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Abstract

The Natural Product Research Laboratory (NPRL) of China Medical University Hospital (CMUH) was established in
collaboration with CMUH and Professor Kuo-Hsiung Lee from the University of North Carolina at Chapel Hill. The
laboratory collection features over 6000 natural products worldwide, including pure compounds and semi-synthetic
derivatives. This is the most comprehensive and fully operational natural product database in Taiwan. This review
article explores the history and development of the NPRL of CMUH. We then provide an overview of the recent ap-
plications and impact of artificial intelligence (AI) in new drug discovery. Finally, we examine advanced powerful AI-
tools and related software to explain how these resources can be utilized in research on large-scale drug data libraries.
This article presents a drug research and development (R&D) platform that combines AI with the NPRL. We believe that
this approach will reduce resource wastage and enhance the research capabilities of Taiwan's academic and industrial
sectors in biotechnology and pharmaceuticals.

Keywords: Natural Products Research Laboratories (NPRL), Artificial Intelligence (AI), Natural products, Drug research
and development (R&D), Drug discovery

1. Introduction

L iving organisms such as plants, invertebrates,
and microorganisms produce chemical mole-

cules known as natural products. These compounds
exhibit a range of biological and pharmacological
activities, including anti-cancer, antioxidant, anti-

aging, and anti-inflammatory properties, making
them valuable for the research and development
(R&D) of new drugs [1e4]. Identifying bioactive
compounds typically involves several steps: obtain-
ing natural products from biological sources, testing
their efficacy as medicines, isolating bioactive sub-
stances, determining their structures, identifying
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their molecular targets, and utilizing bioinformatics
for further analysis [5]. However, these traditional
research models are often time-consuming and
require significant financial investment.
To keep pace with evolving trends in new drug

development, it is essential to establish a large-
scale, integrated compound database R&D platform
in Taiwan, especially given the rapid advancements
in artificial intelligence (AI) and biotechnology
[6e8]. The Natural Product Research Laboratory
(NPRL) database aims to create a comprehensive
resource of compound big data, employ high-speed
AI computational tools to develop potential lead
compounds, and facilitate clinical applications in
translational medicine [9e12]. China Medical Uni-
versity Hospital (CMUH) and Professor Kuo-Hsiung
Lee are funding the NPRL-CMUH initiative, which
focuses on sourcing compounds from fruits, vege-
tables, microorganisms, traditional Chinese medi-
cine (TCM), and Chinese herbal materials (Fig. 1).
Detailed information on NPRL-CMUH is provided
in the following sections.
This review gathers relevant literature on the use

of artificial intelligence (AI) tools and techniques in
drug discovery applied throughout all phases of
drug development. These methods aim to expedite
the research process while minimizing the risks and
costs of clinical trials.

2. Summary of history and process for
constructing NPRL of CMUH

2.1. Development and establishment for the NPRL
of CMUH: A comprehensive approach to
constructing a natural product compound database

The development of the NPRL compound database
was initiated with a planning stage in 2017 and
finalized in 2019, spanning three years [13e15]. A
crucial aspect of establishing NPRL is the compre-
hensive documentation and cataloging of all the
compounds. A thorough action plan was formulated
before the commencement of the project. Academics
from CMUH collaborated with Professor Lee's
research group to examine the various elements of
these compounds, including their storage re-
quirements, physical locations, individual scientific
documentation, and related publication lists. Our
team gathered general project details and identified
potential challenges that might arise during the pro-
cess. For example, we discovered that certain com-
pounds and experimental data were stored in
separate containers, necessitating meticulous verifi-
cation.Wealso addressed issues related to the storage
and preservation of specific compounds, particularly

those that require preparation before shipment back
to Taiwan. Furthermore, we developed a specialized
AI software application to inventory all existing and
future compounds within the NPRL.
Establishing this software is crucial before suc-

cessfully entering the compound data.

2.2. Systematic organization and documentation of
NPRL compounds

Our initial approach involved establishing a pri-
mary method for systematically organizing and
documenting NPRL compounds. The process
illustrated in Fig. 2 began with collecting all sample
containers. Once gathered, the containers were
sorted according to their designated names.

List of abbreviations

AA Alopecia areata
ADC Antibody-drug conjugates
AI Artificial intelligence
AlphaFold Alphafold protein structure database
CMUH China Medical University Hospital
DAVID Database for Annotation, Visualization and In-

tegrated Discovery
DS Discovery studio
E-files Electronic files
ExPASy Expert protein analysis system
GO Gene ontology
GOLD Genetic Optimisation for Ligand Docking
GSEA Gene set enrichment analysis
GWAS Genome-Wide Association Study
HPA The human protein atlas
HTPP High-throughput protein production
IPA Ingenuity pathway analysis
IRB Institutional Review Board
IVIVC In vivo in vitro correlation
MD Molecular dynamics
Metacore Metacore enrichment analysis
ML Machine learning
MOAD Mother of all databases
NASH Non-alcoholic steatohepatitis
NCBI National center for biotechnology information
NGS Next generation sequencing
NPRL Natural Product Research Laboratory
NLME WinNonMix
PD Pharmacodynamics
PK Pharmacokinetics
PPB Plasma protein binding
QSAR Quantitative structure-activity relationship
RCSB_PDB RCSB protein data bank
R&D Research and development
SMILES Simplified molecular input line entry system
STRING Search tool for the retrieval of interacting genes
TAC Transcriptome analysis console
UniProt Universal Protein
WES Whole exome sequencing
WGS Whole genome sequencing
RNA-seq RNA sequencing
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Subsequently, we meticulously inventoried the
contents of each container and correlated them
with existing experimental data, various docu-
ments, and digital records. The final step involved
assigning unique identification codes to individual
samples. The NPRL of CMUH database requires
the inclusion of specific details for each entry.
These include a unique NPRL Code Number, the
Original Code Number, CID Number, PubChem/
CAS Number, and Common Name. Additionally,
the structure, molecular weight, and quantity must
be determined. The Sample State (e.g., solid or
liquid) and Sample Location (e.g., freezer or storage
box) are also required. Finally, any related publi-
cations and other data pertinent to entry should be
included.

2.3. Development of NPRL: Taiwan's largest natural
products database and AI-driven drug R&D

The NPRL of CMUH repository contains 6782
natural products, including both pure and semi-
synthetic derivatives, making it Taiwan's most
extensive and comprehensive collection of natural
products. Through structural refinement, 37,682
compounds with diverse configurations were

Fig. 2. Organizational process for the NPRL of CMUH. The structured
approach for establishing NPRL of CMUH outlines the steps for
acquiring, categorizing, and arranging compound specimens. Acquisi-
tion: the initial phase involved obtaining sample containers containing
diverse compounds. Categorization: specimens are sorted based on
crucial information, such as the investigator's identity, pertinent
paperwork, and reorganization specifications. This approach ensures
precise and effortless retrieval. Arrangement: each specimen is given a
unique identity, and digital records are generated to support comput-
erized data management and streamline future access.

Fig. 1. Sources of NPRL of CMUH compounds database. The NPRL of CMUH utilizes a variety of natural compounds. This collection includes plant-
based materials, such as fruits, vegetables, herbs, roots, and plants used in traditional medicine. The samples ranged from everyday food items such as
tomatoes, carrots, garlic, and ginger to rare herbs and medicinal plants being investigated for their potential therapeutic properties. NPRL utilizes
these varied resources as fundamental materials for extracting and developing natural compounds, facilitating drug discovery efforts and supporting
studies in pharmacological research.
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obtained. The development of NPRL was finalized
in 2019, after which work began on creating in silico
and in vitro platforms for various medical condi-
tions, thereby enabling the expansion of this sub-
stantial database. Fig. 3 illustrates the construction
process, research initiatives, and current research
directions for NPRL from 2017 to 2024.

� 2017: Commencement of the NPRL database
design and construction.

� 2018: Finalization of systematic documentation
and classification of NPRL compounds.

� 2019: Establishment for NPRL of CMUH.
� 2020: Creation of an in silico platform for NPRL
of CMUH.

� 2020: Execution of an in silico investigation on
anti-3CLpro activity relevant to COVID-19
therapy agents.

� 2021: Expansion of NPRL's research scope to
include therapeutic agents for rare disorders.

� 2022: Execution of an in silico and in vitro inves-
tigation on anti-NASH.

� 2023: Progress in silico and in vitro research for
alopecia areata (AA) therapeutic agents.

� 2023: Execution of an in silico investigation on
examining ALDH-2 regulators with NPRL
compounds.

� 2024: Additional progress and research out-
comes include AI-based machine learning (ML)
models for predicting bloodebrain barrier (BBB)
penetration, computational projections of
ADME (absorption, distribution, metabolism,
and excretion) properties for NPRL-CMUH

substances, and the release of a thorough review
article discussing NPRL at CMUH.

Table 1 presents a compilation of websites and
databases containing extensive compound libraries
relevant to pharmaceutical R&D [13,16e30]. Fig. 4
presents a comprehension design of AI-driven in
silico drug R&D platform that CMUH created to
address various medical conditions. The system is
composed of different parts: (A) a compound con-
nected to a model for predicting a target, (B) a
compound connected to a model for predicting an
unidentified target, (C) a library of compounds
linked to a model for predicting a target, (D) mul-
tiple compounds combined with a model for pre-
dicting multiple targets, (E) a model for homology
modeling or site-directed mutation prediction, and
(F) models for finding combined therapeutic targets.
Fig. 4 shows the AI-driven in silico drug R&D plat-
form of CMUH, which was developed to address
various diseases.

3. AI applications in drug R&D

3.1. Advancing drug development: Utilizing AI for
efficient pharmaceutical R&D

Recently, AI has made substantial progress across
various social domains with notable advancements
in the pharmaceutical sector [31,32]. AI encompasses
diverse, sophisticated tools, including reasoning ca-
pabilities, knowledge representation systems, solu-
tion search algorithms, and networking technologies

Fig. 3. Chronology of NPRL evolution and utilization. The timeline of significant events, developmental phases, and scientific applications associated
with the NPRL of CMUH from 2017 to 2024.
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Fig. 4. Pipeline of In Silico R&D platforms for various disease models at NPRL. Each component (AeF) showed a distinct computational approach for
analyzing compounds and targets. (A) Single-compound single-target model: Molecular docking was used to test a single compound against a specific
target, and MD simulation was used to improve the interaction analysis. (B) Single compound unknown target model: HTPP is used to identify
possible target genes for compounds with unknown targets. A signal transduction pathway analysis is added to clarify the compound's mode of action.
(C) Multiple compound-single target model: pharmacophore modeling or high-throughput screening tests of a group of compounds against a single
target. Molecular docking and MD simulations are then used for a more in-depth analysis. (D) The multiple compound-multiple target model tests
different compounds against different targets. Molecular docking and MD simulations improve the connection between each compound and its target.
(E) Homology Modeling and site-directed mutation prediction model: Homology modeling or site-directed mutagenesis was used for proteins with
unknown structures or mutations. This is followed by MD simulations and protein structure reconstruction. (F) Therapeutic Target Identification
Model: If the compound's therapeutic target (disease or cell type) is unknown, HTPP is used to guess the target genes. ML techniques are used to treat
diseases.

Table 1. Websites and databases of large compound libraries for drug research and development (R&D).

Name Type Website URL References

ClinicalTrials.gov Clinical trials database https://www.clinicaltrials.gov/ [16]
Chemical entities

of biological
Small chemical
molecule database

https://www.ebi.ac.uk/chebi/ [17]

Interest (ChEBI)
ChEMBL database Database of bioactive molecules https://www.ebi.ac.uk/chembl/ [18]
ChemSpider

The cambridge structural
Chemical molecule database https://www.chemspider.com/ [19]

Database (CSD) Chemical molecule database https://www.ccdc.cam.ac.uk/solutions/software/csd/ [20]
DailyMed database FDA-regulated products https://dailymed.nlm.nih.gov/dailymed/ [21]
DrugBank Drug database https://go.drugbank.com/ [22]
Drugs@FDA FDA approved drugs database https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm [25]
FDA online label repository FDA drug label database https://labels.fda.gov/ [23]
FooDB IUPHAR/BPS

guide to
Nature products database https://foodb.ca/ [24]

Pharmacology Pharmacology database https://www.guidetopharmacology.org/ [26]
PubChem Chemical molecule database https://pubchem.ncbi.nlm.nih.gov/ [27]
PKIDB Kinase inhibitor database https://www.icoa.fr/pkidb/ [28]
TargetMol Natural products database https://www.targetmol.com/search?keyword¼home/ [29]
TCMBank Traditional Chinese medicines https://tcmbank.cn/ [30]
ZINC Available compounds zinc.docking.org/ [13]
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Fig. 5. AI-powered drug discovery leveraging compound library databases. The process consists of three main phases: 1. Database management and
data preparation; 2. Model development and verification; and 3. Model application and screening. The drug discovery workflow can be optimized
using AI-based modeling and validation techniques, enabling more effective screening and prediction of potential therapeutic agents.

Table 2. AI-based tools and platform for drug research and development (R&D).

Platform name Website URL References

ADMET-AI https://flask.palletsprojects.com/en/2.3.x/ [39]
BBBP https://paperswithcode.com/dataset/bbbp-scaffold [40]
BrainMaker http://www.calsci.com/ [38]
BSVM http://www.csie.ntu.edu.tw/~cjlin/bsvm/ [38]
DeepChem https://github.com/deepchem/deepchem [41]
Dense K nearest neighbor http://www.autonlab.org/autonweb/10522.html [38]
DeltaVina https://github.com/chengwang88/deltavina [42,43]
e1071 R package http://cran.r-project.org/web/packages/e1071/index.html [38]
Fast random forest https://code.google.com/p/fast-random-forest/ [38]
Fann http://leenissen.dk/fann/ [38]
GPU-FS-kNN http://sourceforge.net/projects/gpufsknn/ [38]
GA/KNN http://www.niehs.nih.gov/research/resources/software/biostatistics/gaknn/ [38]
Hit dexter http://hitdexter2.zbh.uni-hamburg.de [44,45]
KNN http://www.fit.vutbr.cz/~bartik/Arcbc/kNN.htm [38]
K nearest neighbor demo http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html [38]
LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/ [38]
LS-SVMlab http://www.esat.kuleuven.be/sista/lssvmlab/ [38]
MolProphet https://www.molprophet.com/login [46]
mySVM http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/index.html [38]
M-SVM http://www.loria.fr/~guermeur/ [38]
NuClass http://www.uta.edu/faculty/manry/new_software.html [38]
NVIDIA BioNeMo™ https://docs.nvidia.com/clara/index.html [47]
NVIDIA MegaMolBART https://github.com/NVIDIA/MegaMolBART [13]
OC1 http://www.cbcb.umd.edu/~salzberg/announce-oc1.html [38]
PC4.5 http://www.cs.nyu.edu/~binli/pc4.5/ [38]
Random forests http://www.stat.berkeley.edu/~breiman/RandomForests/ [38]
Random forest R package http://cran.r-project.org/web/packages/randomForest/index.html [38]
Simple decision tree https://sites.google.com/site/simpledecisiontree/ [38]
Sciengyrpf http://sourceforge.net/projects/sciengyrpf/ [38]
Sharky neural network http://sharktime.com/us_SharkyNeuralNetwork.html [38]
SMILES http://users.dsic.upv.es/~flip/smiles/ [38]
SVM light http://svmlight.joachims.org/ [38]
XGBoost https://xgboost.readthedocs.io/en/stable/ [13]
YaDT http://www.di.unipi.it/~ruggieri/software.html [38]
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[33]. The pharmaceutical industry has witnessed the
extensive digitization of experimental and clinical
data over the past few decades, enabling the analysis
and processing of big data [33,34]. By implementing
AI modules, the sector can improve the automation
of large-scale data management and proactively
tackle potential future issues, enabling the earlier
identification of solutions [35]. Traditionally, drug
development has relied on identifying and creating
numerous small molecule compounds. Various
compound libraries have been established over the
last decade. Conventional approaches to drug
development are often expensive and time-intensive,
hampering the process's efficiency. Nevertheless, AI
can address these challenges. This study examined
AI techniques for drug R&D [33e36].
Fig. 5 provides a detailed illustration of the

workflow of the AI model. The process began with
data extraction from the compound library data-
base, followed by using a transformer to separate
the data into training, validation, and testing sets.
The training set comprised chemical characteristics,
biological activity, and molecular fingerprints sub-
jected to computational analysis and ML [13,37].
Validation and testing sets were used to verify the

results. Once the AI model has been successfully
validated, it can be used to analyze other compound
library database. Commonly used ML methods for
developing classification models in AI include linear
discriminant analysis (LDA), k-nearest neighbors
(kNN), kNN regression (kNNR), artificial neural
networks (�), probabilistic neural networks (PNN),
support vector machines (SVM), support vector
regression (SVR), C4.5 decision trees (C4.5DT),
recursive partitioning (RP) classifiers, random for-
ests (RF), naïve Bayes classifiers, multiple linear
regression (MLR), partial least squares regression
(PLSR), and logistic PLS, among others. Several AI-
driven platforms for discovering novel pharmaceu-
ticals are listed in Table 2 [38e47].

3.2. AI-driven approaches for disease classification
and novel drug development

Standard analytical software processes large
compound libraries with AI-driven models. Fig. 6
and Table 3 present an overview of the workflow for
AI-enhanced drug discovery and development,
along with a list of commonly used software pro-
grams. Disease classification can be achieved by

Fig. 6. Workflow of AI-enhanced drug discovery and development processes. This diagram showcases a holistic AI-based drug discovery and
development strategy, from disease identification to experimental testing utilizing various computational and empirical methodologies. The process is
divided into eight crucial phases: 1. Disease identification and data collection; 2. Network and pathway examination; 3. Biomarker and target gene
reconstruction; 4. Compound library screening; 5. Molecular docking and dynamics simulation; 6. ADMET and PK/PD property prediction; 7.
Compound optimization and novel design; and 8. QSAR analysis and experimental verification. This approach effectively integrates AI and
computational techniques with traditional research methods to accelerate drug discovery, improve candidate selection, and enhance the efficacy of
experimental validation.
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compiling the clinical diagnoses and laboratory
findings. Following Institutional Review Board (IRB)
approval for specimen collection, researchers can
investigate the relationship between diseases and
genes [48e50]. Various techniques have been
employed, including DNA or protein arrays,
Genome-Wide Association Studies (GWAS), and
next-generation sequencing (NGS) methods, such
as whole-exome sequencing (WES), whole-genome
sequencing (WGS), RNA sequencing, and proteo-
mic analysis [51e55]. Examination of genetic big
data, encompassing network and pathway analyses,
enables the identification of disease biomarkers and
target genes. These analyses utilize multiple ap-
proaches, such as Cytoscape analysis, DAVID
analysis, Gene Set Enrichment Analysis (GSEA),
Ingenuity Pathway Analysis (IPA), KEGG/GO
analysis, MetaCore analysis, NCBI database utili-
zation, STRING analysis, and TCA analysis. Various
protein structure repositories, including the Alpha-
Fold database, Binding MOAD, ExPASy, HPA,
InterPro, RCSB PDB, Rosetta Commons, and Uni-
Prot, allow access to known crystal structures
[49,50,56e72]. AI-based homology modeling tech-
niques can be employed to predict the three-
dimensional configurations [14,73].
Various software tools have been employed for

molecular docking between molecules and proteins,
including AutoDock, AIDDISON™, Discovery Stu-
dio (DS), GEMDOCK, GOLD, and PotentialNet.
Following docking, programs such as DS and
MDplot can be utilized to perform molecular dy-
namics simulations. Upon confirming the binding
affinity of a compound to a protein, additional
characteristics, such as pharmacokinetics/pharma-
codynamics (PK/PD) and bloodebrain barrier (BBB)
permeability, can be estimated using platforms such
as ADMETlab, ADMET Predictor, DS, IVIVC,
NLME, and Phoenix WinNonlin. The creation of
innovative molecular structures is crucial in novel
drug development. Software such as Reaxys, SYN-
THIA™, and SciFinder-n can be used for compound
optimization, de novo compound design, and syn-
thesis/retrosynthesis [14,74e89].
Fig. 7 outlines the roles and benefits of AI in

novel drug R&D. AI-driven tools offer diverse ca-
pabilities that significantly enhance the new drug
discovery process. These tools facilitate the creation
of novel molecular structures, the development of
multi-target compounds, and the generation of
antibody-drug conjugates (ADCs) [90,91]. They also
support the design of nucleic acid (DNA or RNA)-
interacting compounds, streamline chemical syn-
thesis, and enable the reverse engineering of
chemical structures, thus transforming variousC
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facets of chemical and molecular design [92,93]. In
the field of bioactivity and mechanism of action
(MOA) research, AI assists in predicting target
protein structures, modeling proteinedrug in-
teractions, and identifying potential therapeutic

targets [94,95]. Furthermore, AI technologies are
instrumental in uncovering new clinical applica-
tions through bioactivity screening, assessing
bioactivity and toxicity, classifying target cells, and
predicting physiological properties [6,8,32].

Fig. 7. AI applications in drug development: Improving the efficiency of chemical design, bioactivity assessment, and predictive screening. The field of
novel medication research and development employs three main categories of AI applications, each with a specific role: (1) Chemical structure design
and synthesis, (2) Bioactivity and MOA, and (3) Bioactivity screening and prediction. AI plays a crucial role in various stages of drug development,
including molecular design, therapeutic outcome forecasting, and safety profile evaluation. These AI-driven applications shorten the research and
development process, enhancing prospects for achieving successful outcomes.

Table 4. Advantages and opportunities in establishing the NPRL of CMUH database.

Advantages The number of samples includes up to 6782 distinct types
Cultivate research talents in nature products, phytochemicals, Chinese herbal and
traditional Chinese medicine (TCM)
Enrich the diversity of research resources in nature products, phytochemicals, Chinese herbal and TCM
Receive support from leading research centers both domestically and internationally
Advanced research outcomes in the fields of TCM and natural products
Facilitate the integration of Chinese and Western medicine
Accelerate the pace of new drug discovery
Establish a foundation for international collaboration

Opportunities Establish AI models for TCM diseases and treatments
Utilize innovative technologies and methods
Enhance the applications of translational medicine
Advance drug discovery and patent technology transfer
Increase research outcomes and publications in TCM
Create job opportunities for TCM professionals
Expand avenues for international collaboration
Improve patient health and well-being
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4. Conclusion

Having the right tools is essential for achieving
excellence in any task. Table 4 outlines the benefits
and prospects for creating an NPRL of CMUH
database. Combining NPRL compounds with AI
technology can significantly improve the creation of
new small-molecule structures, uncover novel
therapeutic targets, and reveal new pharmacological
uses of natural product lead compounds. This syn-
ergy offers crucial insights for treating various
human diseases and developing new drugs, ulti-
mately enhancing patient care and quality of life.
Integrating AI into pharmacies within NPRL is
anticipated to spur progress and innovations in
fields such as medicinal chemistry, pharmacology,
pharmacodynamics, pharmacokinetics, toxicology,
and pharmaceutics (Fig. 8).
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