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Temperature profoundly impacts organismal physiology and ecological dynamics, particularly affecting ectothermic species and
making them especially vulnerable to climate changes. Although complex physiological processes usually involve dozens of enzymes,
empirically it is found that the rates of these processes often obey the Arrhenius equation, which was originally derived for single-
enzyme-catalyzed reactions. Here we have examined the temperature scaling of the early embryonic cell cycle, with the goal of
understanding why the Arrhenius equation approximately holds and why it breaks down at temperature extremes. Using experimen-
tal data from Xenopus laevis, Xenopus tropicalis, and Danio rerio, plus published data from Caenorhabditis elegans, Caenorhabditis
briggsae, and Drosophila melanogaster, we find that the apparent activation energies (Ea values) for the early embryonic cell cycle
for diverse ectotherms are all similar, 76 ± 9 kJ/mol (mean ± S.D., n = 6), which corresponds to a Q10 value of 2.8 ± 0.4 (mean ±
S.D., n = 6). Using computational models, we find that the approximately Arrhenius scaling and the deviations from the Arrhenius
relationship at high and low temperatures can be accounted for by biphasic temperature scaling in critical individual components of
the cell cycle oscillator circuit, by imbalances in the Ea values for different partially rate-determining enzymes, or by a combination
of both. Experimental studies of cycling Xenopus extracts indicate that both of these mechanisms contribute to the general scaling
of temperature, and in vitro studies of individual cell cycle regulators confirm that there is in fact a substantial imbalance in their
Ea values. These findings provide mechanistic insights into the dynamic interplay between temperature and complex biochemical
processes, and into why biological systems fail at extreme temperatures.
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Introduction

Living organisms are continually influenced by their environment, and embryos are particularly sensitive to environmental
changes. Even subtle perturbations during critical developmental windows can significantly impact embryo viability, as well
as embryonic and post-embryonic performance (1). For example, changes in temperature can profoundly influence embryonic
development, influencing the speeds of biochemical reactions and affecting the overall physiology, behavior, and fitness of the
organism (2–6).

Ectotherms, in particular, rely critically on the ambient temperature as they have minimal ability to generate heat internally.
Each ectothermic species has a specific temperature range associated with its geographic distribution on the planet (7, 8).
While adult stages of ectotherms can adopt various physiological and behavioral strategies to maintain optimal temperatures,
such as taking shelter when it is too hot (6), embryos possess limited mechanisms to cope with environmental challenges,
making them the most vulnerable life stage to environmental stress (9, 10). Temperature plays a pivotal role in determining the
fertilization rate of eggs, the growth and survival of embryos, and in certain cases, even the gender of offspring, as observed in
many turtle species and all crocodiles (11). Assessing the thermal impact on and sensitivity of embryonic development across
a range of temperatures provides essential insights into species responses and vulnerability to the challenges posed by global
warming (8, 9, 12). Indeed, the impact of global warming is already evident in certain sea turtle species, where a diminishing
number of male offspring is observed (13).

But even without this shifting landscape and the challenges of their changing ecosystems, ectotherms face the daunting
challenge of needing to have their biochemistry function reliably over a wide range of temperatures. Given that complex
metabolic networks, signaling systems, and developmental processes may involve dozens of enzymes, the question arises as to
how much variation in the individual enzymes’ temperature scaling can be tolerated before the system fails.

The influence of temperature on physiology and development has been a subject of study for over a century (3, 4, 14). The rela-
tionship between temperature and the speed of many diverse biological processes is often well approximated by the Arrhenius
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equation (15–22). Originally formulated for simple, one-step chemical reactions, the Arrhenius equation describes the rate of a
chemical reaction (k) as a function of the absolute temperature (T ):

k(T ) = Ae
→Ea
RT , (1)

where Ea denotes a temperature-independent activation energy, R is the universal gas constant, and the pre-exponential factor
A sets the maximal reaction rate at high temperatures. While derivable for elementary chemical reactions from thermodynamic
principles, this equation is considered an empirical law applicable to various physiological rates (16). However, deviations
from this Arrhenius response are consistently observed at higher temperatures (18, 22–25). The decline is often attributed to
the heat denaturation of some critical enzyme (18, 25–27), and the trade-off between increasing reaction rate and increasing
denaturation yields an optimal temperature. Moreover, the thermal response of processes at the cellular level is influenced not
only by the reactions of enzymes but also by active cellular responses to temperature changes. For instance, in response to
stress, cells may up-regulate heat shock proteins, aiding in protein refolding (28). In addition, budding yeast can up-regulate
the production of viscogens like trehalose and glycogen to help maintain normal diffusion kinetics at elevated temperature
(29).

Recently, the topic of biological temperature scaling has garnered renewed interest, thanks to the ability to obtain accurate,
high resolution data through time-lapse microscopy. This approach has provided fresh insights into early development in
several model systems (30–33). Overall these findings reaffirm the utility of the Arrhenius equation as a reliable approximate
description of the temperature scaling of embryonic development. This was particularly clear in studies of the timing of the
first embryonic cell cycle in C. elegans and C. briggsae, two closely related nematodes. In both species, the duration of the
cell cycle as a function of temperature precisely agreed with the Arrhenius equation over a broad temperature range, with some
deviation then occurring when the embryos were close to their maximum tolerated temperatures (31). The two nematodes also
were found to have almost identical Arrhenius energies (Ea values), which raises the possibility that the activation energies of
cell cycle regulators may be evolutionarily constrained to a single standard value (31).

Xenopus laevis extracts and embryos have proven to be powerful systems for the quantitative analysis of the early embryonic
cell cycle. The cell cycle can be experimentally studied both in vivo and in extracts, and extracts can be manipulated and
observed in ways that are difficult with intact embryos. In addition, much is already known about cell cycle biochemistry
in this system, providing a rich and highly quantitative context for further studies. And finally, the dynamics of the cell
cycle can be successfully reproduced with relatively simple mathematical models that can add depth to the understanding of
experimental findings. Crapse and colleagues have begun to examine how the Xenopus embryonic cell cycle is affected by
temperature, and they have found some striking similarities to the behaviors seen in C. elegans and C. briggsae: the cell cycle
period obeys the Arrhenius equation at least approximately, and the measured Ea value for the cell cycle is similar to those in
the two nematodes (32) .

Here we have leveraged the Xenopus system to address several outstanding questions on the principles of biological temperature
scaling. First, we compared the Xenopus laevis temperature scaling to that in two other ectothermic vertebrate model systems,
Xenopus tropicalis and Danio rerio, and compared the findings to previously reported data from the invertebrates C. elegans,
C. briggsae, and Drosophila melanogaster. Second, we asked how well the temperature scaling is described by the Arrhenius
equation, and based on ordinary differential equation modeling of the cell cycle, under what circumstances would the cell cycle
be expected to exhibit Arrhenius scaling, and under what circumstances would it be expected to deviate. Finally, we asked how
the different individual phases of the cell cycle vary with temperature, and found that interphase and mitosis scale differently
and that this difference can be accounted for by the in vitro thermal properties of key cell cycle regulators. These studies provide
insight into the principles that allow ectotherms to tolerate a range of temperatures, and suggest mechanisms for why the cell
cycle oscillator fails at temperature extremes.

Results

Temperature scaling of cell division timing in the Xenopus laevis embryo. Building on the initial studies of Crapse and
colleagues (32), we set out to measure the temperature dependence of the timing of several early cell cycle events in the devel-
oping early Xenopus laevis embryo (Figure 1A-B). Xenopus laevis eggs were fertilized and imaged in a temperature-controlled
chamber (first described in Ref. (34)) by time-lapse microscopy (Fig. 1A). We then analyzed the movies (Supplemental Videos
1-2) to visually identify various early developmental events (Fig. 1B). First, we scored the start of the fertilization wave, a
ripple in the egg’s cortex that quickly spreads from the sperm entry point across the egg (at time tFW after fertilization). This
wave is due to a trigger wave of elevated intracellular calcium, and it contributes to the block to polyspermy and coordinates
the start of the cell cycle (35). Next, we measured the start of the first surface contraction wave, which emanates from the
animal pole and travels toward the vegetal pole (36, 37) (at time tSCW after fertilization). This wave marks mitotic entry and
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has been argued to be caused by the interaction of a spherical wave of Cdk1 activation originating at the nucleus (38–40) with
the cortical cytoskeleton (41–43). Finally, we assessed the cleavages that complete each of the first four cell cycles. The first
cleavage begins about 95 min after fertilization at 18°C, and the next several cycles occur every 35 min thereafter (44–46). For
multicellular embryos, we took the time at which the earliest cell began to divide to be the cleavage time, but note that within
an embryo, these cell divisions were nearly synchronous. The timing of all of these events was recorded for about 10 different
embryos at each temperature.

For temperatures between 10°C and 28°C, fertilized embryos reliably cycled. Just above (to 29°C) and below (to 9°C) this range
there were general still a few cycles, and these data are included in Fig. 1. We calculated the time intervals between various
events and plotted how they vary with temperature (Fig. 1C-D). Note that the Arrhenius equation (Eq. (2)) can be rearranged to
relate the duration of a process, !t, to the absolute temperature:

!t[T ] = 1
k[T ] = 1

A
e

Ea
RT , (2)

ln!t[T ] = ln 1
A

+ Ea

R

1
T

. (3)

Thus we replotted the data as ln!t versus 1/T (Fig. 1D). Over a range of 12°C to 21°C, the data were well-approximated by
Eq. (3), and from the fitted slopes we extracted Arrhenius energies (Ea). The earliest measured event, the interval between
the start of the fertilization wave and the start of the first surface contraction wave, was found to correspond to an Arrhenius
energy of 62 ± 3 kJ/mol, in agreement with previous findings (32). This Arrhenius energy is well within the range said to be
typical for enzymes, 20 - 100 kJ/mol (47–49). Above and below the 12 - 21°C temperature range, the durations deviated from
the linear relationship, with longer than expected durations seen at both ends of the range (Fig. 1D).

Similar response curve shapes and deviations from linearity were found for the Arrhenius plots of the later cell cycle periods
(Fig. 1D). The apparent activation energy progressively increased with each cell cycle (Fig. 1D). The statistical significance
of the activation energy differences was confirmed using a bootstrapping method, providing a probability distribution for the
apparent activation energies (Fig. 1E, Fig. S1A, Supplementary Note 2).

Finally, we calculated the deviation of the data from this fitted function as represented by the mean square error (MSE) over the
whole measured temperature range (9°C to 29°C) and over the Arrhenius range (12°C to 21°C). As expected, the mean square
error was much higher over the whole temperature range than within the selected range, indicating that the Arrhenius equation
does not fit the data well over the whole measured data range (Fig. S1B).

Diverse ectothermic species yield similar temperature scaling. Next we examined the timing of the early cell cycles
in two additional vertebrate model organisms, the frog X. tropicalis (Supplemental Videos 3-4) and the zebrafish D. rerio
(Supplemental Videos 5-6). The three vertebrates and the two nematodes span a broad range in evolution (Fig. 2A).

The period of the early embryonic cell cycle as a function of temperature for all five organisms is shown in Fig. 2B. For
simplicity, here we have pooled data for the durations of the second to fourth cell cycles. In all cases, the early embryonic cell
cycle could proceed over a 15-25° range of temperatures. In general, the five organisms showed reasonable agreement with the
Arrhenius equation, especially toward the lower end of their temperature ranges (Fig. 2B). Xenopus laevis was something of
an outlier in this regard; its Arrhenius plot is bowed throughout the temperature range (Fig. 2B, blue). The apparent Arrhenius
energies—the slopes of the Arrhenius plots—were quite similar, ranging between 68 and 83 kJ/mol, or 73 ± 6 kJ/mol (mean ±
S.D., n = 5).

As might be expected, the nominal ambient environmental temperatures for all five organisms fell within the range found to be
compatible with cell cycle oscillations (Fig. 2C). The temperature ranges for Xenopus tropicalis and Danio rerio were shifted
toward higher temperatures compared to Xenopus laevis, reflecting the fact that the former two evolved in and live in warmer
regions (Fig. 2C, orange and green vs. blue). A similar shift in the viable temperature range has been noted for the nematode
worms C. elegans and C. briggsae (31), replotted here in red and purple. In all cases, the maximum temperature compatible
with cycling was closer to the nominal environmental temperature range than the minimum temperature was (Fig. 2C).

For four of the five organisms (C. elegans, C. briggsae, D, rerio, and X. tropicalis) there was sufficient upward deflection of
the temperature curves toward the high end of the temperature range to define an optimal growth temperature corresponding
to a minimal cell cycle duration (Fig. 2C). For Xenopus laevis, the fastest cell cycles were found at the highest temperature
compatible with viability (Fig. 2C). In all cases the optimal temperature was within a few degrees of the maximal permissible
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temperature Tmax (Fig. 2C). The optimal temperatures were generally somewhat higher than the typical environmental
temperature ranges (Fig. 2C). This may reflect a trade-off between maximal speed at higher temperatures and maximal safety
margins in the middle of the operating temperature range. Note that at the temperature optima, the slopes of the Arrhenius
plots are zero. The curves are also shallow at the optima, which means that changes of several degrees produce little changes
in the cell cycle period. The period can be regarded as temperature-invariant or temperature-compensated in this regime.

Data are also available for the temperature scaling of various embryonic processes in Drosphila melanogaster. Extensive data
are available for the timing of the 13th cycle (32), and these data are replotted in Fig. S2A. Like the Xenopus laevis Arrhenius
plot, the Drosophila plot is bowed throughout the temperature range, and, at the cold end of the temperature range, it yielded
an Arrhenius energy of → 109 kJ/mol (Fig. S2B). Note, however, that this cycle differs from the earlier Drosophila cycles and
the other embryonic cycles examined here in possessing a G2 phase, and so it may not scale the way the earlier cycles do (50).
Some data are available for the 11th nuclear cycle (NC11) in the syncytial Drosophila embryo (Fig. S3) (33); this cycle is
more similar to the other organisms’ cycles analyzed here in its lack of gap phases. From the published data, we calculated an
Arrhenius energy of 91 ± 8 kJ/mol for the duration of NC11 (mean ± std. err. of the fitted value (Fig. S2A), about 25% higher
than the energies calculated for the early embryonic cycles of the other 5 model organisms. Taken together, the six organisms
yielded an average Arrhenius energy for the early embryonic cell cycles of 76 ± 9 kJ/mol (mean ± std. dev.). Although the
nominal periods of the cell cycles varied greatly, from about 5 min for C. elegans and C. briggsae to 25 min for X. laevis at
room temperature, the temperature scaling factors for these organisms varied by only about 12%.

Q10 values vary continuously with temperature from about 1 to 4. The effect of temperature on a biological process is
often expressed as a Q10 value, which quantifies the fold-change in the rate of a process across a temperature range of 10°C
(51):

Q10[T ] = k[T +10]
k[T ] (4)

For a process described by the Arrhenius equation, the Q10 value reduces to:

Q10[T ] = e
Ea
RT → Ea

R(T +10) . (5)

For the three vertebrates and the three invertebrates, the Q10 values were very similar; if we take T =20°C and use the Ea

values from linear fits over the Arrhenius temperature ranges, the Q10 values ranged from 2.5 to 3.4, with a mean of 2.8 and a
standard deviation of 0.4 (Fig. 2C). This indicates that the timing of the early embryonic cell cycle scales very similarly with
temperature for diverse organisms.

Even for a process that strictly obeys the Arrhenius equation, the Q10 value varies with temperature, and for non-Arrhenius pro-
cesses, the variation can be substantial. Thus the common practice of providing a single Q10 value to describe the temperature
dependence of a process is perhaps not optimal. For this reason, a local Q10 value, defined as:

Q10[T ] = e
10 k↑[T ]

k[T ] , (6)

where k’(T) is dk(T )
dT , can be calculated and plotted (see Supplementary Note 1). If the local Q10 value is greater than 1,

the process is speeding up with increasing temperature and the Arrhenius slope is positive; if it is less than 1, the process is
slowing down with temperature and the Arrhenius slope is negative. As shown in Fig. 2D, for all organisms except Xenopus
laevis, the local Q10 value plateaued at approximately 2.8 at the low end of the temperature range, and fell to less than 1 at
high temperatures. For Xenopus laevis, the local Q10 value varied continuously from about 1 to 4 throughout the temperature
range (Fig. 2D, Fig. S2D).

Different generalizations of the Arrhenius equation can describe the observed temperature scaling. Although the
Arrhenius relationship approximated the temperature scaling data, in all cases there was some deviation. Several generaliza-
tions of the Arrhenius equation, based on distinct physical assumptions, have been previously suggested (32, 52–56); here we
have evaluated how well three of these generalized Arrhenius equations fit the data:

The Double Exponential (DE) function, which contains two exponential functions and four free parameters:

k(T ) = A1e
→Ea1

RT +A2e
→Ea2

RT . (7)
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A similar double exponential function has been used to fit the growth rate of E. coli based on the transition state theory of
Eyring (52), where the additional exponential term accounts for reversible protein denaturation at high temperature (53), and
it has already been used to fit the temperature scaling of the early cell divisions in the nematode worms C. elegans and C.
briggsae (31). We employed two distinct approaches to fit the data to a DE function. Firstly, we adopted the sequential fitting
method, denoted as DES for double exponential sequential, as outlined in (31). This method involves two consecutive fits:
initially, a fit of the "Arrhenius interval" at lower temperatures using a single exponential (Ea1,A1) is performed. Subsequently,
with these parameters held fixed, another single exponential fit is conducted to determine the values of (Ea2,A2). Secondly,
we executed a full nonlinear fit, denoted as DEN for double exponential nonlinear, aiming to directly ascertain all four opti-
mal parameters (Ea1,A1, Ea2,A2). This approach is computationally more intensive compared to the sequential fitting method.

The Quadratic Exponential (QE) function, which contains three free parameters, has been derived in the limit of large system
size and if the biochemical control network has a bias towards a target state (56). This function has recently been shown
to provide a good description of the temperature scaling of early developmental events in X. laevis and in D. melanogaster
(32, 56):

k(T ) = Ae
→Ea

R

(
1
T + B

T 2
)
. (8)

The Power law – Exponential (PE) function, which is based on Eyring-Evans-Polanyi (54) transition state theory and has been
put forward as a general theory for temperature dependence in biology (55):

k(T ) = AT Be
→Ea
RT . (9)

These three alternative functional forms all provided a much better fit to the experimentally measured data than did the
regular Arrhenius relationship, and the double exponential nonlinear fit (DEN) performed somewhat better than the double
exponential sequential fit (DES) (Fig. 2E-G). Moveover, the three alternative forms were about equally good at accounting for
the experimental data. This means that one cannot infer which set of underlying mechanistic assumptions is most consistent
with the experimental results.

A simple relaxation oscillator model for the early embryonic cell cycle can account for approximate Arrhenius

scaling as well as the observed deviations from Arrhenius scaling. We next took an alternative approach to the
question of why cell cycle periods at least approximately obey the Arrhenius equation, and why they sometimes deviate
from Arrhenius scaling. The approach was to use a computational model of the embryonic cell cycle oscillator and see how
the modeled period would be expected to vary with temperature, using either single or double exponential equations for the
individual enzymes’ temperature scaling. This allowed us to examine how systems-level properties of the cell cycle oscillator
circuit, rather than just variations from the Arrhenius relationship in the behaviors of individual enzymes, might be expected to
affect the temperature scaling of the oscillations.

The cell cycle regulatory network consists of many complex interactions involving dozens of species, which makes it extremely
challenging to construct a complete mathematical model, let alone study and interpret the influence of temperature on the cell
cycle. The early embryonic cell cycle of insects, worms, amphibians and fish is, however, much simpler: the cycle consists of
a rapid alternating sequence of synthesis (S) phase and mitotic (M) phase, without checkpoints and without G1 and G2 gap
phases. Transcription is negligible at this point in embryogenesis, and the number of protein species involved is smaller than
in the somatic cell cycle. As a result, simpler mathematical models can be constructed. This greatly simplifies the analysis of
temperature scaling.

At the heart of the early embryonic cell cycle lies the protein complex cyclin B – Cdk1, consisting of the protein cyclin B
and the cyclin-dependent-kinase Cdk1 (see Fig. 3A), plus a phosphoepitope-binding subunit, Suc1/Cks, that is not separately
considered here. When this protein kinase complex is enzymatically active, it phosphorylates hundreds of other proteins,
bringing about the entry of the cell into mitosis (57, 58). The oscillations in Cdk1 activity result from three interlinked
processes: (1) cyclin B synthesis, which dominates in interphase and causes Cdk1 activity to gradually rise; (2) the flipping of
a bistable switch, due in this model to the Cdk1-Cdc25 positive feedback loop and the Cdk1-Wee1 double negative feedback
loop, which results in an abrupt rise in Cdk1 activity; and (3) cyclin B degradation by the APC/C and the proteosome, which
dominates during M-phase and causes Cdk1 activity to fall (Fig. 3B). This type of oscillator, consisting of a rapid bistable
switch plus a negative feedback loop, is referred to as a relaxation oscillator (59–61). Relaxation oscillators are common in
biology, and all relaxation oscillators share similar qualitative behavior, irrespective of the exact molecular details: there is
a slow ramp up in activity, which then triggers an abrupt burst in activity through the positive feedback loop(s), and finally
the negative feedback restores the system back to its low activity state. These three distinct phases can be distinguished in
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experimental data on the activity of Cdk1 as a function of time in the early embryonic cell cycle (Fig. 3C; see also below).

Note that other enzymes, processes, and feedback loops contribute to the cell cycle oscillator, most notably the Greatwall/PP2A-
B55 system, whose regulation is critical for the switches into and out of M-phase (61–66). Nevertheless, a simple system of
two ordinary differential equations (ODEs) is sufficient to capture the dynamics of Cdk1 activation and inactivation (67):

dcyc[t]
dt

= ks ↑kdAPCa[t]cyc[t], (10)

ω
dcdk1a[t]

dt
= kaCdc25a[t](cyc[t]↑ cdk1a[t])↑kiWee1a[t]cdk1a[t]. (11)

The first equation describes how cyclin B (cyc) is synthesized throughout the cell cycle at a rate ks (nM/min) and how it
is degraded at a rate kd (1/min) by the proteasome after ubiquitination by active APC/C (APCa[t]). The second equation
describes the conversion of cyclin B-Cdk1 complexes between an inactive form and an active form by Cdc25 (Cdc25a[t]) and
Wee1 (Wee1a[t]). If we assume that the Cdk1-mediated phosphorylation reactions that regulate APC/C, Wee1, and Cdc25 are
essentially instantaneous, we can eliminate three of the time-dependent variables from the right hand side of the ODEs:

dcyc[t]
dt

= ks ↑kdd[cdk1a]cyc[t], (12)

ω
dcdk1a[t]

dt
= kaa[cdk1a](cyc[t]↑ cdk1a[t])↑kii[cdk1a]cdk1a[t]. (13)

The terms d[cdk1a], a[cdk1a], and i[cdk1a] are assumed to be Hill functions of the instantaneous values of cdk1a, and were
parameterized based on experimental measurements of steady-state responses in Xenopus laevis extracts (67–69). We thus
have two ODEs in two time-dependent variables, cyc[t] and cdk1a[t], and five parameters that define the speeds of cyclin
synthesis (ks), cyclin degradation (kd), Cdk1 activation by Cdc25 (ka), and Cdk1 inactivation by Wee1 (ki), as well as the
relative time scales of cyclin synthesis and degradation versus Cdk1 activation and inactivation (ω). Even though this simplified
model omits Greatwall/PP2A-B55 regulation and a number of other interesting aspects of Xenopus cell cycle regulation, it
nevertheless captures the dynamics of Cdk1 activation and inactivation well and has been used to successfully describe various
aspects of cell cycle oscillations (34, 67, 70). For this reason it seemed like a good starting point for understanding how the
output of the cell cycle oscillator circuit would be expected to scale with temperature.

Using experimentally motivated parameters (67), the model (Eqs. (12)-(13)) reproduced cell cycle oscillations with a realistic
period of approximately 30 min (Fig. 3C). These oscillations manifested as a closed trajectory, a limit cycle, in the (cyc, cdk1a)
phase plane (Fig. 3B, red), which orbits around an unstable steady state (Fig. 3B, USS) at the intersection of the system’s two
nullclines (Fig. 3B). When the time scale for Cdk1 activation/inactivation is fast relative to the time scale of cyclin synthesis
and degradation ( ω << 1), typical relaxation oscillations occur: in interphase, the orbit slowly creeps up the low Cdk1 activity
portion of the S-shaped nullcline (Fig. 3B, denoted 1), then abruptly jumps up to the high Cdk1 activity portion of the same
nullcline (Fig. 3B, denoted 2), crawls down the nullcline due to active APC/C (Fig. 3B, denoted 3), and abruptly falls back
down to the lower portion of the nullcline to begin the cycle again. The result is sawtooth-shaped oscillations in cyclin B levels
and periodic bursts of Cdk1 activity that resemble experimentally-measured Cdk1 activities (Fig. 3C).

Next we examined how making the model’s parameters temperature-dependent affected the persistence and period of the
oscillations over a range of temperatures. We started by assuming Arrhenius scaling for the four key rates in the oscillator
model: ks, kd, ka, and ki. As expected, when all of the apparent activation energies were assumed to be equal, the oscillation
period obeyed the Arrhenius equation with the same activation energy (Case 1 in Fig. 3D). Similarly, if the activation energies
for cyclin synthesis and degradation were assumed to be equal, and the energies for Cdk1 activation and inactivation were
assumed to be different from those but equal to each other, the period also scaled in an Arrhenius fashion (Case 2 in Fig.
3D), with Ea equal to that of cyclin synthesis and degradation. This Arrhenius scaling arises out of three properties of the
model: (1) the cyclin nullcline’s position depends solely on the ratio ks/kd, and these two parameters were assumed to scale
identically with temperature; (2) the location of the S-shaped Cdk1 nullcline depends upon the ratio ka/ki, which likewise was
assumed to scale identically with temperature; and (3) as long as ω is very small, the cell cycle period is determined only by the
rates of cyclin synthesis and degradation, which scale identically with temperature.

However, if the four kinetic parameters were not constrained to scale identically (Case 1) or pair-wise identically (Case 2) with
temperature, the results were more like what is seen experimentally. This is shown as Fig. 3D, Case 3. The Arrhenius plot was
bowed concave up, instead of being straight, and oscillations ceased if the temperature was too high or too low. The cessation
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of oscillations can be rationalized from the positions of the nullclines in the phase plane. If the Ea value for cyclin synthesis
is smaller than that for cyclin degradation, the ratio ks/kd decreases as temperature rises. With increasing temperature, the
cyclin nullcline shifts down until it no longer intersects the middle portion of the S-shaped Cdk1 nullcline. At this point, the
steady state becomes stable and oscillations cease, leaving the system in an interphase-like steady state with low Cdk1 activity
(Fig. S4). Conversely, if cyclin synthesis scales more strongly with temperature than degradation does, the cyclin nullcline
shifts upward, leading to a stable M-phase-like steady state with high Cdk1 activity. Thus, if the temperature scaling of cyclin
synthesis and degradation differ, at extremes of the temperature range the oscillator will fail, and in between the extremes
the cell cycle period would be expected to deviate from the Arrhenius relationship. This could provide an explanation for the
temperature scaling observed experimentally (Fig. 1).

An alternative assumption could also explain the experimental results. As shown in Fig. 3D, Case 4, if at least one process
shows a biphasic dependence of rate on temperature, perhaps due to enzyme denaturation at high temperatures, the result will
be a bowed Arrhenius plot and a high temperature limit to oscillations. As an example, here we have assumed a biphasic
dependence of cyclin synthesis on temperature. Thus, in principle it seemed like either variation in the individual enzymes’
Arrhenius energies (Case 3), or denaturation at high temperatures (Case 4), or both, could account for the observed temperature
scaling of the early embryonic cell cycle.

To test this hypothesis further, we asked how well model Cases 3 and 4 could replicate the observed cell cycle duration scaling
in early frog and zebrafish embryos. We adjusted the apparent activation energies of cyclin synthesis and degradation, and, for
simplicity, kept the Ea values for Cdk1 activation and inactivation constant. Through minimizing the error between simulations
and data across the oscillation range, employing the mean sum of squares on logarithms of periods, we obtained optimal fits.
Fig. 3E displays these fits across various model scenarios introduced in Fig. 3D. Although perfect Arrhenius scaling (Cases 1
and 2) did not align well with the data, model Cases 3 and 4 approximated the measured data well. Notably, the experimental
data could be accounted for by assuming that cyclin synthesis scaled either more strongly or more weakly with temperature
than did cyclin degradation.

To further reinforce these findings, we conducted an exhaustive parameter scan over the activation energies of all four key rates
in the oscillator model using a fitting algorithm. We employed the approximate Bayesian computation method, implemented
in Python using pyABC, for sequential Monte Carlo sampling of parameter sets, gradually improving fits to the data (for
details, see Supplementary note C and Fig. S5). This broader analysis underscored that optimal fits occurred when there was
a distinct difference in apparent activation energies between cyclin synthesis and degradation, while the activation energies of
Cdk1 activation and inactivation remained similar (Fig. S5). Moreover, the quantification of fitting errors revealed that it is
most probable that the experimental data is due to cyclin synthesis being more sensitive to temperature changes than cyclin
degradation (Ea(ks)>Ea(kd)).

Next we asked whether these results were specific to this one particular cell cycle model. We constructed a five-ODE, mass
action-based model that included the interactions among Cdk1, Greatwall, and PP2A that function as a second mitotic switch
(61, 66, 71), and that avoided the Hill functions used in the two-ODE model. Moreover, the feedback loops between Cdk1 and
Wee1 and Cdc25 were omitted, which is a suitable approximation for the situation during cycles 2–12 in Xenopus embryos
(61, 70, 72). Although this model included a bistable switch and a negative feedback loop, the details of the model are
otherwise substantially different from the two-ODE model. Nevertheless, this model could be parameterized to yield realistic
cell cycle oscillations (73) (Fig. S6B, Supplementary Note C). Given the computational complexity of scanning over the ten
reaction rates present in this model, we exclusively utilized the ABC algorithm. Satisfactory fits were achieved using this
model (Fig. S6C), and we observed that pairs of activation energies with high correlations corresponded to antagonistic rates
(see Supplementary Note C). The results again show that parameter sets yielding good fits exhibit roughly equal activation
energies for faster reactions, and suggest that thermal limits arise from imbalances between cyclin synthesis and degradation
rates’ apparent activation energies, echoing our findings in the two-ODE model.

In summary, computational modeling revealed that thermal limits and non-Arrhenius scaling like those seen in early embryos
can arise from (at least) two different mechanisms. Firstly, in cases where all rates follow Arrhenius-like scaling but possess
varying activation energies, an imbalance emerges, culminating in a thermal limit and a bowed Arrhenius plot. We can call this
behavior ‘emergent’, since the limit and the bowing are not inherent to any individual reaction but arise collectively. Secondly,
thermal limits can arise if one or more underlying reactions exhibit a thermal optimum and deviate from Arrhenius scaling.
Here, the system’s behavior is predominantly dictated by the dynamics of the particular biphasic component(s).

The durations of interphase and M-phase scale differently with temperature. To test whether the emergent imbalance
model (Fig. 3C, Case 3) contributes to the temperature scaling of the Xenopus laevis embryo, we set out to determine how the
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durations of interphase and M-phase individually scaled with temperature. Both phases contribute to the overall duration of the
cell cycle, and the durations of the two phases are largely determined by different process, cyclin synthesis for the former and
cyclin destruction for the latter. Because of the opacity of the Xenopus embryo, it is difficult to assess these cell cycle phases
by microscopy in vivo. We therefore turned to cycling Xenopus egg extracts, which are transparent and highly amenable to
microscopy.

Cycling extracts were prepared and supplemented with a Cdk1 FRET sensor whose emission increases when Cdk1 becomes
activated and/or its opposing phosphatase(s) is/are inactivated (74), and encapsulated the extract in oil droplets (Fig. 4A), as
described (74, 75). The encapsulated extract droplets were then loaded into Teflon-coated imaging chambers, which were
immersed in mineral oil and placed on a microscope stage equipped with a custom Peltier element-based heating/cooling
device, akin to a previous setup (44). The FRET sensor enabled real-time visualization of oscillations in Cdk1 activity in
hundreds of droplets situated at different positions within the temperature gradient (Fig. 4A, Supplemental Video 6). As shown
in Fig. 3C (top), Cdk1 activity first rose slowly (phase 1), then spiked to high levels (phase 2), then fell to low levels to allow
a new cycle to begin (phase 3). The three phases of the Cdk1 activity cycle correspond well to the phases seen by direct
biochemical assays of Cdk1 activities in cycling extracts (66, 76, 77), and to the phases of Cdk1 activation and inactivation seen
in the computational models (Fig. 3C, bottom). The cell cycle was found to proceed most rapidly at temperatures of around
25°C, and to slow down at both colder and warmer temperatures (Fig. 4B-C). One unanticipated finding was that the cell cycle
proceeded fairly normally at temperatures as high as 32°C, even though in intact embryos, temperatures above 28°C typically
killed the embryos and halted the cell cycle. This allowed us to probe a broader range of temperatures in extracts than was
possible in vivo. The period of the extracts’ cell cycles increased over time, consistent with previous findings (39, 74, 75, 78).
We therefore confined our analysis to the first three cycles, characterizing the duration of each cycle in individual droplets
(Fig. S7A-C) and after pooling (Fig. 4C-D). Similar trends could be seen in both the individual and pooled data (Fig. 4C-D).
Alternatively, we analyzed all of the cell cycles that occurred during the first 900 minutes rather than the first three cycles. This
procedure yield essentially identical results (Fig. S7D).

We analyzed time series data from hundreds of droplets at temperatures from 16°C to 32°C, and plotted the temperature
dependence of the cell cycle durations as well as the durations of the rising and falling phases, which correspond approximately
to interphase-through-metaphase and metaphase-through-mitotic exit, respectively. This analysis showed that both the total
cell cycle duration and the duration of the rising phase exhibited a U-shaped dependence upon temperature—these durations
decreased steeply as the temperature rose from 16°C to 20°C, then plateaued, and then increased steeply at temperatures above
30°C (Fig. 4C-D). In contrast, the duration of the falling phase decreased with temperature and then plateaued beginning at
about 20°C, but did not slow down to a measurable extent at higher temperatures. These trends can be seen both from the raw
data (Fig. 4C) and from binned, averaged data (Fig. 4D). Thus, the rising phase, whose duration is mainly due to the rate of
cyclin synthesis, and the falling phase, whose duration is mainly due to APC/C activity, are differently affected by temperature.

Double exponential curves, which assume a biphasic dependence of enzyme activity upon temperature, accounted for the
shapes of the Arrhenius plots (Fig. 4D). We computed apparent local activation energies from the fitted curves, which revealed
significant changes with temperature (Fig. 4E). At every temperature, the apparent activation energy for total cell cycle duration
was close to that of rising phase duration (Fig. 4E), underscoring the fact that interphase constitutes a majority of the cell cycle
(Fig. 4B).

The non-Arrhenius scaling results from both the biphasic temperature sensitivity of cyclin synthesis and an

imbalance in the Arrhenius constants for cyclin synthesis and degradation. We next asked how well the 2-ODE
computational model could account for how the Cdk1 activity cycle varied with temperature in cycling extracts, and whether
the scaling of the activation energies for key regulatory processes (ks, kd, ω) could be inferred. We utilized the temperature
dependence of the measured durations of the rising and falling phases of the Cdk1 time series (Fig. 4D) to optimize our
computational model. Employing an exhaustive parameter scan with the approximate Bayesian computation method (details
in supplemental note C and Figs. S8-S9), we sought the optimal values for cyclin synthesis rate (ks), cyclin degradation rate
(kd), and time scale separation (ω), which relates to Cdk1 activation (a) and inactivation (i). Leveraging sequential Monte
Carlo sampling, the method gradually improved fits to the data, displaying the 200 best fits in gray in Fig. 5A, with the
optimal fit highlighted in color. The temperature dependence of the fitted model parameters (Fig. 5B) revealed significant
temperature-induced changes in cyclin synthesis rate (ks) and time scale separation (ω), up to five-fold across the temperature
range, whereas the cyclin degradation rate (kd) remained almost constant (see Fig. S8). Additionally, the temperature
dependence of kd was well approximated by the (single) Arrhenius equation, whereas ks and ω required a double exponential
function for accurate description.

Next, we computed the average time series for each cell cycle at various temperatures (blue lines in Fig. 5C, Fig. S10,
Supplementary Note 5). These averaged trajectories allowed us not only to ascertain the lengths of interphase (low Cdk1
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activity) and the mitotic phase (high Cdk1 activity) but also to determine the duration of transitions between these states
(upward and downward switches). Fig. 5A demonstrates that both interphase and M phase durations increased at both high
and low temperatures. Intriguingly, while the durations of transitioning into and out of M phase increased at low temperatures,
the duration of mitotic exit remained constant at high temperature. Conversely, at high temperatures, the duration of mitotic
entry substantially increased. Additionally, we used these average time series to obtain estimates of ks by fitting the slope of
interphase time series (Fig. 5C, dashed line, supplemental note C), which revealed similar scaling as obtained by the model
fitting with the ABC algorithm (Fig. 5B - overlaid black dots). Implementing the optimized temperature response curves of
the model parameters (Fig. 5B) into our computational model, we then analyzed the resulting time series of the cell cycle
oscillations (Fig. 5C, orange). The model’s predictions closely aligned with experimental measurements, demonstrating a
robust match.

Comparison of apparent activation energies highlights the greater temperature sensitivity of cyclin synthesis rate compared to
cyclin degradation rate. This sensitivity aligns with scenarios predicted to yield non-Arrhenius scaling across a wide temper-
ature range (Fig. 3C, Case 3). Furthermore, experimental findings indicate that cyclin synthesis rates decreased at elevated
temperatures, corroborating another scenario leading to non-Arrhenius scaling (Fig. 3C, Case 4). Our analysis indicates that
both mechanisms contribute to the non-Arrhenius scaling properties of the early embryonic cell cycle oscillator.

In vitro enzyme assays confirm the imbalance in the cyclin synthesis and degradation Ea values. To further
test the inference that cyclin synthesis and degradation scaled differently at the low end of the temperature range, we
carried out direct measurements of the two processes in X. laevis frog egg extracts (79) (Fig. 6A-B). The synthesis of one
mitotic cyclin, cyclin B2, in cycling extracts was monitored by quantitative Western blotting, using the cyclin B2 levels
present in CSF extracts as a normalization standard. APC/C activity was gauged by introducing securin-CFP, translated
in wheat germ extracts, as a fluorescent reporter of APC/C activity into CSF extracts, then driving the extracts out of
CSF arrest with calcium plus cycloheximide and into mitotic arrest with non-degradable cyclin B. Experimental protocols
are detailed in Supplementary Note 4. These measurements were conducted across temperatures ranging from 16°C to
26°C. As shown in Fig. 6, the rate data were consistent the Arrhenius equation (Fig. 6B,green line) and cyclin synthesis
was more sensitive to temperature than cyclin degradation, with fitted apparent Arrhenius energies of 87 and 52 kJ/mol,
respectively. Bootstrapping supported the statistical significance of this difference (Fig. 6C). This provides direct support for
the hypothesis that the different scaling of opposing enzymes contributes to the non-Arrhenius character of the cell cycle period.

We also measured the temperature dependence of two other key cell cycle regulators, cyclin B-Cdk1 and PP2A-B55. These
opposing enzymes are critical for the phosphorylation and dephosphorylation of many cell cycle proteins, and their activities
would be expected to contribute to the dynamics of mitotic entry and mitotic exit. As shown in Fig. 6, they varied from each
other in their temperature sensitivity, with apparent Arrhenius energies of 46 and 57 kJ/mol. Thus, the Arrhenius energies
for the pairs of opposing enzymes varied from each other by 1.7-fold and 1.2-fold; evidently this degree of mis-scaling is
compatible with robust functioning of the cell cycle oscillator over its nominal temperature range.

Decreasing the cyclin synthesis rate decreases the viable temperature range. This analysis suggests that at the high
temperature end of the operating range, the Xenopus embryonic cell cycle oscillator fails because of the biphasic nature of
cyclin B synthesis: the synthesis rate falls as the temperature increases and becomes too low to permit oscillations in the face of
the basal levels of APC/C activity. At the low end of the temperature range, the oscillator fails because the difference between
the (higher) synthesis and (lower) destruction Arrhenius energies makes the two opposing activities come out of balance, with
the synthesis rate again being too low to permit oscillations. If so, the operating range of the cell cycle oscillator is deter-
mined by the temperature scaling and balance of two opposing processes particularly critical to the function of the whole circuit.

This suggests that concentrations of cyclin B morpholino oligonucleotides that slow but do not halt the cell cycle at normal
temperatures should also narrow the temperature range over which the oscillator can operating, decreasing the maximum
permissible temperature and increasing the minimum permissible temperature. We tested this idea in the computational model
of the oscillator. We extracted the temperature scaling parameters from the data in Fig. 5B, assuming biphasic temperature
dependence for the cyclin synthesis rate and (unbalanced) Arrhenius temperature dependencies for the other rates, and then
plotted the modeled cell cycle period as a function of the assumed basal cyclin synthesis rate (i.e., the synthesis rate at a nominal
reference temperature, which is determined by the magnitude of the pre-exponential coefficient A in the Arrhenius equation).
The result is a family of nested U-shaped curves, with both the upper and lower temperature limits of the oscillations moving
inward as the assumed cyclin synthesis rate decreases (Fig. 7A). Fig. 7B shows the experimental results for encapsulated
extracts in the temperature gradient apparatus with 0, 4, or 6 µM cyclin B morpholino oligonucleotide. With increasing
morpholino concentration, the minimal period of the cell cycle increases, and both the upper and lower limits of the operating
range move inward (Fig. 7B). This indicates that, as hypothesized, the rate of cyclin synthesis (and its balance with cyclin
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destruction) determines both the operating range of the early embryonic cell cycle oscillator.

Next, we wondered if the model, parameterized based on the data from the X. laevis cycling extract, could also reproduce the
measured temperature response curve of the cell cleavage rate in early X. laevis embryos (Fig. 7C, orange dots). However, the
cell cycle oscillations were faster in embryos than in the cycling extracts Fig. 7C, orange vs. green dots). This can be attributed
to the dilution of the cytoplasm during the preparation of the cycling extracts, motivated by the observation that a moderate
dilution of the extract leads to an increase in the number of cell cycles (80). Therefore, we decided to scale the cyclin synthesis
rate and degradation rate such that the cycle duration in extract and embryos matched around 25°C. Strikingly, although we
only scaled the rates at one temperature, the whole temperature response curve changed shape capturing the embryo data
reasonably well (Fig. 7C, bottom left).

Finally, we asked ourselves if one of the two concurrent mechanisms (biphasic synthesis vs. imbalance of the activation en-
ergies) is dominant, and can by itself explain the cell cycle rate in cycling extracts and embryos. Using our model with the
optimal parameters, we isolated both effects and observed that they both lead to non-Arrhenius scaling (Fig. 7C, middle-right).
However, in isolation, they could not reproduce the experimentally measured response curves, arguing that both mechanisms
work together to ensure that the cell cycle oscillator can operate over a wide range of temperatures. Altogether, these findings
strongly support our model, which attributes the non-Arrhenius scaling properties of the early embryonic cell cycle oscillator
to two concurrent mechanisms. At low temperatures, the scaling is primarily driven by an imbalance between opposing cyclin
synthesis and degradation rates. In contrast, at high temperatures, the biphasic nature of cyclin synthesis plays a critical role in
capturing the upward curvature of the oscillation period.

Discussion

Previous work suggested that the early embryonic cell cycle scales similarly with temperature in several organisms (30–33).
Here we have extended these measurements to Xenopus tropicalis and Danio rerio, and have supplemented previous work on
Xenopus laevis with additional types of measurements. We found that although the periods of the cell cycle at the organisms’
nominal temperatures vary from about 5 min for C. elegans and C. briggsae to about 25 min for X. laevis, the temperature
scaling of the periods is quite similar. The apparent Arrhenius energies averaged 76 ± 9 kJ/mol (mean ± S.D., n = 6), and
the average Q10 value was 2.8 ± 0.4 (mean ± S.D., n = 6) (Figs. 1, 2). In all cases the periods deviated from the Arrhenius
relationship at high temperatures, and for X. laevis, the Arrhenius plots were non-linear throughout the range of permissible
temperatures.

In some ways it is perhaps not surprising that the temperature scaling data could be approximated reasonably well by the
Arrhenius equation. Crapse et al. (32) have shown computationally that chaining together a sequence of chemical reactions
results in only minor deviations from ideal Arrhenius scaling if one assumes that the individual enzymes’ activation energies
do not differ greatly. Experiments have shown that Min protein oscillations, crucial for bacterial cell division, also display
Arrhenius-like scaling behaviors (81). The classic chemical oscillator, the Belousov-Zhabotinsky reaction, approximately
obeys the Arrhenius equation (82–84), and in general, many biological processes at least approximately conform to the
Arrhenius equation or one of the proposed modified versions of the Arrhenius equation (15–22).

These observations notwithstanding, it was not obvious to us why a complex oscillator circuit, with non-linearities and feedback
loops, should yield even approximately Arrhenius temperature scaling, and what the origins of the experimentally-observed
deviations from Arrhenius scaling might be. Through modeling studies we identified two plausible mechanisms for the
observed non-Arrhenius behavior: an emergent mechanism resulting from differences in the Arrhenius energies of opposing
enzymes in the network (Fig. 3D, Case 3), and a biphasic temperature dependence for one or more of the critical individual
enzymes (Fig. 3D, Case 4). A priori, either or both of these mechanisms could pertain.

Experimental studies on cycling Xenopus egg extracts showed that one key step in the oscillator circuit, the synthesis of
the mitotic cyclin protein, does in fact exhibit a strongly biphasic dependence on temperature. This was made clear by the
fortuitous finding that although intact embryos die above 29°C, cell-free cycling extracts continue to cycle until the temperature
exceeds at least 32°C. Above 30°C, the rate of cyclin synthesis and the rate of progression through interphase clearly decrease
with increasing temperature, whereas at lower temperatures they increase with increasing temperature (Fig. 4). Our hypothesis
is that above some maximum permissible temperature, the imbalance between the cyclin synthesis and degradation rates causes
the oscillator to fail and the cell cycle to arrest.

Cyclin synthesis and degradation also scaled differently with temperature at the low end of the permissible temperature range.
This was inferred from fitting the parameters of the two-ODE model to the experimental data (Fig. 5), and then was directly
shown by in vitro assays of cyclin synthesis and degradation (Fig. 6). This means that below a critical temperature, cyclin
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synthesis and degradation should again be out of balance, causing oscillations to cease.

To further test this hypothesis, extracts were treated with a morpholino oligonucelotide to inhibit cyclin translation enough
to slow but not block the cell cycle at normal temperatures, and asked whether this decreased the maximum permissible
temperature, raised the minimum permissible temperature, or both. We found that both temperature limits were similarly
affected, and the operating range of the cell cycle oscillator was narrowed, as predicted by our simple two ODE model (Fig. 7).
This finding is consistent with the hypothesis that both operating limits are determined by the balance between cyclin synthesis
and degradation.

One question then is why did evolution not arrive at a system where cyclin synthesis and degradation did not go out of balance,
at high and low temperatures? We suspect that there are trade-offs between competing performance goals for the oscillator and
its components. Perhaps the molecular flexibility required to make protein synthesis run as fast as possible at the temperatures
typically experienced by an ectotherm render the ribosomes vulnerable to unfolding at slightly higher temperatures. Likewise,
perhaps the most efficient cyclin synthesis and degradation activities at normal temperatures happen not to scale with a
Arrhenius energies of 69 kJ/mol, as the X. laevis oscillator collectively does, and so the observed Ea values are a compromise
between the highest activities and the ideal scaling behavior.

One final question is how the behaviors seen here compare to those of the same circuit in endotherms, organisms that have at
great metabolic cost freed their biochemistry from needing to function reliably over such wide temperature ranges. Although
the four enzymatic processes individually assessed here (cyclin synthesis, cyclin degradation, Cdk1 activity, and PP2A-B55
activity) differed in their temperature scaling, they did not differ by that much; their Ea values averaged to 72 kJ/mol with
a standard deviation of 22 kJ/mol or 30%. It seems plausible that endothermy might allow enzymes with a wider range of
activation energies to be used than would be possible in ectotherms.

Materials and Methods

Xenopus egg extract. Cell-free cycling extracts and CSF extracts were made from Xenopus laevis eggs following a published
protocol from Murray (85). For cycling extracts, this protocol was adapted as in (75). Extracts for Fig. 3B-G and Fig. 4 were
then supplemented with 1µM Cdk1-FRET sensor, as described in Maryu and Yang (74), and also with 1X energy mix (7.5
mM Creatine phosphate, 5mM ATP, 1mM EGTA, 10 mM MgCl2). Work from the Yang lab demonstrated that an intermediate
range of dilution of the extracts can improve the number of cycles, with the best activity at around 30% dilution (80). As a
result, for the data described here, the dilution was kept constant at 30% with extract buffer (100 mM KCl, 0.1 mM CaCl2, 1
mM MgCl2, 10 mM potassium HEPES, 50 nM sucrose, pH 7.8). Extracts for the biochemical assays in Fig. 3A were undiluted.

The extract was encapsulated via a water-in-oil emulsion using a micrufluidic device. The fabrication of the device and droplet
generation followed a previously published protocol (86). Briefly, cycling extract (water phase) was mixed with 2% 008-
FluoroSurfactant in HFE7500 (Ran Biotechnologies, Inc.) (oil phase) inside a microfluidic device driven by an Elveflow OB1
multi-channel flow controller (Elveflow). Air pressure was 2 psi for both the extract and oil channels. After droplets were
generated, they were loaded into VitroCom hollow glass tubes with a height of 100 µm (VitroCom, 5012) pre-coated with
trichloro (1H,1H,2H,2H-perfluorooctyl) silane, and then immersed into a glass-bottom dish (WillCo Wells) filled with heavy
mineral oil (Macron Fine Chemicals) to prevent evaporation.

Temperature gradient generation. A custom plastic microscope stage was fabricated to fit two aluminum plates on each side
of the imaging dish. Each aluminum plate was attached to a TEC1-12706 40*40MM 12V 60W Heatsink Thermoelectric Cooler
Cooling Peltier Plate (HiLetGo) using thermal conductive glue (G109, GENNEL). The plate designated for temperatures
above room temperature had an additional heatsink (40mm x 40mm x 20mm, black aluminum, B07ZNX839V, Easycargo) and
a cooling fan to improve performance. The plate designated for cold temperatures had an additional liquid cooling system
(Hydro Series 120mm, CORSAIR) attached with termal conductive glue.

Peltier devices were controlled via two CN79000 1/32 DIN dual zone temperature controllers (Omega). In all experiments,
the target temperature was set to 65°C and 1°C for the hot and cold plates respectively. With both plates on, it was always the
case that the hot plate reached its target temperature and stayed constant within 5-10 min and the cold plate stayed stable at 10°C.

The imaging dish was attached to the aluminum plates with Thermal adhesive tape 2-5-8810 (DigiKey) to ensure proper
thermal conduction. Temperature was logged via 4 K-Bead-Type thermocouples placed on the imaging dish touching the
bottom surface. Data was acquired using a 4 Channel SD Card Logger 88598 AZ EB (AZ Instruments). Room temperature
was also captured using the same method via a thermocouple attached to the microscope stage.
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Western blotting. Cycling extracts were prepared according to the method by Murray et al. (85), except that eggs were
activated with calcium ionophore A23187 (5 µl of a 10 mg/ml stock of A23187 in 100 ml 0.2x MMR) rather than with electric
shock. After preparing the extracts, they were distributed to several eppendorf tubes and brought to a specified temperature
between 16 and 26°C within 20 minutes. 2 µl samples were taken every 4 minutes (every 8 minutes at 16°C) and immediately
frozen on dry ice. To each 2 µl aliquot, 48 µl of SDS sample buffer supplemented with DTT was added, and the samples were
boiled during 10 minutes at 95°C. 12 µl of the cycling extract samples and 4 µl of the reference samples (CSF extract prepared
according to the method by Murray et al.(85), were run on 10% Criterion TGX Precast protein gels and transferred to a PVDF
membrane using the Bio-Rad Trans-blot Turbo system. After blocking in milk (4% w/v in TBST), the blots were incubated
with a 1/500 dilution of anti-cyclin B2 antibody (X121.10, Santa Cruz) overnight at 4°C followed by a 1/10.000 dilution of
anti-mouse IgG HRP-linked whole secondary antibody (GE Healthcare NA931), during 1 hour at room temperature. Finally,
the blots were developed using Supersignal West Femto chemiluminescent substrate.

Time-lapse fluorescence microscopy. For Figs. 4, 5, 7, imaging was carried out on an inverted Olympus IX83 fluorescence
microscope with a 4! air objective, a light emitting diode fluorescence light source, a motorized x-y stage, and a digital com-
plementary metal–oxide–semiconductor camera (C13440-20CU, Hamamatsu). The open-source software µManager v1.4.23
was used to control the automated imaging acquisition. Bright-field and multiple fluorescence images of CFP, FRET, and YFP
were recorded at a frequency of one cycle every 3 to 7 min for 40 to 50 hours for each sample.

Image processing and analysis methods. Grids of images were captured and subsequently stitched together using
ImageJ’s Grid/Pairwise Stitching plug-in, in conjunction with additional pipeline code written in Fiji/Java. Bright-field images
from the first frame were used to generate stitching parameters, which were fed to ImageJ to stitch each channel at each frame
consecutively. The FRET ratio was calculated as in Maryu and Yang (74).

For Figs. 4, 5, 7, custom scripts in MATLAB 2020a and ImageJ were written to perform image processing. Briefly, each
microscope position was processed by manually selecting the region containing the tube of interest and then algorithmically
cropping and resizing that region in all channels. Then, bright-field images were used for individual droplet segmentation and
tracking using Trackmate 7.12.1. Only individual droplets whose radius was smaller than 100 µm and track started within the
first 60 min of the experiment were selected for further analysis. FRET ratio intensity peaks and troughs were first auto-selected
and then manually checked and corrected using custom Python scripts. Rising and falling periods were calculated from this
data. All code is available at https://github.com/YangLab-um/temperature and https://github.com/
YangLab-um/dropletDataProcessing.

Data and code availability.

• All experimental data have been deposited at [upcoming], and are publicly available as of the date of publication.

• All original modeling code has been deposited at the Gelens Lab GITLAB [upcoming] , and is publicly available as of
the date of publication.

• All codes for image processing and analysis methods can be found in https://github.com/YangLab-um/
temperature and https://github.com/YangLab-um/dropletDataProcessing, publicly available as
of the date of publication.

• Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon
request.
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Main figures

Fig. 1: Cell division timing in early Xenopus laevis embryos does not scale Arrhenius. A. Xenopus laevis embryonic
development was imaged in a temperature-controlled chamber introduced in Ref. (34). mpf is minutes post-fertilization. B.
Different early developmental events were visually identified. Sperm entry point (SEP) denotes the sperm entry point. Adapted
from (87). C. Duration of several early developmental periods in function of temperature in the range [Tmin = 9°C,Tmax =
29°C]. D. An Arrhenius fit is shown for the values between 12°C and 21°C, with the apparent activation energy indicated. E.
Bootstrapping provides a probability distribution for the apparent activation energies. The mean and 90% confidence interval
(CI) are also indicated.
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Fig. 2: Cell cleavage period scales in a similar non-Arrhenius way across different early ectothermic embryos. A. We
examined the timing of the early cell cycles in 5 different species: C. elegans and C. briggsae (from (31)), D. rerio (this work),
X. tropicalis and X. laevis (this work). The three vertebrates and the two nematodes span a broad range in evolution. B. Median
cleavage period in function of temperature for the second to fourth cell cycle (all pooled) for the 5 different species. Optimal fits
using a double exponential (DE) function are overlayed. C. The in vivo range of viable early cell cycles in the different species,
including their thermal limits and optimal temperature at which they reach a minimum cell cycle period. Their corresponding
apparent activation energies and Q10 at 20°C are shown in the table. Additionally the environmental range is indicated for all
five organisms (88–91). D. Using the best DE fit, the local Q10 value is plotted in function of temperature. E. The median
cleavage period in function of temperature for X. laevis is fitted using different functional forms: single exponential Arrhenius
(SE), double exponential (nonlinear fit: DEN, sequential linear fit: DES), and a power law – exponential (PE) function. F.
The goodness of fit (using mean square error, MSE on the logarithms of the periods) of the alternative functional forms to the
experimental data for X. laevis in two different temperature regions: 12-21°C and 9-29°C. G. Goodness of fit, similar as in
panel F, but now for all different species over their whole measured temperature range.
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Fig. 3: A simple relaxation oscillator model for the early embryonic cell cycle can reproduce the observed non-Arrhenius
scaling. A. Sketch of key reactions in the early cell cycle regulatory network. B-C. Phase plane representation (B) and time
series (C) of cell cycle oscillations in Eq. (23). D. Scenarios showing how different temperature scaling of cell cycle regulatory
processes can lead to Arrhenius scaling and/or thermal limits in the scaling of the cell cycle period. E. Best fits of models
presented in D to the measured data for the early cell cycle duration for X. laevis, X. tropicalis and D. rerio shown in Fig. 2.
Case 4, introducing a thermal limits in a key cell cycle process allows to describe the data. For case 3, the apparent activation
energies for ks and kd need to be different to fit the data well. E. Error of simulated data (case 3) in describing the experimental
data in D (using the rMSE). The influence of apparent activation energies for ks and kd are studied. For parameter values and
more details about the model, see Supplementary Note 3.

Rombouts and Tavella et al. | Mechanistic origins of temperature scaling in the early embryonic cell cycle bioRωiv | 17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 24, 2024. ; https://doi.org/10.1101/2024.12.24.630245doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.24.630245
http://creativecommons.org/licenses/by/4.0/


Fig. 4: Non-Arrhenius scaling in cycling frog egg extracts. A. Sketch of the setup to encapsulate cycling frog egg extracts
in droplets surrounded by oil, including pictures of the customized device to control temperature of extract droplets with
snapshots of measured FRET ratios in an example droplet. B. Representative time series of measured FRET ratios at different
temperatures. C. Analysis of the duration of the total cell cycle (blue), the rising phase (orange), and the falling phase (green) in
function of temperature. D. Mean duration of the data shown in panel E (total period, rising period, falling period) in function
of temperature. Optimal fits using a double exponential function are overlayed. E. Local activation energy in function of
temperature, calculated from the fitted double exponential function.
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Fig. 5: Frog egg extract measurements reveal temperature dependence of cell cycle regulators. A. Using the ABC algo-
rithm, we minimize the mean square error (MSE) between the measured and simulated (using the two-ODE model) durations
of rising phase and falling phase. The measurements are shown with the dots, while the gray lines show results from the model
with the orange line the best fit (smallest MSE). B. Selected optimal model parameters, i.e. the cyclin synthesis rate, the cyclin
degradation rate, and the time scale separation, resulting from the ABC algorithm as shown in A. The black dots correspond to
the cyclin synthesis rate ks (nM/min) extracted from the averaged time series as indicated in panel C. C. Blue line: averaged
time series of Cdk1 activity (measured FRET ratio) at three different temperatures (T = 17°C, T = 25°C, T = 35°C). Orange
line: time series of the computational model with fitted parameters (best fit - corresponding to the orange lines in panels A-B).
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Fig. 6: Frog egg extract measurements reveal temperature dependence of cell cycle regulators A. Examples for how
the rates for Cyclin B synthesis, APC/C activity, CDK1 activity, and PP2A activity were fitted from time series of different
biochemical assays using frog egg extracts at constant temperatures (here for T = 24°C), see Supplementary Note 4. B.
The assays were repeated for temperatures in the interval 16 ↑ 26°C, and (apparent) activation energies were extracted. Blue
dots represent data of individual fitted time series, while the orange dots are the medians. C. Probability distribution of fitted
(apparent) activation energies using bootstrapping see Supplementary Note 2.
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Fig. 7: Decreasing the cyclin synthesis rate decreases the viable temperature range A. Influence of the basal cyclin syn-
thesis rate on the shape of the temperature response curves. B. Cell cycle duration in function of temperature obtained from
encapsulated extracts with 0, 4, or 6 /muM cyclin B morpholino (MO) oligonucleotide. C. Different scenarios in temperature
dependence of cyclin synthesis and degradation lead to different non-Arrhenius scaling of cell cycle oscillations. Only the full
model, incorporating a biphasic cyclin synthesis rate and an imbalance in activation energies, reproduces the experimental data
measured in frog egg extract and in early embryos.
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