complex clinical case diagnosis, with automatic evaluation.
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Figure 4

The top-1 and top-5 accuracy of Me-LLaMA-70B-chat and GPT-4 in complex clinical case diagnosis, with human evaluation.
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