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Abstract

Objective

This study aimed to assess the feasibility of the deep learning in generating T2 weighted

(T2W) images from diffusion-weighted imaging b0 images.

Materials and methods

This retrospective study included 53 patients who underwent head magnetic resonance

imaging between September 1 and September 4, 2023. Each b0 image was matched with a

corresponding T2-weighted image. A total of 954 pairs of images were divided into a training

set with 763 pairs and a test set with 191 pairs. The Hybrid-Fusion Network (Hi-Net) and

pix2pix algorithms were employed to synthesize T2W (sT2W) images from b0 images. The

quality of the sT2W images was evaluated using three quantitative indicators: Peak Signal-

to-Noise Ratio (PSNR), Structural Similarity (SSIM), and Normalized Mean Squared Error

(NMSE). Subsequently, two radiologists were required to determine the authenticity of (s)

T2W images and further scored the visual quality of sT2W images in the test set using a

five-point Likert scale. The overall quality score, anatomical sharpness, tissue contrast and

homogeneity were used to reflect the quality of the images at the level of overall and focal

parts.

Results

The indicators of pix2pix algorithm in test set were as follows: PSNR, 20.549±1.916; SSIM,

0.702±0.0864; NMSE, 0.239±0.150. The indicators of Hi-Net algorithm were as follows:

PSNR, 20.646 ± 2.194; SSIM, 0.722 ± 0.0955; NMSE, 0.469 ± 0.124. Hi-Net performs better

than pix2pix, so the sT2W images obtained by Hi-Net were used for radiologist assessment.

The two readers accurately identified the nature of the images at rates of 69.90% and
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71.20%, respectively. The synthetic images were falsely identified as real at rates of 57.6%

and 57.1%, respectively. The overall quality score, sharpness, tissue contrast, and image

homogeneity of the sT2Ws images ranged between 1.63 ± 0.79 and 4.45 ± 0.88. Specifi-

cally, the quality of the brain parenchyma, skull and scalp, and middle ear region was supe-

rior, while the quality of the orbit and paranasal sinus region was not good enough.

Conclusion

The Hi-Net is able to generate sT2WIs from low-resolution b0 images, with a better perfor-

mance than pix2pix. It can therefore help identify incidental lesion through providing addi-

tional information, and demonstrates the potential to shorten the acquisition time of brain

MRI during acute ischemic stroke imaging.

Introduction

Acute Ischemic stroke (AIS), one of the most common diseases in the elderly, accounts for

60% of strokes and has a high clinical mortality and disability rate [1–3]. Rapid and accurate

diagnosis is closely related to the prognosis and the subsequent quality of life in AIS patients

[4]. Owing to the high sensitivity of Magnetic Resonance (MR) imaging, particularly the Diffu-

sion Weighted (DW) imaging, which is sensitive to the restricted diffusion of free water

induced by cytotoxic edema in cerebral infarction areas, it has emerged as the most crucial

imaging technique for AIS diagnosis [5,6]. Conventional brain MR scans typically encompass

DW, T1 weighted (T1W), T2 weighted (T2W), and T2 FLAIR imaging sequences, all of which

are time-consuming to acquire. Given the criticality of time in AIS, encapsulated in the phrase

“time is life”, there may be a need for further optimization of these scanning procedures [7,8].

Shortening the acquisition time of brain MR imaging, such as reducing which of above

sequences mentioned, will provide an important therapeutic time window for the disease.

Some medical institutions have begun to use a single DW imaging to rule out AIS, but sin-

gle sequence imaging can lead to a lot of information loss, making it difficult to diagnose other

lesions (e.g., hemorrhagic stroke) [9]. DWI scanning requires images with multiple b-values.

Typically, the b = 0 sec/mm2 value image (b0 image) should be obtained first, followed by

images with high b-value (e.g., 800, 3000 sec/mm2) [10]. Although the b0 image bears visual

similarity to the T2W image, it is significantly less sharp than regular T2W images. The syn-

thetic T2W (sT2W) images generated from the b0 images could shorten the acquisition time

of brain MRI for stroke evaluation, and in the other hand, provide more information for the

clinic to rule out other lesions, such as hemorrhage and otitis media.

Currently, there is burgeoning interest in utilizing deep learning algorithms to generate

specific images, with the potential benefits of enabling immediate diagnosis, shortening scan-

ning time, and reducing metabolic stress by minimizing the use of contrast agents [11,12].

Some studies proposed a novel invertible neural network for multimodal image translation

[13]. Zhou et al. introduced the Hybrid-Fusion Network (Hi-Net) that comprehensively gener-

ates target modality images based on multimodality images, demonstrating advantages in MRI

generation [14]. Specifically, the Hi-Net learns the mapping from the source image to the tar-

get image through three modules: the modality-specific network learns the representation of

the input modality, and the fusion network learns its common latent representation, and then
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combines the latent representation with hierarchical features of the input modality through

synthesis network to synthesize the target image.

Therefore, the aim of this study was to use Hi-Net to generate sT2W images from B0 images

to explore the feasibility of shortening the acquisition time of brain MRI and excluding other

lesions during the diagnosis of AIS.

Materials and methods

1. Data collection

The Medical Research Ethics Committee of the hospital approved the study, and the require-

ment for written informed consent was waived. All data were fully anonymized during the

analyses. The data for this study were accessed on February 9, 2024. This retrospectively study

enrolled the individuals who underwent conventional brain MRI scans in the Hospital

between September 1, 2023 and September 4, 2023. Exclusion criteria comprised poor image

quality and age less than 18 years. Ultimately, the MRIs of 53 patients were included.

2. Image generation using Hi-Net

2.1 Data preprocessing. To accelerate the convergence of the deep learning network, the

input image is first normalized by the min-max normalization method. The calculation for-

mula is as follows:

xnew ¼
x � xmin

xmax � xmin
ð1Þ

Where xnew is the normalized image data, xmax is the maximum value of the input image data,

and xmin is the minimum value of the input image data.

The performance of the model can be improved by using the data enhancement method.

The original image of the training set is randomly rotated at specific angle (90˚, 180˚, 270˚, or

360˚). Following horizontal or vertical inversion, the new image is reshaped to 256×256. This

process generates eight new images from each original image, thereby expanding the training

set eightfold (Fig 1).

2.2 Image calculation. Hi-Net learns the mapping from existing images to target images

for specific synthesis tasks. The model consists of three main components: Modality-Specific

Network, Multi-Modal Fusion Network and Multi-Modal Synthesis Network [14].

A.Modality-Specific Network. The modality-specific network can capture the unique prop-

erty information of each modality and exploit the correlation between modalities to improve

model learning performance. The loss function for this network is as follows:

LR ¼
X

i
kxi � x̂ik1

ð2Þ

where xi represents each individual modality and x̂ i denotes the reconstructed image of xi, k�k1

represents the L1-norm. As shown in Fig 2, the network consists of convolutional layer, pool-

ing layer, upsampling layer, and activation functions, which are used to reconstruct the b0

image.

Fig 1. Data enhancement flow chart.

https://doi.org/10.1371/journal.pone.0316642.g001
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B.Multi-Modal Fusion network. The multi-modal fusion network utilizes acquired low-

level and high-level features to learn the similarities and differences among different modali-

ties. It connects multiple modules to dynamically weight different fusion strategies, establish-

ing connections for different modalities images.

C.Multi-Modal Synthesis Network. The design of multi-modal synthesis network is based

on the principle of Generative Adversarial Networks (GAN), which consists of generator and

discriminator. The key concept is to carry out continuous adversarial learning between genera-

tor and discriminator. The generator attempts to produce a T2W image that confuses the dis-

criminator, while the discriminator endeavors to distinguish the generated T2W images from

the real T2W images. Accordingly, the objective function of the generator can be formulated

as:

min
G

max
D
VðD;GÞ ¼ Ex�pdataðxÞ½logðDðxÞÞ� þ Ez�pzðzÞ½logð1 � DðGðzÞÞÞ� ð3Þ

where x represents the real image, G(z) represents the image generated by the G network, D()

represents the probability of the D network judging whether the image is real. During the

training process, the network D is trained to maximize log(D(x)) and log(1−D(G(z))), and the

network G is trained to minimize log(1−D(G(z))), that is, to maximize the loss of D, making

the generated samples more realistic.

As shown in Fig 3, during the training, the synthesis network calculating the loss between

the generated image and the real image. The model is then trained using the weight of the loss

adjusted model. The generated image gradually approaches the real image, rendering the dis-

criminator incapable of distinguishing the generated image and the authentic image.

2.3 Image generation using pix2pix. In order to better verify the effectiveness of the

model, an advanced algorithm pix2pix were used to comparison [15]. The pix2pix GAN was

the first success to use a conditional GAN to learn the mapping between paired images. It was

designed for general purpose image-to-image translation [16].

Fig 2. Workflow of modality-specific network. It illustrates how the original b0 image is reconstructed through a modality-specific network to capture the

characteristic properties of the modality.

https://doi.org/10.1371/journal.pone.0316642.g002
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All networks are trained using an ADAM trainer. A total of 4000 epochs were used to run

the model, with an initial learning rate of 0.001. This code is implemented by the PyTorch

library.

3. Image evaluation

3.1 Quantitative image evaluation. The T2W image was utilized as the gold standard for

the quantitative evaluate the sT2W image generated by the two algorithms. The evaluation

metrics included the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM), and

Normalized Mean Squared Error (NMSE).

The PSNR is generally used as an engineering parameter relating to the maximum signal

and background noise. The PSNR is defined by

MSE ¼
1

H �W

XH

i¼1

XW

j¼1

ðXði; jÞ � Yði; jÞÞ2 ð4Þ

PSNR ¼ 10 lg
ð2n � 1Þ

2

MSE

� �

ð5Þ

Where,H,W are the height and width of the image X or Y,MSE represents the mean square

error; and n is the number of bits per pixel. The unit of PSNR is usually dB.

The SSIM is a measure of structural similarity between the two images, which is defined as:

SSIM ¼
ð2mXmY þ C1Þð2sXY þ C2Þ

ðm2
X þ m

2
Y þ C1Þðs

2
X þ s

2
Y þ C2Þ

ð6Þ

Where C1 and C2 are constants to avoid the situation where the denominator is 0. μ represents

the mean of image. σ represents the standard noise variance of image. σXY represents the

covariance of image X and image Y.

Fig 3. Workflow of the multi-modal synthesis network. The multi-modal latent representation generated by the last module in the multi-modal fusion

network is synthesized into T2W image through the generator. The generated T2W image and the real T2W image are concurrently transmitted to the

discriminator, and the gap between the generated image and the real image is reduced by the loss function.

https://doi.org/10.1371/journal.pone.0316642.g003
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The NMSE is calculated as:

NMSEðX;YÞ ¼ kX � Yk2

2
=kXk2

2
ð7Þ

A higher PSNR, higher SSIM and lower NMSE indicate that the quality of the synthesized

image is better and closer to the real image.

3.2 Visual assessment. Two readers, Radiologist 1 (a junior radiologist with 5 years of

experience) and Radiologist 2 (an attending junior radiologist with 10 years of experience),

were required to determine the authenticity of (s)T2W images and further scored the visual

quality of sT2W images in the test set using a five-point Likert scale. The relevant visual assess-

ments were divided into two experiments.

In Experiment 1, the 191 pair of original T2W and sT2W images in the test set were ran-

domly numbered as 001–382. Two readers were tasked with independently evaluating the

properties of the images (real or synthetic) one by one without knowing the nature of the

image.

In Experiment 2, the readers have been told of the authenticity of the T2W images. They

were required to further rate the quality of the sT2W images relative to the real images. The

quality of overall synthetic image and focal region were both assessed by employing a 5-point

Likert scale (5 = very good, 4 = good, 3 = acceptable, 2 = poor, 1 = very poor). Four metrics:

overall image quality, sharpness, tissue contrast, and image homogeneity were scored to indi-

cate the overall quality of each sT2w image [15]. Subsequently, three metrics: the sharpness,

tissue contrast, and image homogeneity were scored to indicate the quality of focal area. The

focal parts included the brain parenchyma, skull and scalp, orbits, middle ear, and paranasal

sinuses. This study defined sharpness as the clarity of anatomical structures among the brain

parenchyma, cerebrospinal fluid, and skull. Tissue contrast refers to the contrast between the

above tissues, and image homogeneity refers to the uniformity and stability of the image.

4. Statistical analysis

All the statistical analysis were performed using SPSS software (version 26; IBM, Armonk, NY,

USA). All evaluation values, including quantitative parameters and Likert scores, are expressed

as the mean ± standard deviation.

The weighted kappa coefficient was used to evaluate the consistency of the image quality

scores between the two observers. The degrees of consistency were as follows: < 0.20, slight;

0.21–0.40, fair; 0.41–0.60, moderate; 0.61–0.80, substantial; and 0.81–1.0, almost perfect.

Results

1. Basic data

The MRI of 53 patients were ultimately included, with each patient contributing 18 pairs of 2D

T2W and b0 images. A total of 954 pairs of images were divided into the training set (763

pairs) and the test set (191 pairs).

2. Quantitative assessment of images

Fig 4 shows a schematic diagram of the images from test set. In the quantitative evaluation of

images generated by Hi-Net in the test set, the parameters were as follows: PSNR,

20.646 ± 2.194; SSIM, 0.722 ± 0.0955; NMSE, 0.469 ± 0.124. The parameters of images gener-

ated by pix2pix were as follows: PSNR, 20.549 ± 1.916; SSIM, 0.702 ± 0.0864; NMSE, 0.239

±0.150. Hi-Net algorithm presented higher PSNR, SSIM and lower NMSE than pix2pix, indi-

cated that Hi-Net performs better.
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3. Visual assessment

3.1 The images generated by Hi-Net were further analyzed. In Experiment 1, Table 1

shows the authenticity judgments by reader 1 and reader 2. The percentages of correct identifi-

cation of image nature by the two readers were 69.90% (267/382) and 71.20% (272/382),

Fig 4. Representative image in the test set. The left column shows the DWI b0 image (A/E/I/M), the middle column shows the sT2WI images generated by

Hi-Net (B/F/J/N), and pix2pix (C/G/K/O) the respectively, and the right column shows the original T2WI images (D/H/L/P).

https://doi.org/10.1371/journal.pone.0316642.g004

PLOS ONE Hybrid-fusion network generates synthetic high-resolution brain T2W imging from DWI b0 images

PLOS ONE | https://doi.org/10.1371/journal.pone.0316642 January 6, 2025 7 / 12

https://doi.org/10.1371/journal.pone.0316642.g004
https://doi.org/10.1371/journal.pone.0316642


respectively. The percentages of false identification of synthetic image as real were 57.6% (110/

192) and 57.1% (109/192), respectively.

3.2 In Experiment 2, the scores of the sT2W images are shown in Table 2. The average

kappa coefficient between the two radiologists for evaluating image quality was 0.655 (range,

0.498–0.774; P < 0.001) for the overall evaluation and 0.468 (range, 0.270–0.662; P< 0.001)

for the focal regions. The overall image quality, anatomical sharpness, tissue contrast and

image homogeneity of sT2W images were rated as good to excellent. The scores for different

focal areas suggested that the image quality for the middle ear was very good, for the brain

parenchyma, skull, and scalp was good. The image quality for the orbit and paranasal sinus

regions was poor to acceptable.

Table 1. Judgment of the authenticity of the images by two radiologists.

Reader 1 Reader 2

True Synthetic True Synthetic

T2W images (n = 191) 186 5 190 1

Synthetic T2W images by Hi-Net (n = 191) 110 81 109 82

https://doi.org/10.1371/journal.pone.0316642.t001

Table 2. Evaluation of the overall and focal quality of the images.

Reader 1 Reader 2 Kappa P value

Overall

Overall image quality 3.43 ± 1.23 3.51 ± 1.29 0.774 <0.001

Sharpness 3.82 ± 1.10 3.35 ± 1.08 0.749

Tissue contrast 4.05 ± 1.08 3.70 ± 0.99 0.498

Image homogeneity 3.55 ± 0.97 3.50 ± 1.00 0.597

Focal regions

Brain parenchyma

Sharpness 4.08 ± 1.02 3.87 ± 0.91 0.529 <0.001

Tissue contrast 4.34 ± 0.92 4.17 ± 0.83 0.507

Image homogeneity 3.93 ± 1.01 3.87 ± 0.90 0.525

Skull and scalp

Sharpness 3.89 ± 1.32 3.79 ± 1.03 0.434 <0.001

Tissue contrast 4.07 ± 1.25 4.03 ± 0.94 0.394

Image homogeneity 3.16 ± 1.13 3.63 ± 1.01 0.424

Orbit

Sharpness 2.05 ± 0.84 2.21 ± 1.12 0.610 <0.001

Tissue contrast 2.33 ± 1.19 2.37 ± 1.31 0.662

Image homogeneity 1.84 ± 0.92 2.21 ± 1.21 0.572

Middle ear

Sharpness 4.00 ± 0.94 4.09 ± 0.94 0.569 <0.001

Tissue contrast 4.45 ± 0.88 4.30 ± 0.90 0.475

Image homogeneity 4.25 ± 0.99 4.02 ± 0.93 0.445

Paranasal sinuses

Sharpness 2.05 ± 0.98 1.63 ± 0.81 0.273 <0.001

Tissue contrast 2.19 ± 1.16 1.91 ± 1.00 0.328

Image homogeneity 1.92 ± 1.02 1.63 ± 0.79 0.270

https://doi.org/10.1371/journal.pone.0316642.t002
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Discussion

To the best of our knowledge, this is the first preliminary exploration proposing the generation

of high-resolution T2W images based on DWI b0 images, with the aim of shortening the

acquisition time of brain MRI in AIS. We employed the Hi-Net and pix2pix algorithm to syn-

thesize T2W images. Hi-Net algorithm presented higher PSNR, SSIM and lower NMSE than

pix2pix, indicated that Hi-Net performs better. When compared with conventional T2W

images, sT2W images generated by Hi-Net achieved acceptable or even excellent in terms of

quantitative parameters and radiologists’ visual scores.

To generate translated modality images from given modality images is one of the popular

directions in deep learning. To minimize the use of contrast agents, Müller-Franzes et al.

utilized GANs to explore the synthesis of enhanced images from T1 combined with T2

images or low-contrast agent images [17]. Fujita et al. develop a deep learning algorithm to

generate MR angiography images based on 3D synthetic MRI raw data, which may be useful

as a screening tool for intracranial aneurysms without requiring additional scanning time

[18]. To reduce radiation dosimetry, an increasing number of researchers using deep learn-

ing on head and neck MR images to generate corresponding CT images [13,19,20]. Image

generation across modalities can aid in simplifying clinical examination procedures and

reducing unnecessary expenditures. We hope to use deep learning algorithm to generate

sT2W images to avoid T2W image scanning and speed up brain MR imaging acquisition

during stroke screening.

Compared with b0 image, the quality of sT2W image by the two algorithms, Hi-Net and

pix2pix, is improved. Hi-Net algorithm presented higher PSNR, SSIM and lower NMSE than

pix2pix, indicated that Hi-Net performs better. Currently, prevalent image generation algo-

rithms are rooted in the Variational Autoencoder (VAE), PixelRNN/PixelCNN, and GAN

series networks. The VAE network, characterized by its robust reasoning properties, is com-

monly used for simple digital fitting and image completion [21,22]. It can be applied to AI face

modification and beauty cameras, but is not good at generating clear images [23]. The Pix-

elRNN/PixelCNN model utilizes the probability chain rule and generates images pixel by

pixel. The advantage of this model is its high-quality images, typically widely applied to image

inpainting and coloring [24]. However, the speed of image generation by this network is very

slow in practical application [24]. GAN produces relatively high quality images, and the

dynamic interplay between the generator and the discriminator make it suitable for image

enhancement [25]. However, some shortcoming such as training instability, pattern collapse

and gradient disappearance limit its application. Therefore, various variants, such as condi-

tional GANs and deep convolutional GANs, have emerged. Deep convolutional GAN is

mainly used to improve the visual quality of generated image. The advantage of this approach

is that the training is stable [26], but the model needs to readjust the parameters when training

different data sets and is prone to model crash. Conditional GAN is mainly used for image

completion, style transfer, and image subtitle generation [27,28], it implements conditional

image generation by introducing conditional information into generator and discriminator.

Pix2pix is based on conditional GAN and performs well on image generation and image con-

version tasks [29–31]. Therefore, we choose pix2pix as the comparison algorithm, and finally

find that the synthetic image obtained by this algorithm has lower quality than Hi-Net.

The Hi-Net model in this study uses existing modality data as input to synthesize the target

modality. The modality-specific network is capable of capturing image feature information

from a single modality image, while the fusion network discerns connections between different

modalities. Furthermore, the synthetic network employs a generator and a discriminator to

synthesize target modality, in conjunction with the correlation between the acquired features
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and modalities. Ultimately, the cross-domain generation of images is achieved by combining

three models.

The visual assessment results from two radiologists indicated that the overall image quality

generated by Hi-Net ranged from acceptable to excellent, with the display of the brain paren-

chyma, skull and scalp, and middle ear region being particularly remarkable, even similar to

that of the original T2W images. We also observed that the quality of the regions close to the

skull (especially paranasal sinus) and orbit were poorer than that the other regions. This phe-

nomenon may be attributed to the fact that the signal acquisition of the skull base and orbital

region is not the focal point in the process of DW image scanning, resulting in blurred or

deformed appearance in these regions of the b0 image. Deep learning algorithms can generate

images based solely on a limited number of signals. Nevertheless, we believe that, even with the

current results, it is feasible to evaluate some crucial areas such as the brain parenchyma and

middle ear using sT2W images.

This study has several limitations. Firstly, it constitutes an initial exploration based on a

small sample size; multicenter studies with larger sample sizes are necessary to validate the

results of this study. Secondly, although our experiments confirmed that the superior quality

of the brain parenchyma, middle ear, skull, and scalp regions in the generated synthetic

images, the quality of the orbit and paranasal sinus regions still requires further improvement.

Subsequent studies will demand additional algorithms and larger sample sizes. Third, only the

feasibility of T2W image generation from b0 image was explored, and the feasibility of deep

learning to generated other sequence images, such as T1W, T2FLAIR, etc., based on DW

images needs to be further studied.

Conclusion

Deep learning algorithms including Hi-Net and pix2pix can generate high-resolution T2W

images from low-resolution b0 DW images, and the former shows a higher quantitative index.

The sT2W images generated by Hi-Net are acceptable when compared with the real T2W

images. They could provide a clearer contrast and offer a significant advantage in revealing

craniocerebral anatomy, especially in the middle ear, brain parenchyma, and skull regions.

This finding suggests that it is feasible to use deep learning to generate T2W images from b0

images thereby assisting incidental lesion through providing additional information as well as

reducing scanning time of brain MR imaging with multi-sequence during the AIS imaging.

Author Contributions

Conceptualization: Yun Peng, Lianggeng Gong.

Data curation: Ke Sun, Lianggeng Gong.

Formal analysis: Chunmiao Wu, Ke Sun, Liangxia Xiong.

Funding acquisition: Lianggeng Gong.

Investigation: Yun Peng, Liangxia Xiong, Xiaoyu Sun.

Methodology: Chunmiao Wu, Min Wan.

Software: Chunmiao Wu, Zihao Li.

Supervision: Lianggeng Gong.

Validation: Xiaoyu Sun.

Visualization: Chunmiao Wu.

PLOS ONE Hybrid-fusion network generates synthetic high-resolution brain T2W imging from DWI b0 images

PLOS ONE | https://doi.org/10.1371/journal.pone.0316642 January 6, 2025 10 / 12

https://doi.org/10.1371/journal.pone.0316642


Writing – original draft: Yun Peng, Chunmiao Wu.

Writing – review & editing: Min Wan, Lianggeng Gong.

References
1. Yue C, Lin Z, Lu C, Chen H. Efficacy of Monitoring Platelet Function by an Automated PL-12 Analyzer

During the Treatment of Acute Cerebral Infarction With Antiplatelet Medicine. Clin Appl Thromb

Hemost. 2021; 27:10760296211001119. Epub 2021/03/23. https://doi.org/10.1177/

10760296211001119 PMID: 33749312; PubMed Central PMCID: PMC7989109.

2. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart Disease and Stroke Sta-

tistics-2017 Update: A Report From the American Heart Association. Circulation. 2017; 135(10):e146–

e603. Epub 20170125. https://doi.org/10.1161/CIR.0000000000000485 PMID: 28122885; PubMed

Central PMCID: PMC5408160.

3. Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, et al. World Stroke Organization

(WSO): Global Stroke Fact Sheet 2022. Int J Stroke. 2022; 17(1):18–29. https://doi.org/10.1177/

17474930211065917 PMID: 34986727.

4. Ohtakara K, Arakawa S, Nakao M, Muramatsu H, Suzuki K. Volumetric-Modulated Arc-Based Re-radio-

surgery With Simultaneous Reduced-Dose Whole-Brain Irradiation for Local Failures Following Prior

Radiosurgery of Brain Oligometastases From Small Cell Lung Cancer. Cureus. 2023; 15(8):e44492.

Epub 2023/10/04. https://doi.org/10.7759/cureus.44492 PMID: 37791190; PubMed Central PMCID:

PMC10544458.

5. Yu W, Yang J, Liu L, Song W, Zhang Z, Xu M, et al. The value of diffusion weighted imaging in predicting

the clinical progression of perforator artery cerebral infarction. Neuroimage Clin. 2022; 35:103117.

Epub 2022/07/26. https://doi.org/10.1016/j.nicl.2022.103117 PMID: 35872435; PubMed Central

PMCID: PMC9421429.

6. Yu SC, Yin ZH, Zeng CF, Lin F, Ma L, Zhang Y, et al. Infarction Patterns and Recurrent Adverse Cere-

brovascular Events in Moyamoya Disease. Dis Markers. 2022; 2022:8255018. Epub 20220329. https://

doi.org/10.1155/2022/8255018 PMID: 35392499; PubMed Central PMCID: PMC8983186.

7. Prabhakaran S, Ruff I, Bernstein RA. Acute stroke intervention: a systematic review. JAMA. 2015; 313

(14):1451–62. https://doi.org/10.1001/jama.2015.3058 PMID: 25871671.

8. Lo EH. A new penumbra: transitioning from injury into repair after stroke. Nat Med. 2008; 14(5):497–

500. https://doi.org/10.1038/nm1735 PMID: 18463660.

9. Ter Telgte A, Wiegertjes K, Gesierich B, Baskaran BS, Marques JP, Kuijf HJ, et al. Temporal Dynamics

of Cortical Microinfarcts in Cerebral Small Vessel Disease. JAMA Neurol. 2020; 77(5):643–7. Epub

2020/02/18. https://doi.org/10.1001/jamaneurol.2019.5106 PMID: 32065609; PubMed Central PMCID:

PMC7042834 Vital GmbH and Pfizer Pharma GmbH outside the submitted work. No other disclosures

were reported.

10. Ahn S, Lee SK. Diffusion tensor imaging: exploring the motor networks and clinical applications. Korean

J Radiol. 2011; 12(6):651–61. Epub 2011/11/02. https://doi.org/10.3348/kjr.2011.12.6.651 PMID:

22043146; PubMed Central PMCID: PMC3194768.

11. Lenkowicz J, Votta C, Nardini M, Quaranta F, Catucci F, Boldrini L, et al. A deep learning approach to

generate synthetic CT in low field MR-guided radiotherapy for lung cases. Radiother Oncol. 2022;

176:31–8. Epub 2022/09/06. https://doi.org/10.1016/j.radonc.2022.08.028 PMID: 36063982.

12. Bahrami A, Karimian A, Arabi H. Comparison of different deep learning architectures for synthetic CT

generation from MR images. Phys Med. 2021; 90:99–107. Epub 2021/10/02. https://doi.org/10.1016/j.

ejmp.2021.09.006 PMID: 34597891.

13. Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med

Phys. 2017; 44(4):1408–19. Epub 2017/02/14. https://doi.org/10.1002/mp.12155 PMID: 28192624.

14. Zhou T, Fu H, Chen G, Shen J, Shao L. Hi-Net: Hybrid-Fusion Network for Multi-Modal MR Image Syn-

thesis. IEEE Trans Med Imaging. 2020; 39(9):2772–81. Epub 2020/02/23. https://doi.org/10.1109/TMI.

2020.2975344 PMID: 32086202.

15. Fujioka T, Mori M, Oyama J, Kubota K, Yamaga E, Yashima Y, et al. Investigating the Image Quality

and Utility of Synthetic MRI in the Breast. Magn Reson Med Sci. 2021; 20(4):431–8. Epub 2021/02/05.

https://doi.org/10.2463/mrms.mp.2020-0132 PMID: 33536401; PubMed Central PMCID:

PMC8922358.

16. Zhang H, Li H, Dillman JR, Parikh NA, He L. Multi-Contrast MRI Image Synthesis Using Switchable

Cycle-Consistent Generative Adversarial Networks. Diagnostics (Basel). 2022; 12(4). Epub 20220326.

https://doi.org/10.3390/diagnostics12040816 PMID: 35453864; PubMed Central PMCID:

PMC9026507.

PLOS ONE Hybrid-fusion network generates synthetic high-resolution brain T2W imging from DWI b0 images

PLOS ONE | https://doi.org/10.1371/journal.pone.0316642 January 6, 2025 11 / 12

https://doi.org/10.1177/10760296211001119
https://doi.org/10.1177/10760296211001119
http://www.ncbi.nlm.nih.gov/pubmed/33749312
https://doi.org/10.1161/CIR.0000000000000485
http://www.ncbi.nlm.nih.gov/pubmed/28122885
https://doi.org/10.1177/17474930211065917
https://doi.org/10.1177/17474930211065917
http://www.ncbi.nlm.nih.gov/pubmed/34986727
https://doi.org/10.7759/cureus.44492
http://www.ncbi.nlm.nih.gov/pubmed/37791190
https://doi.org/10.1016/j.nicl.2022.103117
http://www.ncbi.nlm.nih.gov/pubmed/35872435
https://doi.org/10.1155/2022/8255018
https://doi.org/10.1155/2022/8255018
http://www.ncbi.nlm.nih.gov/pubmed/35392499
https://doi.org/10.1001/jama.2015.3058
http://www.ncbi.nlm.nih.gov/pubmed/25871671
https://doi.org/10.1038/nm1735
http://www.ncbi.nlm.nih.gov/pubmed/18463660
https://doi.org/10.1001/jamaneurol.2019.5106
http://www.ncbi.nlm.nih.gov/pubmed/32065609
https://doi.org/10.3348/kjr.2011.12.6.651
http://www.ncbi.nlm.nih.gov/pubmed/22043146
https://doi.org/10.1016/j.radonc.2022.08.028
http://www.ncbi.nlm.nih.gov/pubmed/36063982
https://doi.org/10.1016/j.ejmp.2021.09.006
https://doi.org/10.1016/j.ejmp.2021.09.006
http://www.ncbi.nlm.nih.gov/pubmed/34597891
https://doi.org/10.1002/mp.12155
http://www.ncbi.nlm.nih.gov/pubmed/28192624
https://doi.org/10.1109/TMI.2020.2975344
https://doi.org/10.1109/TMI.2020.2975344
http://www.ncbi.nlm.nih.gov/pubmed/32086202
https://doi.org/10.2463/mrms.mp.2020-0132
http://www.ncbi.nlm.nih.gov/pubmed/33536401
https://doi.org/10.3390/diagnostics12040816
http://www.ncbi.nlm.nih.gov/pubmed/35453864
https://doi.org/10.1371/journal.pone.0316642


17. Muller-Franzes G, Huck L, Tayebi Arasteh S, Khader F, Han T, Schulz V, et al. Using Machine Learning

to Reduce the Need for Contrast Agents in Breast MRI through Synthetic Images. Radiology. 2023; 307

(3):e222211. Epub 2023/03/22. https://doi.org/10.1148/radiol.222211 PMID: 36943080.

18. Fujita S, Hagiwara A, Otsuka Y, Hori M, Takei N, Hwang KP, et al. Deep Learning Approach for Gener-

ating MRA Images From 3D Quantitative Synthetic MRI Without Additional Scans. Invest Radiol. 2020;

55(4):249–56. Epub 2020/01/25. https://doi.org/10.1097/RLI.0000000000000628 PMID: 31977603.

19. Pan S, Abouei E, Wynne J, Chang CW, Wang T, Qiu RLJ, et al. Synthetic CT generation from MRI

using 3D transformer-based denoising diffusion model. Med Phys. 2024; 51(4):2538–48. Epub

20231127. https://doi.org/10.1002/mp.16847 PMID: 38011588; PubMed Central PMCID:

PMC10994752.

20. Zhou L, Ni X, Kong Y, Zeng H, Xu M, Zhou J, et al. Mitigating misalignment in MRI-to-CT synthesis for

improved synthetic CT generation: an iterative refinement and knowledge distillation approach. Phys

Med Biol. 2023; 68(24). Epub 20231212. https://doi.org/10.1088/1361-6560/ad0ddc PMID: 37976548.

21. Elbattah M, Loughnane C, Guerin JL, Carette R, Cilia F, Dequen G. Variational Autoencoder for Image-

Based Augmentation of Eye-Tracking Data. J Imaging. 2021; 7(5). Epub 2021/08/31. https://doi.org/10.

3390/jimaging7050083 PMID: 34460679; PubMed Central PMCID: PMC8321343.

22. Cackowski S, Barbier EL, Dojat M, Christen T. ImUnity: A generalizable VAE-GAN solution for multicen-

ter MR image harmonization. Med Image Anal. 2023; 88:102799. Epub 20230324. https://doi.org/10.

1016/j.media.2023.102799 PMID: 37245434.

23. Han K, Xiang W. Inference-Reconstruction Variational Autoencoder for Light Field Image Reconstruc-

tion. IEEE Trans Image Process. 2022; 31:5629–44. Epub 2022/08/23. https://doi.org/10.1109/TIP.

2022.3197976 PMID: 35994531.

24. Sun J, Zhong G, Chen Y, Liu Y, Li T, Huang K. Generative adversarial networks with mixture of t-distri-

butions noise for diverse image generation. Neural Netw. 2020; 122:374–81. Epub 20191118. https://

doi.org/10.1016/j.neunet.2019.11.003 PMID: 31765986.

25. Jin R, Li X. Backdoor attack and defense in federated generative adversarial network-based medical

image synthesis. Med Image Anal. 2023; 90:102965. Epub 2023/10/08. https://doi.org/10.1016/j.media.

2023.102965 PMID: 37804585.

26. Kazeminia S, Baur C, Kuijper A, van Ginneken B, Navab N, Albarqouni S, et al. GANs for medical

image analysis. Artif Intell Med. 2020; 109:101938. Epub 2020/09/01. https://doi.org/10.1016/j.artmed.

2020.101938 PMID: 34756215.

27. Souibgui MA, Kessentini Y. DE-GAN: A Conditional Generative Adversarial Network for Document

Enhancement. IEEE Trans Pattern Anal Mach Intell. 2022; 44(3):1180–91. Epub 2020/09/08. https://

doi.org/10.1109/TPAMI.2020.3022406 PMID: 32894707.

28. Wolterink JM, Mukhopadhyay A, Leiner T, Vogl TJ, Bucher AM, Isgum I. Generative Adversarial Net-

works: A Primer for Radiologists. Radiographics. 2021; 41(3):840–57. Epub 20210423. https://doi.org/

10.1148/rg.2021200151 PMID: 33891522.

29. Sun J, Du Y, Li C, Wu TH, Yang B, Mok GSP. Pix2Pix generative adversarial network for low dose myo-

cardial perfusion SPECT denoising. Quant Imaging Med Surg. 2022; 12(7):3539–55. https://doi.org/10.

21037/qims-21-1042 PMID: 35782241; PubMed Central PMCID: PMC9246746.

30. Sun H, Fu X, Abraham S, Jin S, Murphy RF. Improving and evaluating deep learning models of cellular

organization. Bioinformatics. 2022; 38(23):5299–306. https://doi.org/10.1093/bioinformatics/btac688

PMID: 36264139; PubMed Central PMCID: PMC9710556.

31. Park KS, Moon JB, Cho SG, Kim J, Song HC. Applying Pix2pix to Translate Hyperemia in Blood Pool

Image into Corresponding Increased Bone Uptake in Delayed Image in Three-Phase Bone Scintigra-

phy. Nucl Med Mol Imaging. 2023; 57(2):103–9. Epub 20230103. https://doi.org/10.1007/s13139-022-

00786-y PMID: 36998587; PubMed Central PMCID: PMC10043061.

PLOS ONE Hybrid-fusion network generates synthetic high-resolution brain T2W imging from DWI b0 images

PLOS ONE | https://doi.org/10.1371/journal.pone.0316642 January 6, 2025 12 / 12

https://doi.org/10.1148/radiol.222211
http://www.ncbi.nlm.nih.gov/pubmed/36943080
https://doi.org/10.1097/RLI.0000000000000628
http://www.ncbi.nlm.nih.gov/pubmed/31977603
https://doi.org/10.1002/mp.16847
http://www.ncbi.nlm.nih.gov/pubmed/38011588
https://doi.org/10.1088/1361-6560/ad0ddc
http://www.ncbi.nlm.nih.gov/pubmed/37976548
https://doi.org/10.3390/jimaging7050083
https://doi.org/10.3390/jimaging7050083
http://www.ncbi.nlm.nih.gov/pubmed/34460679
https://doi.org/10.1016/j.media.2023.102799
https://doi.org/10.1016/j.media.2023.102799
http://www.ncbi.nlm.nih.gov/pubmed/37245434
https://doi.org/10.1109/TIP.2022.3197976
https://doi.org/10.1109/TIP.2022.3197976
http://www.ncbi.nlm.nih.gov/pubmed/35994531
https://doi.org/10.1016/j.neunet.2019.11.003
https://doi.org/10.1016/j.neunet.2019.11.003
http://www.ncbi.nlm.nih.gov/pubmed/31765986
https://doi.org/10.1016/j.media.2023.102965
https://doi.org/10.1016/j.media.2023.102965
http://www.ncbi.nlm.nih.gov/pubmed/37804585
https://doi.org/10.1016/j.artmed.2020.101938
https://doi.org/10.1016/j.artmed.2020.101938
http://www.ncbi.nlm.nih.gov/pubmed/34756215
https://doi.org/10.1109/TPAMI.2020.3022406
https://doi.org/10.1109/TPAMI.2020.3022406
http://www.ncbi.nlm.nih.gov/pubmed/32894707
https://doi.org/10.1148/rg.2021200151
https://doi.org/10.1148/rg.2021200151
http://www.ncbi.nlm.nih.gov/pubmed/33891522
https://doi.org/10.21037/qims-21-1042
https://doi.org/10.21037/qims-21-1042
http://www.ncbi.nlm.nih.gov/pubmed/35782241
https://doi.org/10.1093/bioinformatics/btac688
http://www.ncbi.nlm.nih.gov/pubmed/36264139
https://doi.org/10.1007/s13139-022-00786-y
https://doi.org/10.1007/s13139-022-00786-y
http://www.ncbi.nlm.nih.gov/pubmed/36998587
https://doi.org/10.1371/journal.pone.0316642

