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Abstract

The detection of norm deviations is fundamental to clinical decision making and
impacts our ability to diagnose and treat diseases effectively. Current norma-
tive modeling approaches rely on generic comparisons and quantify deviations in
relation to the population average. However, generic models interpolate subtle
nuances and risk the loss of critical information, thereby compromising effective
personalization of health care strategies. To acknowledge the substantial hetero-
geneity among patients and support the paradigm shift of precision medicine, we
introduce Nearest Neighbor Normativity (N³), which is a strategy to refine nor-
mativity evaluations in diverse and heterogeneous clinical study populations. We
address current methodological shortcomings by accommodating several equally
normative population prototypes, comparing individuals from multiple perspec-
tives and designing specifically tailored control groups. Applied to brain structure
in 36,896 individuals, the N³ framework provides empirical evidence for its utility
and significantly outperforms traditional methods in the detection of pathologi-
cal alterations. Our results underscore N³’s potential for individual assessments
in medical practice, where normativity is not merely a benchmark, but a dynamic
tool that adapts to the intricacies of personalized patient care.

Keywords: Normative Modeling, Precision Medicine, Diversity, Density-Estimation

1 Introduction

Normativity, as a conceptual framework, holds profound implications for medical prac-
tice [1, 2]. Normative reference values underlie the standards, norms, and criteria that
guide the physiological assessments in clinical practice. By relying on these reference
norms, clinicians are able to identify deviations from expected physiological states and
detect pathological conditions that require medical intervention. The quantification of
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normativity, i.e., the degree of alignment with expected reference norm values, is there-
fore essential for clinical decision making and moderates our ability to diagnose and
treat diseases effectively. With the advent of precision medicine, the necessity to tai-
lor medical interventions based on individual physiological nuances, as well as genetic,
environmental, and lifestyle factors, has become ever more pronounced. Precision
medicine highlights the considerable heterogeneity among patients and emphasizes
the uniqueness of physiological states and individual healthcare needs [3, 4]. In order
to enable the personalization of medical interventions, it is thus not merely an aca-
demic exercise but a practical necessity to understand and redefine reference values
and normativity definitions in large and heterogeneous datasets.

In neuroimaging, parsing the large inter-individual variability of brain structure
and function has been a major endeavor of the past decades. The aim is to ground
diagnosis and treatment of neurological and psychiatric diseases on an understanding
of disease mechanisms and neurobiological alterations associated with psychopatho-
logical symptoms [5, 6]. Yet, the variability in brain structural patterns and disease
trajectories highlights the diversity among individuals and underscores the complexity
and individuality in brain structure, disease progression, and neurodegenerative pro-
cesses. While the traditional reliance on case–control studies fails to account for the
heterogeneity observed among individuals and across different disease phenotypes, nor-
mative modeling has been successfully applied to interpret brain structures in several
medical domains [7].

Normative modeling uses statistical distributions to quantify normativity relative
to the population average and the typical variance around it [8, 9]. In these models,
clinical variables, such as gray matter tissue density, are joined with clinical covari-
ates—such as age, gender or body mass index— to be processed within a single
analytical framework. However, while comprehensive in its ability to provide context,
these general, typically univariate, models can mask finer pathological details critical
for nuanced clinical insights [10]. Moreover, diversity is often methodologically simpli-
fied by relying on a central tendency (e.g., the mean). Evaluating all data in relation
to a single reference point, the mean, interpolates natural variability, neglects the
uniqueness of physiological manifestations and may overlook nuanced inter-individual
deviations and anomalies. In addition, it inherently excludes the possibility of multiple,
equally viable and healthy normative states. This risks the loss of crucial information
and compromises the accuracy of personalized normativity assessments, affects their
applicability and effectiveness for personalized healthcare.

Here, we address these methodological shortcomings and propose a novel norma-
tivity framework which we call Nearest Neighbor Normativity (N³). The N³ framework
advances normativity estimations in large and heterogeneous datasets by not only
acknowledging but also embracing the diversity inherent in study populations. We use
density estimation techniques to enable refined normativity evaluations and accommo-
date multiple possible normative population prototypes. Moreover, we rely on multiple,
specifically tailored subpopulations and leverage multiple comparative angles to cre-
ate a multi-facetted individual normativity profile. The N³ framework parses the large
inter-individual variability in patient data and enables a refined contextualization of
individual patient data, moving closer to the ideals of precision medicine.
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We provide evidence for the value of the N³ framework by developing a novel
normativity marker for brain structure. It is based on four key strategies.

1. Multi-Prototype Normativity.

We reformulate the normativity estimation problem from “What is the population
average in healthy individuals and how much does it vary?” to “How common is this
observation in a representative reference sample?”. Underlying is the assumption that
low regional sample density - i.e. few similar samples - indicates rareness. Methodolog-
ically, this can be expressed with straightforward and distribution-free local density
estimation techniques such as the Nearest Neighbor Algorithm9. The Nearest Neigh-
bor Algorithm offers a nuanced evaluation of the relation of individuals to each other
and expands the normativity definition from a single prototype (the population aver-
age) to several possible normative prototypes (i.e., several clusters of high local sample
density). We hypothesize that this shift in perspective provides a more nuanced under-
standing of inter-individual variability, thereby improving the clinical relevance of
normativity estimates. In the example of brain structure, we allow several equally nor-
mative prototypical brain structures per age group and overlapping brain structural
prototypes across several (neighboring) age groups. This is motivated by the many
factors impacting neurodegenerative processes, including genetic, lifestyle and envi-
ronmental factors, which inevitably results in individual progression rates of brain
structural aging effects, and thus in shared normative prototypes in neighboring age
groups.

2. Tailored control groups.

Second, to enable the detection of subtle deviations often overlooked in broader models,
we propose normativity assessments in specifically tailored control groups. Instead of
comparing to the available data collective as a whole, these tailored control groups
can be designed to accentuate specific normative nuances and elevate the sensitivity
of the analytical models. In the context of brain structure, we avoid population-wide
comparisons and compare brain structures in relation to a representative sample of
the same sex and chronological age. By stratifying our control groups according to age
and chronological age, we remove non-specific brain structural variance and enable
refined comparisons within more homogeneous subgroups. As described above, we
hypothesize that this narrower comparison facilitates the detection of subtle individual
norm deviations.

3. Individual normativity profile.

Third, we introduce global context to the normativity assessments and join multi-
ple comparative normativity evaluations per individual into a so-called normativity
profile. Such an approach looks at an individual from multiple meaningful angles or
viewpoints, culminating in what we refer to as a multi-perspective normativity pro-
file. This profile offers a comprehensive summary of an individual’s alignment with
different, not mutually exclusive, subpopulations. It blends a broad overview with
subgroup-specific details, thereby contextualizing individual nuances from a holistic,
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Fig. 1 Our proposed N³ framework entails methodological innovations that refine normativity assess-
ments in large and diverse medical datasets. We refrain from comparisons to a single normative
tendency such as the population average. Instead, we propose to quantify normativity assessment
with local density estimation algorithms, which effectively embraces diversity and acknowledges the
possibility of multiple, equally viable health states in the population. Moreover, we propose to use
several carefully tailored control groups to promote the detection of subtle and nuanced anomalies
that may escape broader comparative models. On top of that, we introduce global context to the
normativity assessments and join multiple comparative normativity estimations per individual into a
so-called normativity profile. This normativity profile acts as a holistic representation of a patient’s
health status and provides a multifaceted contextualization to the complex and heterogeneous nature
of medical observations. Finally, we convert the normativity profile into a singular, actionable met-
ric, which we call N³. It synthesizes the accumulated information of prior steps and can be adapted
to a variety of clinical inquiries. For example, the final N³ normativity assessment can be fine-tuned
to express normativity in relation to specific clinical outcomes, such as alignment with normativity
profiles in patients who exhibit high treatment responses. The N³ approach is universally applicable,
and we see great potential that its application will advance normativity assessments and contribute
to personalized patient care.

yet granular, perspective. We hypothesize that, compared to a single normativity esti-
mation, such a multi-perspective normativity profile may reveal additional information
about an individual’s health status. In the context of brain structure, we utilize the
manifold of age-group specific models to evaluate brain structure from different view-
points along the age continuum. This method assesses an individual’s alignment with
different norms seen along the age continuum and positions it within the spectrum of
aging effect (see Figure 2). Consequently, a very normative brain structure exhibits
high local sample density within its own age group and shows decreasing alignment
within other age groups (see Figure 2c). Alternatively, an individual brain structure
might align with the aging effects seen further along the aging continuum, resembling
older brain structures (see Figure 2b), or younger brain structures (see Figure 2a).

4. Meta Normativity.

Finally, to synthesize the comprehensive data captured in an individual’s norma-
tivity profile into a singular, actionable metric, we conduct a final normativity
estimation. Here, the normativity profile itself is subject to normativity estimation
(meta-normativity). In the case of brain structure, we evaluate the normativity profile
with respect to age groups. The final normativity marker, which we abbreviate with
N³, therefore expresses how common a normativity profile is for a specific age group.
We hypothesize that this second layer of normativity estimation will further increase
clinical utility. Moreover, it can be adapted to diverse clinical inquiries, e.g., express-
ing the commonness of a normativity profile for patients with high treatment response
or adverse side effects.
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Fig. 2 Individual brain structural normativity profiles of three exemplary individuals of the training
sample (see Methods 1 and 2). The normativity profiles show the alignment of an individual brain
structure with brain structure seen in reference samples of different age groups (blue). The align-
ment, i.e. its normativity, is measured using density estimation techniques, allowing several equally
normative prototypical brain structures per age group and overlapping brain structural prototypes
across several (neighboring) age groups. Chronological age is depicted in green. a) An individual’s
brain structure aligns with younger brain structures, indicating fewer aging effects as commonly seen
in same-aged individuals b) An individual brain structure aligns with older brain structures, indicat-
ing premature neurodegeneration processes. c) A brain structure exhibits high alignment within its
own age group and shows deprecating alignment within other age groups.

In this work, we benchmark the efficacy of the N³ framework relative to conven-
tional normative modeling approaches. We provide evidence that the N³ approach
is able to interpret clinical information effectively, and finds individual nuances and
norm deviations related to disease in large and heterogeneous data.

2 Results

All normative models are trained with neuroimaging data from T1-weighted MRI
scans of 29,883 individuals of a large population-based study (see Methods 2). Our
analysis focuses on gray matter (GM), white matter (WM), hyperintense white mat-
ter (WMH), total intracranial volume (TIV) and cerebrospinal fluid (CSF) volumes.
These global measures provide a comprehensive overview of brain structure[11]. We
use these broad aggregates of complex physiological features to appropriately repre-
sent typical clinical measurements, and verify the detection of individually nuanced
norm deviations. Particularly, we test the ability of different normative modeling
approaches to derive meaningful disease indicators from these global parameters. We
employ instances of Mild Cognitive Impairment (MCI), Alzheimer’s Disease (AD)
and Frontotemporal Dementia (FTD) as model diseases to represent brain structural
alterations and different pathological states.

We evaluate the N³ marker efficacy against conventional normative modeling
approaches. Using classical normative modeling [7, 8], we derive two normativity
scores, the first being the sum of the absolute z-scores (NM-S), the second counting
the number of z-scores whose magnitude deviates beyond a threshold of ±1.96 (NM-
C). We also benchmark our approach against the Brain Age paradigm, which utilizes a
machine learning model to predict chronological age from brain structural data[12, 13].
Deviations between predicted and actual age, referred to as the Brain Age Gap (BAG)
indicate neurodegenerative alterations (for details please refer to Methods Section 1,
3 and 4)
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Applying the normative models to 7,013 individuals with varying levels of neu-
rodegeneration (see Methods 2), we validate the ability of each normative marker
to differentiate between healthy inter-individual variability and (early) pathological
states of neurodegeneration. We thereby compare the efficacy of the different normative
modeling approaches in identifying individual pathological norm deviations

2.1 Increased statistical explanatory power in distinguishing
neurodegenerative diseases

First, we assessed the statistical power of each normativity marker, specifically examin-
ing the extent to which the marker detects neurodegenerative alterations in group-level
analyses. We calculated the effect size (partial eta squared, η2) for the classification
of healthy individuals from those affected by disease (MCI, AD or FTD, respectively;
see Methods 5.5). Post-hoc comparisons then enabled us to evaluate which normativ-
ity marker was able to provide the most statistical power. The N³ marker consistently
showed higher discriminative ability across all neurodegenerative conditions compared
to other markers used in the study (see Figure 3 and Table 1).

For AD, the N³ marker showed the largest effect size (η2= 0.26), signifying that
approximately 26% of the total variability in the data could be attributed to differences
in the N³ marker levels between the AD group and controls. In the context of FTD, all
markers demonstrated large effect sizes, while the N³ stood out with an effect size of
η2 = 0.34. The results for Mild Cognitive Impairment (MCI) differed, as all markers
showed generally lower explanatory power. Nonetheless, the N³ marker displayed a
relative advantage, with an effect size of η2 = 0.07, compared to η2 = 0.05 for the
Brain Age Gap (BAG) and η2 < 0.01 for the normative modeling scores. Overall,
the results suggest N³’s enhanced capability of discerning the subtle and complex
neurostructural alterations associated with different stages of neurodegeneration in
group level analysis.

2.2 Improved personalized predictions

Second, we conduct machine learning analyses to evaluate each normativity marker’s
utility in predicting the occurrence of a neurodegenerative disease. Machine learn-
ing models transcend conventional statistical models by handling multivariate and
non-linear relationships and shifting the focus from group average comparisons to pre-
dictions on an individual level[14]. We estimate how well the different normativity
markers predict the existence of pathological neurodegenerative states in unseen indi-
viduals. To do so, we employ cross-validation strategies, which systematically tests
each marker against new, unseen data to verify the accuracy, robustness, and general-
izability of the models. Such validation is imperative to ensure reliability when these
markers are applied in clinical environments [15]. The performance of the ML mod-
els is quantitatively evaluated using metrics such as sensitivity, precision, balanced
accuracy, and the F1-score —each providing a different lens through which to assess
clinical utility. Balanced accuracy provides a holistic view, ensuring that both the
presence and absence of disease are accurately identified. Sensitivity is particularly
critical in a clinical setting as it measures the model’s capability to capture as many
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Fig. 3 Top: The top panel shows the results of the statistical analyses. Statistical effect sizes (partial
eta squared - η2) are given for the different normativity markers (N³ - our approach, NM-S - the sum
of the absolute z-scores, NM-C - the number of z-scores whose magnitude deviates beyond a threshold
of ±1.96, and the BAG - Brain Age Gap). We evaluate each normative modeling approach’s abil-
ity to parse inter-individual variability and detect pathological alterations. For each marker, we test
the ability to differentiate between controls and diseased individuals in group-level analyses, using
neurodegeneration as representative model disease. Results are given for Mild Cognitive Impairment
(MCI), Alzheimer’s Disease (AD), and Frontotemporal Dementia (FTD), respectively. Post-hoc com-
parisons of the effect sizes revealed larger explained variance of our N³ marker in all neurodegenerative
conditions. The level of significance in the differences between the η2 of N³ and η2 of the other nor-
mativity markers is indicated above. Significance was confirmed through permutation testing using
1000 random class assignments. The distribution plots below show each normativity marker’s value
distributions for healthy controls (black) and diseased individuals (gray). Bottom: We use machine
learning to evaluate the expressiveness of each normativity marker on a single-subject level. The N³
maker demonstrated increased accuracy in predicting the occurrence of neurodegenerative diseases
for individual patients. We show the different normativity marker’s performance metrics [balanced
accuracy (B.Acc), F1-Score, Recall and Precision] and the performance advantage of the best nor-
mativity marker in relation to the second best marker in percentage (above).

diseased patients as possible, thus effectively measuring a marker’s utility as a screen-
ing tool. Complementary precision ensures that the majority of patients identified by
the model as having a disease truly have the disease. The F1-score is crucial for its
balance of precision and sensitivity—a vital feature to avoid unnecessary interventions
or over-treatment or unnecessary expensive screening programs.

The findings, as presented in Figure 3 and Table 1, elucidate the efficacy of the
N³ marker across various neurodegenerative disorders. In the specific cases of AD
and FTD, the N³ marker demonstrated notable improvements in balanced accuracy
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scores—surpassing the second-best markers by 5.8% for AD and 7.5% for FTD. How-
ever, in alignment with the small effect sizes observed in statistical analysis, the efficacy
of all markers notably declined in predicting the presence of MCI from the given vari-
ables. Here, the N³ reached an 1.1% improvement to the next best marker, the BAG.
With regard to the F1-scores, the N³ marker achieved the highest performance in all
neurodegenerative diseases, demonstrating its adeptness at balancing sensitivity and
precision in detecting disease cases. While N³’s precision for MCI was 0.5% behind the
normative modeling marker (NM-S) and by 5.1% in AD (NM-C), it was superior by
5.2% for FTD compared to the second best result (NM-C). Moreover, the N³ marker
displayed superior sensitivity rates in all conditions, highlighting its sensitivity in
identifying (subtle) neurodegenerative patterns. Given the overlap to normative aging
patterns and the individuality in disease manifestations, particularly in MCI, this is
a notable performance increase and indicates the N³ approach’s utility in decoding
sparse associations. Overall, N³’s relative superiority over other markers emphasizes
its efficacy in differentiating inter-individual variability from pathological variations
in unseen individuals. The results provide evidence for the expressiveness of the pro-
posed N³ normative modeling approach, indicating its ability to parse inter-individual
heterogeneity effectively to evaluate individual measurements intricately within the
broader landscape of diverse medical data.

2.3 Stability and Robustness of the N³ marker

The calculation of the N³ marker relies on local density estimation. As such it is highly
dependent on the composition of the reference sample. Therefore, we investigate how
changes to the sample composition and sample size affect the stability of the N³ model.
We retrained N³ models with downsampled subsets of varying size, thereby mimicking
smaller studies and different study participants. We then apply the different normativ-
ity models and predict normativity on an external dataset. Particularly, we evaluate if
predictions remain consistent across different sample sizes and sample compositions.
We quantify the stability of the normativity estimates by calculating the Intraclass
Correlation Coefficient (ICC) 18 (see Methods Section 5). Results are visualized in
Figure 4. We see that random samples of 200 individuals and above show consistently
high stability (ICC of 0.75 and above). Moreover, the ICC converges to excellent levels
(0.9 and above) in larger sample sizes, starting at 300 participants. While the results
are calculated for the use case of brain structural normativity estimation, they are a
first indication density-estimation based normative models can be realized by dividing
larger samples into subgroups of a few hundred samples and above.

Furthermore, it is essential for normativity estimations to remain consistent and
interpretable along the aging continuum, i.e., across different age groups, to avoid age
biases that could complicate both research and clinical interpretations. An analysis of
the age correlation of the N³ marker (presented in Figure 4a) indicates its stability
over the age range, showing no significant association to age. In comparison, tradi-
tional normative models show a significant but smaller correlation to age (ρ=0.11-0.16,
p<0.001). This is a contrast to the Brain Age Gap (BAG), which exhibits a moder-
ate age bias (ρ=0.21, p<0.001), even after bias correcting adjustments are made, (see
Methods Section 3).
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Table 1 Overview of the results achieved in statistical and machine learning analyses. To quantify the expressiveness of the
different methodological approaches, we evaluate the different normative markers’ ability in distinguishing between normative
inter-individual variability and pathological alterations. We report the effect size η2, representing the amount of variance
explained by each of the different normativity markers in statistical group comparisons. We compare N³ - our approach, NM-S
- the sum of the absolute z-scores, NM-C - the number of z-scores whose magnitude deviates beyond a threshold of ±1.96, and
the BAG - Brain Age Gap for Mild Cognitive Impairment (MCI), Alzheimer’s Disease (AD), and Frontotemporal Dementia
(FTD), respectively. Moreover, we report the F-statistic, reflecting the relation of the marker variance between cognitive
unimpaired and diseased individuals in relation to the respective intra-group variance, further indicating its ability to identify
pathology in group-level analyses. All F-statistics and effect sizes η1 are significant (p<0.001). The performance results of the
machine learning analyses are given, where the normativity markers are used to predict the occurrence of the
neurodegenerative diseases in individual cases. The metrics provide insights into each marker’s clinical utility, and overall
efficacy in handling inter-individual variability and pathological variations across different neurodegenerative conditions on a
single subject level. Highest performance is indicated in bold. We see that the N³ brain structural normativity marker shows
relative superiority in relation to the other normativity markers, indicating the approach’s efficacy in processing
inter-individual variability and delineating potential anomalies.

Marker F-statistic Effect size η2 Balanced F1-score Sensitivity Precision
[95% CI] Accuracy

Mild Cognitive Impairment (MCI)
NM-C F(1,4565) = 41 0.009 [0.004, 0.016] 0.539 ± 0.010 0.385 ± 0.057 0.367 ± 0.090 0.427 ± 0.028
NM-S F(1,4565) = 58 0.013 [0.007, 0.021] 0.553 ± 0.013 0.352 ± 0.044 0.284 ± 0.070 0.490 ± 0.044
BAG F(1,4565) = 78 0.017 [0.011, 0.026] 0.603 ± 0.011 0.516 ± 0.014 0.566 ± 0.030 0.475 ± 0.016
N³ F(1,4565) = 135 0.029 [0.019, 0.039] 0.614 ± 0.011 0.529 ± 0.013 0.582 ± 0.023 0.485 ± 0.014

Alzheimer’s Disease (AD)
NM-C F(1,3709) = 762 0.174 [0.148, 0.206] 0.733 ± 0.020 0.583 ± 0.027 0.578 ± 0.047 0.591 ± 0.010
NM-S F(1,3709) = 732 0.168 [0.136, 0.201] 0.727 ± 0.023 0.570 ± 0.031 0.578 ± 0.057 0.567 ± 0.022
BAG F(1,3709) = 226 0.059 [0.042, 0.075] 0.676 ± 0.023 0.477 ± 0.025 0.651 ± 0.054 0.376 ± 0.014
N³ F(1,3709) = 1091 0.232 [0.206, 0.263] 0.791 ± 0.020 0.632 ± 0.020 0.761 ± 0.049 0.541 ± 0.010

Frontotemporal Dementia (FTD)
NM-C F(1,580) = 112 0.163 [0.116, 0.211] 0.671 ± 0.028 0.613 ± 0.043 0.499 ± 0.063 0.812 ± 0.073
NM-S F(1,580) = 117 0.169 [0.126, 0.217] 0.653 ± 0.042 0.592 ± 0.034 0.479 ± 0.047 0.790 ± 0.097
BAG F(1,580) = 177 0.235 [0.166, 0.301] 0.715 ± 0.076 0.731 ± 0.073 0.700 ± 0.073 0.765 ± 0.077
N³ F(1,580) = 325 0.341 [0.290, 0.435] 0.790 ± 0.063 0.789 ± 0.059 0.729 ± 0.063 0.864 ± 0.080

In terms of inter-marker relationships (detailed in Figure 4), the correlation anal-
ysis shows generally weak associations (0.19 < |ρ| < 0.25) among the various markers.
Two exceptions were noted: a strong correlation (ρ=0.79) between the two norma-
tive modeling markers — expected due to their derivation from the same normative
models — and a moderate to strong correlation (ρ=0.65) between the BAG and the
N³ marker. The correlations indicate underlying differences in what these markers are
measuring about brain structural normativity, suggesting a potential for a combined
utility in clinical settings.

3 Discussion

We have introduced the N³ framework, which extends existing normative modeling
approaches by accommodating several normative population prototypes and evaluat-
ing individuals from multiple comparative angles. We applied it to brain structure,
which resulted in an informative biomarker assessing aging effects from multiple per-
spectives along the aging continuum. Notably, the N³ framework provides holistic
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Fig. 4 Our evaluations revealed high robustness and consistency of the N³ framework. a) We explored
the age bias across different brain structural normativity markers in a healthy reference sample. In
contrast to the other normativity estimation approaches, the N³ marker showed no significant asso-
ciation to age, which allows a consistent interpretability across different age groups. b) Additionally,
we calculated the correlation matrix among markers, which emphasize the distinctiveness and com-
plementarity of the N³ marker. c) We tested the impact of sample size and sample composition on
the reliability of the N³ marker through intraclass correlation coefficients. To do so we repeatedly
downsampled the training data to a random subset, mimicking smaller samples and different sample
compositions. We see that the N³ marker exhibits high stability (ICC of 0.75 and above) starting
from small sample sizes of around 100 individuals and converges to excellent stability (ICC of 0.9
and above) in sample sizes of three hundred individuals and above.

context while at the same time refining individual assessments by benchmarking
against a specifically tailored reference sample. In this context, individual normativity
profiles were compared to a reference group of same-aged individuals, facilitat-
ing the detection of fine-granular norm deviations. We provided evidence that the
strategic alterations of the N³ framework yield increased expressiveness and enabled
superior differentiation between natural inter-individual variability and pathological
alterations. In comparison to commonly used normativity scores and the widely ref-
erenced Brain Age approach, the N³ marker showed increased efficacy in identifying
pathological neurodegenerative brain structural changes.

Notably, our evaluations are based on only five variables reflecting global brain
structure volumes. As such, they are broad aggregates of complex physiological fea-
tures and represent the character of many clinical measurements. In our application,
the N³ approach has demonstrated its ability to effectively decode the relevant infor-
mation contained in these limited neurobiological variables and was able to extract
meaningful insights.

We developed the N³ approach in alignment to the goals of precision medicine. As
diversity and scale of datasets increase, we need to reevaluate how population norms
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are derived, applied, and interpreted in clinical practice [16–19]. A refined modelation
of reference values and population norms enhances our understanding of normative
variability in diverse populations and fosters the detection of individual pathological
alterations [20–24]. The N³ framework embraces the complexity in patient data, con-
textualizes it against heterogeneous population standards and parses the diversity into
an interpretable and actionable metric.

Our approach accommodates the multivariate nature of brain structures [25] and
aligns with other modern understandings of heterogeneity, such as the concept of
neurotypicality [26–28]. Traditionally seen as a uniform standard, brain architectures
are now understood to encompass a spectrum of neurological function and structures,
reflecting the rich diversity of the human brain. Moreover, our findings resonate with
recent work by Yang et al., where the authors found a range of multiple, co-occuring
patterns of brain aging [29]. Their research underscores the significant inter-individual
and also intra-individual variability, underscoring the complexity and uniqueness of
individual neurodegenerative processes beyond population averages.

Limitations of our proposed N³ framework include its reliance on larger sample
sizes, a factor not always feasible in clinical studies where resource efficiency dictates
smaller study populations. To maximize statistical power and mitigate the confound-
ing effects of clinical covariates, the heterogeneity in these smaller studies is often
restricted, which inadvertently limits their generalizability and applicability of out-
comes across the heterogeneous population [30, 31]. In our evaluations, the N³ marker
exhibited high stability in samples of a few hundred individuals, indicating substantial
robustness in moderately-sized research study populations. Moreover, the N³ marker
showed consistency across age groups, i.e., no correlation to age, which means that
its interpretation is consistent across individuals from different age groups and facili-
tates its interpretability in statistical analyses. Next to the overall sample size, the N³
framework depends on the coherence and precision of defined control groups. With-
out carefully stratified and representative control groups, fragmented and inconsistent
normative assessments may ensue. Here, it is crucial that clinical knowledge is used
to design comprehensive stratification strategies that capture relevant sources of het-
erogeneity and enable refined normativity estimations. Within the control groups, the
framework’s effectiveness relies on the choice of a density estimation algorithm. In
our application, the Nearest Neighbor Algorithm depends on the k parameter, which
defines the number of neighbors considered in the estimation of the local sample den-
sity. In our approach, limiting the number of neighbors to 10% with an upper bound to
15 prevented overly broad comparisons while maintaining sufficient robustness across
all control groups. In general, the underlying algorithm can be customized for differ-
ent scenarios, or adapted to accommodate different medical data modalities, e.g., by
using custom distance metrics or dimensionality reduction techniques [32, 33].

The interpretation and contextualization of individual brain structures holds sig-
nificant potential for various domains. For example, a reliable biomarker for brain
structural normativity is eagerly sought in neuropsychiatric research. Here, biomark-
ers hold promises to enable comprehensive assessments of neurostructural alterations
to better understand the etiology and pathogenesis of different disease phenotypes
[10, 14, 34]. In general, a valid and robust neurostructural biomarker would allow us
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to measure the impact of environmental factors, treatment options and neuroinflam-
matory processes to understand disease mechanics and optimize individual disease
management strategies [35–37]. In the realm of neurodegenerative diseases, the abil-
ity to detect brain structural alterations early is of critical clinical relevance, as it
has been shown that structural changes in the brain can manifest well before clini-
cal symptoms become apparent [38, 39]. Furthermore, evidence supports the presence
of multiple underlying neuropathological processes [40, 41], underscoring the method-
ological importance for models accommodating multiple disease prototypes. Here, a
reliable brain structural screening tool could be attached to routine MRI scans to pro-
mote early disease interception and facilitate timely interventions that may prevent
or delay disease progression [42–44]. To this end, we intend to extend our approach
to process scans of different MRI tissue contrasts and evaluate different deep-learning
based embeddings to optimize information gain. Moreover, we intend to investigate
the resulting marker’s relation to genetic risk factors [29, 45–47].

As the critical role of individual norm deviations resonates through every facet
of personalized medicine, we aim to refine and expand our normativity estimation
approach to medical domains beyond brain structure. To illustrate this, consider some
exemplary applications. In the context of diabetes, our N³ approach might enable
fine-grained analysis of normative glucose tolerance levels. By considering factors such
as age, insulin sensitivity, lifestyle habits or ethnicity, the identification of nuances
relevant to achieve optimal glycemic control might be facilitated [48–51]. In renal
function assessment, particularly in conditions like chronic kidney disease, the N³
approach could aid in evaluating individual glomerular filtration rate patterns. By
establishing normative trajectories of GFR, deviations from expected patterns could
be identified early on [52, 53]. Finally, in the management of hypertension, the N³
approach could be employed to establish normative trajectories of blood pressure.
Here, it could help to identify individual pattern deviations, adjusted for factors such
as age, sex, body mass index, ethnicity, and lifestyle habits, that signal an elevated
risk of cardiovascular events [54, 55].

In general, we believe that the N³ framework holds promise for dynamically gen-
erated ad-hoc normativity assessments in the clinical routine, guided by the expertise
of healthcare professionals and adeptly adjusted to meet the individual needs of var-
ious clinical scenarios. This forward-thinking application of the N³ framework could
assist individual assessments in medical practice, where normativity is not merely a
benchmark, but a dynamic tool that adapts to the intricacies of personalized patient
care.

4 Conclusion

This approach that we call Nearest Neighbor Normativity (N³) interprets individual
patient data in reference to a particularly matched sample, accommodates diverse
population norms, and analyzes several different perspectives of normativity. Thereby,
it holds significant promise for personalized healthcare. It can be applied across various
medical domains to contextualize individual patient data in large and heterogeneous
datasets. As we continue to refine and validate our normativity estimation approach,
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it is our belief that the insights gained will be invaluable for shaping normativity
assessments and contribute to more personalized patient care and improved clinical
outcomes.

5 Methods

5.1 N³ algorithm

The N³ approach is based on local density estimation in tailored control groups. To
establish a normative reference for the local density seen in a representative sample,
we here use the simple and intuitive Nearest-Neighbor algorithm [33, 56].

5.1.1 Local density estimation in tailored control groups

Let Xc ∈ X be a control group of dataset X and C = {c1, c2, . . . , cg} be the
set of g control groups, where control groups are allowed to overlap. Each control
group Xc contains n samples {q1, q2, . . . , qn}, which are characterized by m features
{a1, a2, . . . , am}.

As a first step, we normalize the features in each control group c, so that their
value lies in [0,1].

a′i,j =
ai,j −min({a|a ∈ Aj})

max({a|a ∈ Aj})−min({a|a ∈ Aj})
, (1)

where ai,j represents feature j of the sample i in the control group Xc, and Aj are all
values of feature j in the control group Xc. Each sample qi is thus represented as a
feature vector of normalized features qi = (a′i,1, a

′
i,2, . . . , a

′
i,m). To estimate the local

sample density around a particular point qi in Xc, we define a subset Nqi ⊆ Xc such
that it contains the k points x′ ∈ Xc which are the closest to qi. DistanceD is measured
using the Euclidean distance. We define Dist(qi, Xc) = {D(q, x′) | x′ ∈ Xc} as the set
of all distances from qi to points in Xc. After sorting the points in Dist(qi, Xc) into
a tuple (d1, d2, . . . , dn), where (d1 ≤ d2 ≤ · · · ≤ dn), the k nearest neighbors are the
first k elements.

Next, we quantify the local sample density λ of qi as the inverse of the sum of the
distance to its k nearest neighbors in control group c.

λ(qi, c) =
1∑

x′∈Nqi

D(qi, x
′)

(2)

For each individual qi in each of the control groups containing n samples,
respectively, we calculate the local sample densities λ as described above .

Λc = {λ(qi, c) | i = 1, 2, . . . , n}, (3)
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To ensure comparability between the different control groups, we divide the local
densities by the control-group specific median.

λ′(qi, c) =
λ(qi, c)

median (Λc)
(4)

As a result we have a set of normalized local sample density estimations for all of the
g control groups Λ′ = {Λ′

1,Λ
′
2, . . . ,Λ

′
g}.

We introduce context to the local sample density estimations and analyze their
distribution across all control groups. Due to its flexibility in accommodating various
distributive shapes, we use the exponentiated Weibull distribution [57]. The distribu-
tion is fitted on all normalized local sample density estimation in Λ′. Using the fitted
distribution, we derive the likelihood of a normalized local sample density estimation.

f(x, b, d) = bd[1− exp(−xd)]b−1 exp(−xd)xd−1, (5)

where x = λ′(qi, c) is the normalized local density value of sample qi in control
group c, b is the exponentiation parameter, and d is the shape parameter of the
non-exponentiated Weibull law.

We use the fitted distribution f to convert all local sample density estimations
λ′(qi, c) into measures of likelihood. To keep as much information as possible, we add a
sign to f , which indicates in which direction a sample is deviating from the median. In
this context, samples whose local sample density is smaller than the medium, receive
a negative value, while samples whose local sample density is larger than the medium,
have a positive value.

f∗(x) =

{
−f(x, b, d) if x < 1,

f(x, b, d) otherwise
(6)

Finally, to foster intuitive interpretation, we scale the signed likelihood f∗ to an
interval of [-1, 1], where -1 indicates lowest sample density found and 1 indicates
maximal sample density found.

f∗∗(x) = 2 ∗ f∗(x)−min({f∗(q|q ∈ X}
max({f∗(q|q ∈ X})−min({f∗(q|q ∈ X})

− 1 (7)

The final value f∗∗ is a normativity estimation on how common the sample qi appears
within a particular control group c, measured by its local sample density λ′.

5.1.2 Normativity Profile

To create a normativity profile for an individual sample qi, several normativity estima-
tions in different, not mutually exclusive, control groups can be combined, evaluating
the commonness of an individual measurement from multiple meaningful angles or
viewpoints.

ϕi = {f∗∗(λ′(qi, c1)), f
∗∗(λ′(qi, c2)), . . . , f

∗∗(λ′(qi, cg))} (8)
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5.1.3 Meta Normativity

To synthesize the comprehensive information entailed in an individual normativity
profile ϕi into a single, actionable metric, we conduct a second layer of normativity
estimation (meta-normativity).

Basis to this is the first layer of normativity estimation, in which the local density
estimation algorithm described in section 5.1.1 is applied to medical data of a popula-
tion or study sample. In this step, the local sample density estimation is based on the
m medical data features. Using the algorithm outputs, a normativity profile ϕi can
be generated for each individual. The normativity profile expresses how common the
medical observations are in relation to the samples contained in each control group.

In the second layer of normativity estimation, we use the normativity profile ϕi as
input data and repeat the local sample density estimation approach. Now, the local
density estimation algorithm is using the g normativity measures of ϕ as features.
Thereby, we measure the commonness of a normativity profile in relation to other
normativity profiles seen a particular reference population. This can either be done
globally (on all normativity profiles of the sample), or again in in tailored control
groups (evaluating the commmonnness of a normativity profile with respect to a par-
ticular sample subpopulation). The output of this meta-normativity estimation is the
return value of the N³ algorithm, what we call the N³ marker.

N3 = f∗∗(λ′(ϕi, c)) (9)

5.1.4 Training vs. Inference Phase

The N³ algorithm is trained using a normative reference sample X. There are two sub-
sequent layers of local density estimation. The first layer operates on the algorithm’s
input data. During the process, scaling parameters for the input features, as well as
the median local sample density are derived and persisted per control group, respec-
tively. Also, the parameters of the fitted probability density function and the final
scaling function are persisted. Afterwards, all samples in X undergo the normativity
evaluations and are expressed in individual normativity profiles Φ = {ϕ1, ϕ2, . . . , ϕn}
(see Equation 8).

Using the resulting normativity profiles of the normative reference sample Φ as
input, a second layer of normativity estimation is applied. This time, the inidivudal
normativity profiles ϕi are subject to local sample density estimation (λ′(ϕi, c)). Again,
the scaling parameters as well as the median local sample density are persisted per
control group, respectively. Control groups may now be different than those in the
first stage. Finally, another probability density function is fitted, this time on the local
sample densities of Φ. Again, the fitting parameters of as well as those of the scaling
function are persisted.

During inference time, a novel sample p is evaluated in relation to the controls
groups C of training sampleX. For each control group, the feature values of p are scaled
according to the parameters persisted during training, and the k nearest neighbors
of p are determined, respectively. We calculate f∗∗(λ′(p, c)) in relation to samples
seen in Xc. After applying the first layer of local sample density estimation, several
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normativity evaluations in different control groups are summarized in a normativity
profile ϕp. In the second step, the normativity profile ϕp is evaluated in relation to the
normativity profiles seen in the reference sample (Φ), using the parameters persisted
during the second stage of training. The final output is derived by N3

p = f∗∗(λ′(ϕp, c))

5.1.5 Application to Brain Structure

In our application to brain structure, we stratify the training sample by sex and age,
resulting into 100 control groups containing same-aged females or males (22 to 72
years), respectively. Each sample is characterized by 5 different features, namely the
brain structural volumes (GM, WM, WMH, CSF, TIV) of each individual. To miti-
gate different sample sizes of different age groups, we join either the lower, the upper,
or both neighboring age groups of underrepresented age groups, so that the sample
size per age group approximates the median sample size available per sex. We set the
k parameter to 10% of the control group sample size, but limit its upper bound to
15 to prevent too broad comparisons k = min(round(0.1 × n), 15). Applying the N³
algorithm, we then first evaluate the commonness of an individual brain structure in
comparison to all available age groups of the same sex. The result are normativity
profiles, indicating the alignment of the brain structure in relation to the reference
samples seen across the aging continuum. In the next step, we use all normativity pro-
files (across genders) and evaluate their normativity in relation to other representative
samples of the same chronological age. The final N³ marker indicates how common a
brain structural normativity profile is in the chronological age group of the individual.

5.2 Materials

Neuroimaging data from six different studies were provided by the respective con-
sortia. Our study includes data from the German National Cohort (NAKO)[58–60],
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [61], the Münster-Marburg
Affective Disorder Cohort (MACS) [62], the Australian Imaging, Biomarker Lifestyle
Study of Aging (AIBL) [63], the Frontotemporal Lobar Degeneration Neuroimaging
Initiative (NIFD), and the Open Access Series of Imaging Studies 3 (OASIS3) [64, 65].
We give a short overview of our approach to integrate these resources in our analyses,
before we introduce each study population in detail below.

5.2.1 Training and Test Data

In general, if more than one measurement was available per participant, we restrict
each study’s dataset to the first (baseline) measurement of the participant. Exclusion
criteria were applied based on age; participants younger than 22 years or older than
72 were omitted from the study, due to insufficient sample sizes in the normative
reference sample. All neuroimaging data utilized in this study were T1-weighted MRI
scans from these baseline measurements. These images underwent preprocessing using
the standard software CAT12 (version: cjp v0008, spm12 build v7771; cat12 build
r1720) default parameters. In short, images were bias-corrected, tissue classified, and
normalized to MNI-space using linear and non-linear transformations. Subsequently,
the derived GM, WM, WMH, CSF, and TIV volumes were extracted.
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Training Data

The training data for fitting models of the different normative modeling approaches
comprised 30,047 samples from the population-based NAKO cohort (for details see
below). We exclude age groups below 22 years and above 72 years due to small sample
sizes (n < 100), which restricts the final sample to 29,883. We then fit the models of
the different normative model approaches using this large and diverse sample.

Test Data

To investigate each normativity marker’s effectiveness in identifying brain structural
anomalies and (early) signs of neurodegeneration, additional data involving 5,857
participants were utilized, sourced from ADNI, AIBL, OASIS and NIFD datasets
(for details see section 5.2.2). The collective samples include cognitively unimpaired
individuals as well as those diagnosed with Mild Cognitive Impairment, Alzheimer’s
Disease and Frontotemporal Dementia.

Data for Stability Analysis

Finally, to evaluate the robustness of the N³ brain structural normativity assessments,
we use artificially downsampled subgroups of the NAKO study for training. Validation
subsets included n=835 healthy control participants from the MACS study which
predominantly comprises younger and middle-aged adults, and an additional n=1073
healthy older adults from the ADNI study to span a wider age demographic (see
Methods section 5.5).

5.2.2 Study Populations

German National Cohort (NAKO)

The German National Cohort is a population-based longitudinal study initiated in
2014 aiming to investigate the risk factors for major chronic diseases in 200,000 per-
sons living in Germany. It contains high-quality neuroimaging data from participants
spanning a broad age range. In this study, we utilize the participants’ 3.0-Tesla T1w-
MPRAGE MRI scans (voxel size 1×1×1 mm3, repetition time/ echo time=2300/2.98,
flip angle=9°) [58–60].

Alzheimer’s Disease Neuroimaging Initiative (ADNI)

ADNI is a major multicenter study started in 2003, designed to develop clinical,
imaging, genetic, and biochemical biomarkers for the early detection and tracking
of Alzheimer’s disease. The ADNI was launched as a public-private partnership, led
by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial MRI, positron emission tomography (PET), other bio-
logical markers, and clinical and neuropsychological assessment can be combined to
measure the progression of neurodegeneration. We included 1.5 and 3.0-Tesla T1w-
MPRAGE MRI scans adhering to the ADNI sequence protocol (voxel size 1.3×1×1
mm3, repetition time/ echo time=2300/2.98, flip angle=8°, for scanner specific details
please see https://adni.loni.usc.edu/data-samples/adni-data/neuroimaging/mri/mri-
scanner-protocols/)
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Australian Imaging, Biomarker & Lifestyle Study of Aging (AIBL)

AIBL is an Australian study launched in 2006 focusing on understanding the pathways
to Alzheimer’s disease. The cohort includes participants diagnosed with Alzheimer’s
disease, mild cognitive impairment, and cognitively unimpaired elderly participants,
providing insights into the aging process and the development of neurodegenerative
diseases. AIBL study methodology has been reported previously 65. MRI scans were
performed using a 3D MPRAGE image (voxel size 1.2×1×1 mm3, repetition time/echo
time=2300/ 2.98, flip angle=8°)[63].

NIFD Dataset

The Frontotemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI) was
funded through the National Institute of Aging, and started in 2010. The primary
goals of FTLDNI were to identify neuroimaging modalities and methods of analy-
sis for tracking frontotemporal lobar degeneration (FTLD) and to assess the value
of imaging versus other biomarkers in diagnostic roles. The Principal Investigator of
NIFD was Dr. Howard Rosen, MD at the University of California, San Francisco. We
use the provided 3D MPRAGE T1-weighted images (voxel size 1×1×1 mm3, repeti-
tion time/echo time=2300/2.9, matrix = 240 × 256 × 160) The data are the result
of collaborative efforts at three sites in North America. For up-to-date information on
participation and protocol, please visit http://memory.ucsf.edu/research/studies/nifd

Open Access Series of Imaging Studies 3 (OASIS3)

OASIS3 serves as a comprehensive digital repository for MRI brain data that supports
longitudinal studies of normal aging and cognitive decline [64, 65]. The project is
distinguished by its wide age range of participants, providing diverse datasets that
enhance the understanding of late-life brain diseases alongside physiological aging
processes. We include 3D MPRAGE T1-weighted images (voxel size 1.0 or 1.2×1×1
mm3, repetition time/echo time=2300/2.95 or 2400/3.16 (depending on the scanner),
flip angle=9°, FoV=240 or 256mm)

Marburg-Münster Affective Disorder Cohort Study (MACS)

The MACS cohort is part of the DFG-funded research group FOR2107 cohort,
researching the etiology and progression of affective disorders [62]. The goal is to
integrate and understand the clinical and neurobiological effects of genetisc and envi-
ronmental factors, and their complex interactions. Participants received financial
compensation and gave written informed consent. We use the T1-weighted neuroimag-
ing scans of n=835 healthy control participants to evaluate stability of the N³ models.
Images were in Marburg (MR) or Münster (MS) (voxel size 1×1×1 mm3, repetition
time/echo time=MR: 1900, MS: 2130/MR: 2.26, MS: 2.28, flip angle=8°, FoV = 256
mm, matrix = 256 × 256, slice thickness = 1 mm)

5.3 Brain Age Model

In the Brain Age paradigm, the brain structure is evaluated with respect to aging
effects seen in a healthy reference sample. This is realized by means of a machine
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Table 2 Study Data Summary

Study Group N Included Mean Age Sex
ADNI HC 1073 68.36± 3.3 634 females (59.09%)

MCI 1529 66.71± 4.25 729 females (47.67%)
AD 588 67.2± 4.65 291 females (49.48%)

AIBL HC 368 68.00± 2.77 217 females (58.97%)
MCI 78 68.05± 3.54 33 females (42.31%)
AD 28 66.89± 4.44 16 females (57.14%)

OASIS3 HC 1643 63.36± 6.85 1028 females (62.57%)
MCI 63 66.67± 4.85 37 females (58.73%)
AD 228 66.54± 4.94 97 females (42.54%)

NIFD HC 263 62.71± 6.41 148 females (56.27%)
FTD 317 63.26± 5.66 120 females (37.85%)

MACS HC 835 35.71± 12.6 528 females (63.23%)
NAKO HC 29883 48.45± 12.09 13201 females (44.18%)

learning model trained to predict chronological age from brain structure. The devi-
ation between chronological and predicted age is referred to as the Brain Age Gap
(BAG). While a small BAG is considered normative and age-appropriate, a larger pos-
itive or negative BAG symbolizes premature or delayed neurostructural degeneration,
respectively. The resulting normativity estimation, i.e. the BAG values, have been
associated with numerous neurological and psychiatric conditions [13, 35]. For com-
parison with N³, we train a Brain Age Model using the Python library photonai [66].
We use 90% of the available normative dataset for model training. We use a Support
Vector Machine (SVM), for which we optimize the C and gamma parameters in the
nested-cross-validation procedure (k=10 outer folds and two randomly shuffled inner
folds with a test size of 0.1). The best model achieves an average MAE of 5.43. Finally,
we use the remaining 10% of the normative training data to train a linear age bias cor-
rection as described in Peng et al. [67]. For the evaluation of unseen samples, we use
the Brain Age SVM model to predict age and apply the age correction model, before
we calculate the difference between the chronological and predicted age, the BAG.

5.4 Normative Modeling

We calculate normative models on the training data using the Predictive Clinical
Neuroscience toolkit as described in Rutherford et al. [9]. To train the models, we
normalize GM, WM, WMH, CSF by Total Intracranial Volume (TIV) and fit Bayesian
Linear Regression models with default parameters. Subsequently, z-scores for each of
the variables are derived, which we aggregate into two normative modeling markers:
one being the sum of the absolute z-scores, the second counting the number of absolute
z-scores > 1.96.

5.5 Statistical Analysis

A Type III Sum of Squares ANOVA was performed using an ordinary least squares
(OLS) model to assess the discriminative and explanatory power of each normativity
marker in distinguishing patients from controls. The model was adjusted for potential
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confounders, including age, age squared (to mitigate non-linear effects), sex and scan-
ner. Partial eta squared (η2) was used to quantify effect size, providing an estimate
of how much variance in disease progression could be explained by each normativity
marker, alongside a 95% confidence interval.

We evaluate and rank the different normativity markers by post-hoc comparisons of
their effect size. To test the observed marker differences for statistical significance, we
calculate the ANOVA for each marker with 1000 random permutations. To determine
the p value of the marker differences, we evaluate the actual difference between the η2

of our marker N³ and the η2 another marker, with those found in the 1000 random
permutations.

To assess each normativity marker’s consistency across age groups, an analysis of
age bias was conducted using Spearman’s rank correlation to evaluate the correlation
between the normativity estimation values and age in healthy controls.

To assess stability of the N³ models, the Intraclass Correlation Coefficient (ICC)
model (2,1) was applied. For this purpose, we used the NAKO sample to train the
normativity models, which were downsampled to mimic smaller study populations.
Particularly, we divide the training set in k=[10, 5, 3, 2] non-overlapping parts of equal
size, train normativity models within each of these subsets, and use external test data
to ensure the stability of the normativity estimates. The stability of the normativity
estimates was tested using data from the ADNI and MACS cohort, (see Methods
section 5.2.1). To ensure validity of the test, we use only age groups with more than
500 samples available from the training sample and more than 20 samples in the test
samples.

All statistical analyses were implemented in Python using the scipy, statsmodels
and pingouin libraries.

5.6 Machine Learning Analysis

The effectiveness of aging markers in classifying neurodegenerative diseases was fur-
ther explored through machine learning techniques. We assessed various performance
metrics including balanced accuracy, recall, precision, and F1-score. Our analytical
pipeline employed the open-source Python framework photonai [66]. The analysis
involved nested cross-validation to robustly estimate model performance and avoid
overfitting, using k=5 outer folds and k=10 inner folds, each fold stratified to entail a
balanced proportion of samples from the diseased class. Hyperparameter optimization
was performed via Grid Search to fine-tune the support vector machine (SVM) param-
eters C and gamma. The machine learning pipeline included steps for z-normalization
and balanced sampling (random under-sampling techniques) to address class imbal-
ance within the training data. We measure balanced accuracy, recall, precision and
f1 score of each of the normativity markers in the classification of neurodegenerative
diseases.
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