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Abstract: As the number of Parkinson’s patients is expected to increase with the growth of the aging 
population there is a growing need to identify new diagnostic markers that can be used cheaply and 
routinely to monitor the population, stratify patients towards treatment paths and provide new therapeutic 
leads. Genetic predisposition and familial forms account for only around 10% of PD cases [1] leaving a 
large fraction of the population with minimal effective markers for identifying high risk individuals. The 
establishment of population-wide omics and longitudinal health monitoring studies provides an 
opportunity to apply machine learning approaches on these unbiased cohorts to identify novel PD 
markers. Here we present the application of three machine learning models to identify protein plasma 
biomarkers of PD using plasma proteomics measurements from 43,408 UK Biobank subjects as the 
training and test set and an additional 103 samples from Parkinson’s Progression Markers Initiative 
(PPMI) as external validation. We identified a group of highly predictive plasma protein markers including 
known markers such as DDC and CALB2 as well as new markers involved in the JAK-STAT, PI3K-AKT 
pathways and hormonal signaling. We further demonstrate that these features are well correlated with 
UPDRS severity scores and stratify these to protective and adversarial features that potentially contribute 
to the pathogenesis of PD.     
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1. Introduction 
Parkinson's Disease (PD) is the second most common neurodegenerative disease with 
an estimated incidence of 10 million people worldwide [2]. There is a massive economic 
burden on individuals, families, and the U.S. government, totaling over 50 billion dollars 
per year [3] and the number of PD patients is expected to grow with increased longevity 
of the general population [4]. Parkinson's disease not only diminishes quality of life but 
also imposes a substantial societal burden through care giving needs, lost productivity, 
and high healthcare costs. PD symptoms are marked by tremors, bradykinesia, and 
other movement-centered symptoms and with disease progression loss of basic 
movements, and swallowing become difficult. Pathologically, the disease is marked by 
the death of midbrain dopamine (mDA) neurons in the substantia nigra. This extensive 
death of mDA neurons in the substantia nigra creates Lewy bodies that impair cell 
function until death [5] and also releases protein products into serum and cerebrospinal 
fluid (CSF) [6]. Symptoms often lag disease pathology, and the presymptomatic 
(prodromal) phase can last around 20 years [7]. The onset of symptoms occur after the 
majority of dopamine neurons are lost presenting a significant challenge for early 
intervention and treatment options [8]. A9 neurons are the mDA subtype with the 
highest loss in PD. Therefore, increase in blood plasma of specific A9 proteins could be 
strong candidate biomarkers for early detection [9]. Single-cell analyses of A9 neurons 
lay a foundation that could provide deep insight into PD [10], but are costly and currently 
cannot be used for diagnostics. Due to the long prodromal phase of PD, early detection 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 28, 2024. ; https://doi.org/10.1101/2024.12.21.24313256doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.12.21.24313256
http://creativecommons.org/licenses/by-nc/4.0/


 

 

 

2

is essential for intervention therapy [11, 12]. High throughput proteomic screens allow 
for fast and cheap identification of impactful proteins. These new minimally invasive 
screens using blood draws can be applied broadly on aging population to diagnose and 
provide early targeted treatment whereas CSF or imaging which are costly or too 
invasive.  
 
Earlier work to understand PD risk centered on genetic information using variations of 
linear models [13, 14]. Genome-wide association studies (GWAS) are based on the 
idea that many single nucleotide polymorphisms, which individually have minor 
associations with PD, would compound and lead to stronger predictive models for 
developing PD [15]. Nalls et. al. has obtained performance from variant-only models 
trained on the UK Biobank of 0.69 area under the receiver operating curve 
(AUROC)[16]. Prior work using risk models estimates the probability of developing PD 
over time, helping to identify individuals at high risk for preventive care. Our current 
work focuses on developing early diagnostic models which diagnose or categorize 
individuals as having PD or not, aiding in therapeutic decision-making. More recent 
approaches like whole genome sequencing, proteomics, or phenotypic evaluation can 
add significant predictive values. CSF proteomic models haves shown strong 
classification of PD, but are invasive and carries some risk of complications, which 
would exclude its use for large-scale screens [17, 18]. More recent methods incorporate 
machine learning approaches for classification of PD featuring multiomic models 
spanning transcriptomic to in-depth invasive CSF [19], Sensor [20], and Imaging 
data[21].  
The multiomic models presented here use high throughput proteomic data generated by 
Olink assays, demographic information and genetic data. The proteomic data is 
obtained using minimally invasive and low-cost information using just 1 µL of plasma 
[22]. This information will become more widespread in the future and is ideal for non-
invasive combination for screening and understanding the mechanism of disease 
pathology.  
Using proteomic data across large populations can aid the discovery of more disease 
insights. Neuronal markers that may leak into CSF and then blood have been shown in 
studies focused on CSF in limited sample sizes [23, 24]. Proteomics data has been 
collected from Substantia Nigra to identify differences in Pathways between PD case 
and control [25]. Previous state-of-the-art CSF proteomic model for PD prediction 
yielded an AUROC for held out sub-cohorts of 0.80, and when combined with CSF and 
plasma proteomics an AUROC 0.89 [23, 26]. However, CSF and imaging 
measurements are not routine and typically collected from high risk or diagnosed PD 
patients which are less applicable for population screens [24]. Furthermore, it is not 
clear if these biomarkers are correlated with severity of PD, as defined by the unified 
Parkinson's disease rating scale (URDPS), such that they can be used to track disease 
progression.  
Past studies of PD biomarkers highlighted a strong inflammatory component in PD [26]. 
Recent evidence shows inflammation may contribute to the worsening of PD condition 
and enhance disease progression through reactive oxygen species that mDA neurons 
are particularly susceptible to [27]. In addition to inflammatory markers, hormonal 
markers have been shown to have significant correlations with PD progression metrics 
[28] and lower incidents of PD in women may be partially attributed to protective effect 
of estrogen [29].  
We utilize a deep learning model, a regression model and a SVM model to identify 
potential novel biomarkers PD. Our results identified nine of our top 20 features from the 
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neural network are hormonally related. We characterized these proteins, such as 
Prolactin through protein-protein interaction queries as well as through extensive 
computational analysis and literature reviews. Additionally, we found enrichment for the 
JAK-STAT pathway which plays a strong role in immunity as well as other functions. We 
further validated some of our top features identified in the UK Biobank on an 
independent external validation set. Following this we used top features to determine 
PD severity through the UPDRS score, canonically accepted as a severity metric for 
PD. To our knowledge, this is one of the largest population-based proteomic studies for 
Parkinson’s disease, leveraging cutting-edge machine learning approaches. 
Furthermore, we validated the identified biomarkers by correlating them with 
Parkinson's disease severity scores, demonstrating their potential utility for tracking 
disease progression. 
 

2. Results 
Study design overview 

This study was performed in four stages: data acquisition, data cleaning plus alignment, 
model architecture tuning, and model interpretation (Figure 1). Data were acquired by 
permission from the UK Biobank and PPMI resources [30, 31]. The two studies used 
different approaches and technologies for variant detection. The second step consisted 
of extensive alignment of genomic arrays results, followed by filtering to match the PPMI 
genomic feature set to that of the UK Biobank. We developed three models, a neural 
network, support vector machine (SVM), and ridge regression – to classify PD vs control 
using the proteomics data, genetic variants or combination of both. Training and test of 
the model was performed on the UK Biobank datasets and external validation was 
performed on the PPMI data. Model interpretation was performed by extensive literature 
review of the top features and KEGG pathways to ascertain biological interpretation. To 
identify the most predictive features, Shapley additive explanations (SHAP) [32] were 
calculated for the top 85 (12.5% or around 250 top features from top two models) 
common features between the two top performing models. These features were used in 
a linear model to predict the PD severity scores defined by Unified Parkinson's Disease 
Rating Scale (UPDRS) metric.  
 
Dataset populations 
In this study we took advantage of two large population cohorts. The first is the UK 
Biobank that is one of the largest biomedical databases that contains genomics and 
health related data from half a million UK residents [4, 33]. The second cohort is patient 
samples from the Parkinson’s Progression Markers Initiative an observational study 
sponsored by the Michael J. Fox Foundation, aimed at identifying biomarkers to predict, 
diagnose, and track Parkinson's disease progression [34]. Both study populations are 
majority of European ancestry and are skewed towards older patients with a range of 31 
to 83 years and median age of 59 years and 60 years for the UK biobank and PPMI, 
respectively (Table 1). Selecting UK Biobank participants that were profiled by the Olink 
explore 1536 protein panel reduced the number of patients to 43,408. Among those with 
Olink data 778 patients were diagnosed Parkinson's disease patients resulting in case-
to-control ratio of 2%. The UK Biobank was used predominantly to train and benchmark 
the predictor algorithms whereas the 103 PPMI cases were used as an independent 
external validation dataset. The filtered PPMI dataset had a case control ratio higher 
than the UK biobank of around 24%. This class imbalance is common in a disease 
setting. Thus, distributions of cases were different which impacted performance on the 
PPMI validation. This is primarily due to the PPMI data selecting for PD patients while 
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the UK biobank is a population level study. Deep learning models can be ill suited for 
modeling rare case events due to overfitting [35]. Thus, methods were used to 
overcome this including dropout, mini-batches, class weighting, and optimized learning 
rates.  
 
Multimodal proteomic and genetic models 

Using the subset of harmonized genomic variants and proteomics data we developed 
three computational models to classify PD status for individual subjects. We used a 
neural network, SVM and ridge regression models that input proteomics and variant 
profiles and produce a probability value for PD diagnosis that is evaluated by ROC 
analysis of classifier performance (Figure 1). Neural Networks (NN) are a general 
framework for estimating complex, non-linear functions, making them ideal for capturing 
intricate relationships in high-dimensional data. Support Vector Machines (SVM) identify 
a dividing hyperplane to maximize class separability, while Ridge Regression is a linear 
model that uses a penalized linear combination of features to mitigate overfitting. The 
Area under the cure (AUROC) measures were comparable across all three models on 
both the training UK biobank and the validation PPMI datasets (Table 2 & Figure 2). All 
three methods had comparable performance of ~0.77 AUC on the held-out test data 
from UK Biobank with the NN having highest performance of 0.79 (Figure 2). The three 
models performed similar on the PPMI external validation with AUROC of ~0.67. The 
performance drop on the external validation set is potentially due to differences of 
serum data capture and differences in case-to-control ratios of datasets. Additional 
factor impacting validation performance could be related to PPMI being drug naïve vs 
the UK Biobank having a larger number of patients under treatment. When considering 
sensitivity and specificity, the ridge regression had the highest sensitivity at 0.76 while 
the SVM had the highest specificity at 0.69. The neural network achieved the best 
overall balance, with sensitivity and specificity of 0.73 and 0.69. These metrics were 
both within 3% of the other models, despite a slight reduction in performance on these 
metrics. 
 
Genetic only model 

We created a variant-only model to analyze baseline performance without proteomic 
data that is akin to a polygenic risk score model. While all three models had reduced 
performance the neural network AUROC of 0.62 on the training set is significant 
reduction by over 25% relative to the multimodal model (Supplementary Table 1). This 
was expected as no genetic variants appear in the top 20 feature set in the combined 
proteomic and SNP neural network (Figure 3A). Although several genetic variants 
appeared in the top 12.5% of features. External validation performance on the PPMI 
cases of the variant-only model declined further to random performance of 0.50.  
Overall, the use of only genotypic and demographic information mainly sex and age led 
to substantially reduced prediction performance relative to the multimodal modeling that 
includes the serum proteomic measurements. This is expected given that these features 
are typically used for polygenic risk scores to identify individual with high risk, but their 
genetic penetrance is low. Whereas proteomics data is a more immediate marker for 
PD state diagnostics.  
 
Feature evaluation 
We used saliency techniques to identify and better understand the most impactful 
features of both the Olink and SNP for the neural network. We investigated the 
magnitude of feature impact using the shapley additive explanations (SHAP) score that 
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quantifies features impact on the model performance (Figure 3A & 3B). After 
investigating the top 20 features, we found neuronal specific markers such as DDC and 
CALB2 that were expected outcomes given that they are related to dopamine function 
[36] [37]. Unexpectedly, we also identified hormonal markers such as Prolactin and 
GH1, which are some of the most influential features. SHAP scores allow us to see 
individual scores from specific patients as well or groups of individuals like all women. 
For example, in one subject from the UK Biobank study PRL’s negative value indicates 
a protective contribution whereas GH1’s positive value indicates harmful effect (Figure 
3C).  
Further biological investigation through KEGG analysis of these top markers yielded 
strong enrichment for Prolactin signaling pathway, JAK-STAT and PI3K-Akt pathways 
(Figure 4A). JAK-STAT and PI3k-Akt pathways were validated in other studies where it 
was found that PI3k-Akt pathway could be one of the most influential in a rapid 
progressing PD subtype[38]. The hormonal signaling protein PRL, one of the most 
widely studied hormones Prolactin, also emerged as a top feature suggesting 
involvement of hormonal component to PD pathogenesis through activation of JAK-
STAT pathways and Prolactin signaling pathways. Additionally, protein-protein 
interaction enrichment test showed that six of the top features were interrelated 
hormones that are highly interconnected (p-value < 6.15 e-11, Figure 4B) [39]. Our 
findings suggest that the JAK-STAT and PI3K-AKT pathways may act as central hubs in 
PD pathology, potentially linking neuroinflammation, hormonal signaling, and neuronal 
survival. 
 
Feature correlation with PD severity score 

We next investigated the shared features that the different models identified as 
significant to identify the core biological pathways that are predicative of PD. We subset 
the top 85 (12.5%) features that were common across the ridge regression and neural 
net models, excluding the SVM model due to slightly lower performance. These 85 
common features were used to construct a linear regression to predict UPDRS [40], 
which is the accepted severity score for PD among physicians (Figure 5).  We found 
that these top features are well correlated with UPRDS values in the PPMI dataset (R2 = 
0.86). Several SNP’s were included in this top feature set as highly predictive of PD  
that were previously validated in the literature. These including rs12951632, 
rs11158026, and rs10748818, indicating their established association with Parkinson's 
disease and further supporting their potential role in disease susceptibility and 
progression [41, 42]. Two of the variants, rs12951632 and rs11158026, were identified 
in a related genome wide association studies as variants that are strongly associated 
with PD. The third variant, rs10748818, was previously identified as causing changes in 
the GBF1 gene that is a critical factor in PD pathogenesis [43]. 
 
Feature signatures associated with increased PD 
Next, we were interested in investigating the contributions of the features to likelihood of 
PD. K-Nearest Neighbors clustering of the PPMI cohort using the shared 85 features 
identified one group of participants that had high PD vs control ratio (cluster 1, Figure 
6A). This cluster is strongly distinct form other clusters by a protein signature that is 
driven by 14 proteins that are negatively correlated with the PD (Figure 6B). One of 
these proteins is FABP5, a fatty acid binding protein, which was recentrly identified as a 
PD marker in an independent proteomics study of 99 PD patients [44]. In addition, a 
similar study by Hallqvist et. al. used mass spectrometry approach to identify protein 
markers from CSF and serum that predict PD in the prodromal phase among a small 
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cohort [44]. While not all significant proteins from their study overlapped with the protein 
measured in the Olink assay, five overlapping proteins (CST3, DKK3, FABP5, PTGDS, 
and VCAM1) were found as significant PD markers in our study (p-value < 0.10, by t-
test). 
 
Feature correlations 

To gain insights into the cross-feature correlation structure between the predictive 
features we performed pairwise correlation analysis with UPDRS scores 
(Supplementary figure 1). Two distinct highly correlated protein groups were identified. 
The first group of proteins characterized show cytokine-cytokine enrichment as well as 
involvement in PI3K-AKT signaling pathway (Supplementary figure 2A). This signature 
has a strong immune and inflammatory component which has been a hallmark of PD 
and every feature was positivley correlated with UPDRS scores. The second group 
(marked in blue, Supplementary figure 2A) is associated with MAPK signaling 
pathway as well as other apoptotic pathways (Supplementary figure 2B). MAPK 
signaling has been strongly implicated in PD with connections to high penetrance 
variants such as LRRK2 [45]. This signature is similar to the downregulated signature 
assoicated with increase PD cases  and is inversly correlated with UPDRS scores 
suggesting a protective role in PD pathogenesis (Figure 6B).  
The most correlated protein with UPDRS severity is ANGPTL4 (Pearson = 0.57),  a lipid 
homeostasis modulator where elevated levels were recently associated with 
neurodegeneration [46]. Conversely, the least correlated protein (Pearson = -0.56) is 
HPGDS, an enzyme that is involved in proteinoids synthesis and anti-inflammatory 
response [47]. Overall, feature clustering on the PPMI dataset the show strong protein 
signatures associated with PD cases and UPDRS scores. The high overlap between the 
cluster signature and the signature in the feature-feature correlation is possibly a core 
protein signature that can inform future studies to better understand PD mechanisms.   
  

3. Discussion 

Our PD prediction algorithms from plasma proteomics confirmed several established 
biomarkers as well as potentially novel biomarkers that warrant further investigation. 
The top features in both the ridge regression and neural network models are DDC and 
CALB2 which have previously been implicated in PD [48, 49]. DDC is involved in 
dopamine synthesis [50] and is directly related to massive cell death of dopamine 
neurons in the striatum [51]. CALB2 is heavily featured in single-cell analysis of PD as a 
key marker for A10 dopamine neurons as compared to A9 dopamine neurons [49]. 
Ridge regression coefficients show CALB2 as negatively associated with PD which is 
consistent with its expression in A10 mDA cells that are mostly spared from cell death 
during PD progression [52]. 
In our study, several other less direct markers, like hormonal components, were 
significantly correlated with PD incidents. These hormonal features, especially Prolactin, 
were significantly correlated in multiple models and cluster analysis. Our findings 
illustrate a strong hormonal component, with six of the top 20 proteins identified by the 
neural network being hormonally related through heavy neurodevelopmental 
involvement and links to apoptotic functions. Further evidence from protein interaction 
analysis identified these six proteins as closely functionally related (p-value < 6.15e-11, 
Figure 4B).  
 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 28, 2024. ; https://doi.org/10.1101/2024.12.21.24313256doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.21.24313256
http://creativecommons.org/licenses/by-nc/4.0/


 

 

 

7

Another significant marker, Human Growth Hormone (GH1) has several known 
functions ranging from growth of various tissues to neurogenesis [53]. Notably, GH1 has 
been used to treat amyotrophic lateral sclerosis in vitro as well as in mouse models 
demonstrating strong neurological protection [54]. This is consistent with our findings 
where GH1 is enriched in the control group relative to PD cases making it a potentially 
protective marker. Prolactin produced by lactotrophs in the pituitary gland is another 
hormone that could be critical to understanding PD [55]. Prolactin (PRL) is known for its 
multifaceted impacts including neuroinflammation, which is part of the pathogenesis of 
PD [56] and reducing neuroinflammation through modulation of PRL may offer a new 
therapeutic path for PD. Studies have also demonstrated that prolactin release is 
regulated by dopamine [57] and therefore, loss of PRL may indicate loss of dopamine.  
One common inflammatory model used to study neuroinflammation in mouse models is 
through intranasal lipopolysaccharide injections that cause widespread inflammation 
throughout the brain and allow researchers to investigate these the effect of 
inflammation on neurodegeneration. These inflammatory models lead to selective 
dopamine SN loss, striatal dopamine depletion, and increased alpha synuclein in the 
SN [58]. This loss suggests that inflammation in the brain preferentially targets 
dopamine rich regions than other areas of the brain and points to possible association 
of PD pathogenesis with inflammation. Furthermore, it was shown that in this 
lipopolysaccharide model PRL is part of a full-autocrine loop that enhances 
inflammatory response that may contribute to further worsening PD through enhanced 
inflammation [59].  
PRL and GH1 play a strong role in the brain with widespread expression. This role 
especially extends past simply neurodevelopmental. PRL and GH1 are highly 
expressed in the cerebellum. (Supplementary Figure 3A). Findings of cerebellar 
circuitry alteration in PD highlight the importance the cerebellum play in PD progression 
and disease pathology[60]. The cerebellum is perhaps more involved in PD pathology 
than previously thought and may serve as an understudied area that contains 
biomarkers indicative of PD. 
We performed KEGG Pathway enrichment analysis with the top 20 neural network 
features which further supports the potential role of JAK STAT and AKT pathways in PD 
pathogenesis. Jak2/Stat5 are commonly linked to developmental embryogenesis [61]. 
These pathways are likely linked to PRL and GH1 activities as both receptor bindings 
can lead JAK2 activation [61] (Supplementary Figure 3B).  
While our study focused on PD, it represents a new framework to investigate other 
diseases through multiomic integration of proteomics and variants in the UK Biobanks 
and other public data resources [30, 62, 63].  
We have laid the groundwork to continue building on this multiomic model to provide an 
analysis framework to integrate proteomic Olink data and variant data in the UK 
biobank. This approach can identify new association with other neurodegenerative 
diseases. For example, through phenotype-gene enrichment analysis we found several 
phenotypic PD features associated with height which has some suggestive correlation 
with PD (Supplementary figure 4) [64, 65]. With the increase of Olink data in the UK 
biobank such new insights into the mechanisms of these diseases can now be 
investigated. 
Plasma proteomics emerges as a powerful, minimally invasive alternative to 
cerebrospinal fluid-based biomarkers, achieving comparable classification performance 
while offering broader accessibility for large-scale screening. By leveraging machine 
learning models, we identified biomarkers including hormonal markers such as prolactin 
and GH1 that suggest an underexplored hormonal axis in PD pathogenesis. Additional, 
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pathway analysis implicating the JAK-STAT and PI3K-AKT pathways in linking 
neuroinflammation, hormonal signaling, and neuronal survival. These findings not only 
demonstrate the feasibility of integrating plasma proteomics into cost-effective, 
population-level screening programs for early diagnosis and intervention but also 
provide a framework that can be extended to investigate biomarkers for other 
neurodegenerative diseases. 
 

4. Materials and Methods 

Study Population 

The study population consisted of two groups from the UK Biobank cohort and 
Parkinson's progressive marker initiative cohort [30, 34]. The UK Biobank is a large-
scale biomedical database containing de-identified information of over 500,000 patients 
including genotyping as well as serum analysis. Diagnosis of Parkinson's disease was 
made by International Classification of Diseases coded as ICD-9 and ICD-10 codes. 
Single nucleotide polymorphisms were taken from the Axiom Array. The UK Biobank 
after processing for missingness and filtering for Olink data consisted of 48,408 
patients: 23,329 female and 20,079 males with median age of 59. The PPMI dataset is 
an international consortium across 12 countries that is primarily sponsored by Michael 
J. Fox Foundation [34]. PPMI uses 2 arrays for SNP's including Immunochip and 
NeuroX specially designed for PD After processing there are around 103 individuals 
consisting of 29 female and 74 males with a median age of 60. Diagnosis of PD was 
made with the addition of DAT imaging to enhance accuracy [34]. 

We subset these datasets for participants that had Olink serum data collected. This 
substantially limited the number of participants. Both datasets used Olink Explore 1536 
so feature alignment was possible. 1484 proteins were measured from serum via 
proximity extension assay (PEA) high-multiplex immunoassay. Olink Explore 1536 
contains 4 separate panels Oncology, Cardiometabolic, Inflammation, and Neurology 
[66]. The assay works by double antibody binding to proteins leading to DNA 
hybridization which can be PCR amplified, sequenced, and quantified. Proprietary 
normalization of these values provides protein quantification allowing comparison 
across individuals and studies. 

Variant Preprocessing and alignment 

Genomic variants were preprocessed using PLINK 2.0 software, a genome association 
toolkit [67]. We aligned the variant arrays in both arrays by position, major allele, and 
minor allele to Genome Reference Consortium Human Build 37. The UK Biobank used 
the Axiom array, while the PPMI dataset used the Immunochip and NeuroX array. We 
filtered for the top 324 overlapping variants and used additional 311 variants identified in 
the Kim .J.J. et al. study[68]. This proprietary dataset allowed for more power leading to 
identification of associated variants. In total, 635 filtered variants with overlap across 
both the UK biobank and PPMI validation set were used in our prediction models.  

Study Design 

The UK biobank was used for training and test, and PPMI data was used an 
independent external test to measure classifier performance. Patients were filtered for 
European ancestry and missing features. In addition, features were filtered for missing 
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values. The resulting multiomic dataset combined demographic data, genomic data and 
proteomic data. We used several baseline models such as a ridge regression which 
performs L2 penalization to minimize coefficients [69]. Additionally, a SVM with a linear 
kernel was used as a second baseline model. For training and test, a split of 60% and 
40% was used, respectively. The ratio of PD cases to control was maintained in training 
and test splits. The genetic single nucleotide polymorphism only model utilized the 
same split of 60% and 40% for the training and test dataset. Ridge regression and SVM 
were tuned by grid search to identify the best model. Both utilized classes weighting to 
address imbalance common with medical data.  

The neural network architecture is a hidden 2-layer neural network. In this fully 
connected neural network the size of the first hidden layer is 120 and second hidden 
layer is 40. Activation was done by leaky ReLU. A sigmoid function was then applied for 
the final output layer binary prediction value. The model uses binary cross entropy 
(BCE) as the loss function that assigns a larger error for mislabeled cases as compared 
to mean square loss, which is more appropriate for training data with relatively low 
fraction of positive cases.  

 

Where N is the number of samples, yi is the label (i.e. PD or control) and pi is the 
predicted probability of yi. Several steps were taken to deal with imbalanced cases, 
including class weights and model architecture adjustments. Dropout was utilized to 
address overfitting which was emboldened by imbalanced cases. Furthermore, a large 
batch size was used to give more positive PD cases for each stochastic gradient 
descent step using Adam optimizer. 

Predicting UPRDS scores 

A linear model was built using the 85 neural network and ridge regression common 
features on the PPMI dataset for UPDRS score. These 85 features were used in a 
regression to predict UPDRS scores to further validate our top features. Sample 
clustering was performed through both ward hierarchical clusters and K-means where 
K=3 was selected silhouette score and cluster inspection. 

Feature Correlation Analysis 

Feature-feature correlation analysis was performed on these top 85 features using 
Pearson correlation. The UPDRS score was included in these correlation calculations 
and hierarchal clustering of the correlation values (Supplement Figure 1). 

Model Interpretation 

Feature weights on the ridge regression was done through the coefficients placed on 
the optimized model. The neural network used a game theoretic approach to feature 
importance called SHAP scores [32]. These scores create a powerset of features to 
determine marginal contribution of each feature. Mean absolute SHAP scores were 
taken across all combinations of models on the testing set to determine the feature 
importance. The distribution was visualized through a bee swarm plot. Additionally, 
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Phenotype-gene enrichment analysis was done using to detect statistically significant 
phenotypes from our top 20 features. 

Data Availability 

UK Biobank and PPMI genomic and phenotypic data is restricted and requires prior 
approval for access and therefore cannot be provided in this publication.    

Code availability 

All code written and used for the above analysis and figures is freely available at 
https://github.com/chaudhry123/PD_Biomarkers_Project. 
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Figures and Tables 

Table 1: Demographics and feature space of UK Biobank and PPMI cohorts profiled with Olink explore 
protein panel.
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Figure 1: Outline of the study. The study is composed of four steps. In the first step data QC and filtering 
was performed. In the second step serum proteomic Olink data and SNP polymorphism arrays features 
from the UK Biobank and PPMI were matched to a common subset. These features were used in a ridge 
regression, support vector machine and neural network models to predict PD cases in the third step. The 
last step included biological interpretation of the features and correlation with PD severity scores.
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Table 2: Performances of the multiomics prediction models. The three models’ performance 
was evaluated by AUC, sensitivity, specificity measures for PD classification performance on 
the UK biobank held-out data as well as AUC performance on the PPMI external validation 
set.

Ridge Regression SVM Neural Network 

AUROC 0.77 0.75 0.79 

Sensitivity 0.76 0.67 0.73 

Specificity 0.64 0.70 0.69 

AUROC PPMI 0.69 0.68 0.66 
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Figure 2: ROC AUC classification performance. AUC of Neural Network, baseline ridge 
regression and support vector machine on the UK Biobank held-out test set and PPMI 
validation set.
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Figure 3: Evaluation of top 20 Neural Network features A) SHAP value distributions of the top 20 
neural network features. Each feature is represented by the distribution of SHAP values (i.e. impact on 
model output) over all test cases. Negative values represent negative weights for PD prediction whereas 
positive values represent positive contribution to predicting PD. B) Mean absolute SHAP values 
showing feature importance of the same 20 features. C) A waterfall plot showing SHAP 
values, contribution to classification result for a single UK biobank participant.

A) B) 
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A)

B)

Protein-Protein Interaction Enrichment P-Value: 6.15e-11

Figure 4: Top features functional analysis (A) KEGG pathway analysis of the top features, based on the 
genes corresponding to the identified proteins, highlighting key biological pathways involved. (B) 
Protein-protein interaction (PPI) networks displaying the number of expected interactions of random 
proteins versus observed interactions. The PPI network exhibits significant enrichment with a p-value 
of 6.15e-11. Three distinct clusters are shown in different colors. With the thickness of connections 
denoting strength of connectivity across experimental data and literature data.
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Figure 5: Linear model of URPDS scores. Top 85 aligned features of the neural network and 
the ridge regression were used in linear regression to predict UPDRS score on PPMI 
validation set (R2 = 0.86).

Predicted UPDRS Score vs Actual UPDRS Score Based on Top 85 Aligned Features

R2 = 0.86
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B) K Means Clusters Projected onto Heatmap

Figure 6: Feature clusters identify protective PD proteins (A) KNN clustering of top 85 features identified three 
predominant clusters. Bar plot highlighting the enrichment of PD relative to controls in Cluster 1. (B) Heatmap 
of protein levels (Z-scores) expression in the PPMI datasets. Left side color strip indicates cluster assignment 
(cluster 0 is blue, cluster 1 is green and cluster 2 is red) where darker green, blue or red indicate PD cases while 
lighter colors indicate controls. Proteins are clustered to identify cluster signatures. 

A) Bar plot of Cluster ratios of PD vs control
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Supplementary Material 

Supplement Table 1: Performances of PD prediction models using genetic variants and demographic data. Like table 
1, the performance of the three models using SNPs variants was evaluated by AUC, sensitivity, specificity measures 
for PD classification performance on the UK biobank held-out data as well as AUC performance on the PPMI 
external validation set.

Ridge 

Regression 

SVM Neural 

Network 

AUROC 

Test 

0.70 0.70 0.62 

Sensitivity 0.72 0.59 0.37 

Specificity 0.55 0.68 0.78 

AUROC 

PPMI 

0.55 0.45 0.51 
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Supplement Figure 1: Feature correlation. The Pearson correlation heatmap between 85 selected features and the 
UPDRS score, with color intensity indicating the strength and direction of the correlations. Strong correlations are 
marked by darker shades, while lighter shades represent weaker correlations, highlighting potential patterns and 
associations relevant to Parkinson's severity. Two main feature groups are strongly correlated (in red) and 
anticorrelated (in blue) with UPDRS scores (marked by black arrow). Note that due to space constrains every second 
feature is labeled on the vertical axis. 
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A) 

B)

Supplementary Figure 2: Pathway enrichment of UPDRS correlated features. A) KEGG analysis of top UPDRS 
correlated features (red in group in Supplementary Figure 1) highlight enrichment in the cytokine-cytokine receptor 
interaction and PI3K-AKT signaling pathways. B) Similarly, enrichment analysis of top UPDRS anticorrelated features 
highlights the MAPK signaling pathway and apoptotic pathways.
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Supplementary figure 3: (A) Gene expression levels across different brain tissues from the GTEx study [50], highlighting 
the differential expression patterns relevant to the pathway including, GH1 and PRL expression in the Cerebellum.  (B) 
The PRL pathway depicting the JAK2-STAT5 signaling cascade, illustrating key molecular interactions and activation 
steps.
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Supplementary Figure 4: Phenotype-gene enrichment analysis of the top 20 features identified by the neural network 
model, conducted using the WEB-based GEne SeT AnaLysis Toolkit. The enrichment analysis highlights significant 
associations between these features and relevant gene sets, providing insights into potential biological pathways linked to 
the observed phenotypes.
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