Skip to main content
. 2025 Jan 6;20(1):e0314086. doi: 10.1371/journal.pone.0314086

Table 1. Classification result on the ModelNet40 dataset.

Methods Input OA (%) Parameters FLOPs
Other Learning-based Methods
SO-Net [30] 2048×3 90.9 - -
Point2Sequence [31] 2048×3 92.6 - -
PointCNN [14] 1024×3 91.7 - -
PointNet [1] 1024×3 89.2 3.47 M 0.45 G
PointNet++(SSG) [2] 1024×3 92.4 1.48 M 0.87 G
PointNet++(MSG) [2] 1024×3 92.7 1.75 M 4.07 G
DGCNN [17] 1024×3 92.6 1.82 M 2.43 G
DGCNN+Pnp-3D [32] 1024×3 92.5 1.93 M 3.57 G
PointMLP [33] 1024×3 92.8 13.23 M 15.73 G
DualMLP [34] 1024×3 93.1 14.32M -
G-PointNet++ [35] 1024×3 92.7 - -
Transformer-based Methods
GBNet [36] 1024×3 92.7 8.79 M 9.86 G
Point Transformer [37] 1024×3 91.1 9.85 M 18.40 G
PCT [5] 1024×3 92.4 2.88 M 2.32 G
3DGTN [38] 1024×3,N 93.3 5.12 M 3.09 G
DCNet [39] 1024×3 92.4 2.21 M 7.80 G
PointConT [40] 1024×3 92.9 - -
Ours 1024×3 93.3 2.43 M 5.60 G

† represents open source code recapitulation network experiments on NVIDIA GEFORCE RTX 4060Ti GPU. N a represents normal vector.