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Introduction: Dengue Fever continues to pose a global threat due to the
widespread distribution of its vector mosquitoes, Aedes aegypti and Aedes
albopictus. While the WHO-approved vaccine, Dengvaxia, and antiviral
treatments like Balapiravir and Celgosivir are available, challenges such as drug
resistance, reduced efficacy, and high treatment costs persist. This study aims to
identify novel potential inhibitors of the Dengue virus (DENV) using an integrative
drug discovery approach encompassing machine learning and molecular
docking techniques.

Method: Utilizing a dataset of 21,250 bioactive compounds from PubChem (AID:
651640), alongside a total of 1,444 descriptors generated using PaDEL, we trained
various models such as Support Vector Machine, Random Forest, k-nearest
neighbors, Logistic Regression, and Gaussian Naïve Bayes. The top-performing
model was used to predict active compounds, followed by molecular docking
performed using AutoDock Vina. The detailed interactions, toxicity, stability, and
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conformational changes of selected compounds were assessed through protein-
ligand interaction studies, molecular dynamics (MD) simulations, and binding free
energy calculations.

Results: We implemented a robust three-dataset splitting strategy, employing the
Logistic Regression algorithm, which achieved an accuracy of 94%. The model
successfully predicted 18 knownDENV inhibitors, with 11 identified as active, paving
the way for further exploration of 2683 new compounds from the ZINC and
EANPDB databases. Subsequent molecular docking studies were performed on
the NS2B/NS3 protease, an enzyme essential in viral replication. ZINC95485940,
ZINC38628344, 2′,4′-dihydroxychalcone and ZINC14441502 demonstrated a high
binding affinity of −8.1, −8.5, −8.6, and −8.0 kcal/mol, respectively, exhibiting stable
interactions with His51, Ser135, Leu128, Pro132, Ser131, Tyr161, and Asp75 within
the active site, which are critical residues involved in inhibition. Molecular dynamics
simulations coupled with MMPBSA further elucidated the stability, making it a
promising candidate for drug development.

Conclusion: Overall, this integrative approach, combining machine learning,
molecular docking, and dynamics simulations, highlights the strength and utility
of computational tools in drug discovery. It suggests a promising pathway for the
rapid identification and development of novel antiviral drugs against DENV. These in
silico findings provide a strong foundation for future experimental validations and
in-vitro studies aimed at fighting DENV.

KEYWORDS

molecular docking, drug discovery, machine learning, dengue virus, molecular dynamics
simulation

1 Introduction

Dengue Virus (DENV) is a positive-sense ssRNA virus
belonging to the family Flaviviridae, responsible for the most
prevalent viral hemorrhagic fever transmitted by mosquitoes
(Chao et al., 2018). The disease is transmitted to humans by the
mosquitoes Aedes aegypti and Aedes albopictus, especially in
hyperendemic regions in Southeast Asia and the Pacific
experience the cocirculation of multiple serotypes of the virus
(Caminade et al., 2012; Cucunawangsih and Lugito, 2017). There
are four unique DENV serotypes (DENV1, DENV2, DENV3, and
DENV4); historically, these four serotypes circulated in different
geographic areas (Jamal et al., 2024; Murray et al., 2013). The
prevalence rates have been deemed 390 million cases as of 2024,
with 96 million being symptomatic (Anasir and Ramanathan, 2020;
Rachmawati et al., 2024) and annual death recorded at around
25,000 (Yadouleton et al., 2024). The impact of Dengue fever is at its
peak in North and South America, the Southeastern part of Asia, and
the Western Pacific (Gebhard et al., 2019). Its symptoms usually are
myalgia, hemorrhagic features, arthralgia, headache, rash, and retro-
orbital discomfort (Chikkaveeraiah et al., 2024; Drago et al., 2021).
In severe cases, it may also lead to Dengue Hemorrhagic Fever
(DHF) and Dengue Shock Syndrome (DSS), which is an acute
vascular permeability syndrome (Chikkaveeraiah et al., 2024).
The probability of the disease transitioning into DHF and DSS is
considerably higher for patients who have developed secondary
DENV infections, around 10 to 100-fold (Martina et al., 2009).

The DENV genome is 11 kb long, comprising
10,723 nucleotides, and encodes large polyprotein precursors of
approximately 3,391 amino acid residues (Gautam et al., 2024).

After being cleaved by host and viral proteases, these DENV
polyproteins form three structural proteins: C, prM, and E
(where each stands for capsid, pre-membrane, and envelope,
respectively) as well as seven non-structural proteins (NSPs):
NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 (Dwivedi et al.,
2017). The structural and non-structural proteins of the viral
genome have all been identified as potential drug targets against
Dengue infection (M. F. Lee et al., 2024). However, among these
proteins, the envelope protein and the NSPs, NS3, and
NS5 proteins have been identified as the proteins that play a
vital role in viral replication (Chen et al., 2018; M. F. Lee et al.,
2024). Due to mutations in specific proteins of the virus, emerging
resistance to existing therapeutics has been reported (S. P. Lim,
2019) and thus calls for the urgent need to identify multiple vital
drug targets that can effectively halt the replication of the virus
in its host.

Significant efforts to contain the spread of Dengue fever can be
seen in vaccine development, vector control mechanisms, and efforts
to reduce viral load and preventive measures against severe forms of
Dengue infection (M. F. Lee et al., 2024). Low et al. (2011) discovered
that Narasin is a novel antiviral agent effective against all DENV
serotypes with an IC50 of less than 1 μM (Gautam et al., 2024).
Brefeldin is a promising antiviral compound with a 54.6–65.7 nM
IC50 range for all DENV serotypes (Raekiansyah et al., 2017). There
have been research efforts that aimed to model the evolution of viral
pathogens like SARS-CoV-2 using genomic sequence data (Awe
et al., 2023), HIV-1 evolution in sub-Saharan Africa (Obura et al.,
2022) and Ebola Virus using comparative genomics (Oluwagbemi
and Awe, 2018). Additionally, several experimental studies have
evaluated the activity of repurposed drugs against DENV. Therefore,
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it is essential to continue exploring more elements and inhibitors to
develop potent antivirals with high efficacy against DENV (Punekar
et al., 2022). Despite decades of attempts to discover new drugs and
vaccines, Dengvaxia is the sole vaccine accepted against DENV
(marketed in several countries). Dengvaxia has been noted to be
non-efficacious against certain dengue strains which dropped its
efficacy rate to 61% (X.-N. Lim et al., 2019; Pintado Silva and

Fernandez-Sesma, 2023; Thomas, 2023). TAK-003 and Butantan-
DV are newly developed live-attenuated vaccines against DENV that
have completed their phase III clinical trials, but the data regarding
their efficacy against DENV3 and DEN4 is still insufficient (Biswal
et al., 2020; Durbin, 2020; Kallas et al., 2020). As effective
prophylactic and therapeutic measures against DENV are not
present, the focus of patient management diverts to supportive

FIGURE 1
Graphical illustration of study workflow methods and instruments. The study developed five models on data from PubChem and used it for
predicting new compounds. The predicted hits were screened through molecular docking, in silico pharmacological and toxicity tests, structural
assessment using MD simulations, and estimation of binding free energies.
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therapy and controlling further transmission with drugs such as
Chloroquine and Prednisolone (Lai et al., 2017).

Machine learning models like Support Vector Machine,
Random Forest, Logistic Regression, and Naive Bayesian have
been extensively applied in drug discovery, bioinformatics, and
cheminformatics (Aniceto et al., 2023; Das et al., 2024; Niazi and
Mariam, 2024). Advances in next-generation sequencing also
enable the application of bioinformatics in diverse fields in the
biomedical sciences and in applications like biomarker discovery
(Chikwambi et al., 2023; Nyamari et al., 2023; El Abed et al., 2023;
Ben et al., 2024; Alaya et al., 2024), co-infection biomarkers of
parasites and viruses (Nzungize et al., 2022), analysis of RNA-seq,
ChIP-seq data (Ather et al., 2018), genetics of complex diseases
(Abolo et al., 2024) and in agriculture (Die et al., 2019; Omar et al.,
2024), protein structure prediction (Pawar et al., 2024) and
genomics applications in newborn screening (Wesonga and
Awe, 2022). Various researchers used different ML techniques
to study DENV, such as Gradient Boosting Machine (GBM),
Random Forest (RF), and Support Vector Machine (SVM).
Sanchez-Gendriz used an interesting technique (Sanchez-
Gendriz et al., 2022) in which he developed a neural
networking model with Long Short-Term Memory (LSTM) as
the base for his studies in predicting future dengue cases in
America. Another interesting study (Andersson et al., 2018)
used a Convolution Neural Network to process street-level
photos to predict DF and DHF rates in urban areas.

This study sought to build different machine learning models
using the DENV2 CPE-Based HTS dataset from PubChem to
distinguish between potential anti-dengue and non-anti-dengue
compounds. The best-performing model based on the accuracy,
specificity, Precision, and F1 score was used to predict active
compounds solicited from the AfroDb (Ntie-kang et al., 2013), a
catalog of ZINC15 database (Sterling and Irwin, 2015) and
compounds present in the East African Natural Product
Database (EANPDB) (Simoben et al., 2020). The predicted
active compounds were further corroborated by employing
molecular docking studies. The most promising drug
candidates amongst the predicted compounds from our
trained model were highlighted while also visualizing the
intermolecular interactions between key residues in the active
site and the compounds. The noxiousness of the compounds was
estimated using SwissADME and DataWarrior. Molecular
Dynamics (MD) simulations with Molecular Mechanics
Poisson-Boltzmann Surface Area (MMPBSA) were utilized to
evaluate predicted leads.

2 Methods

A visual representation of the methodology applied to this study
is presented (Figure 1).

2.1 Dataset acquisition

This study proceeded in two phases as illustrated in the
graphical depiction in Figure 1. First, a high throughput
screen (HTS) measured in Cell-Based and Microorganism

Combination System bioassay data of 343,305 compounds
retrieved from PubChem was used for the study. The dataset
with PubChem AID: 651640 was aimed to identify inhibitors of
Dengue Virus by treating BHK-21 with various compounds
before being infected with Dengue Virus serotype 2. The
DENV2 strain New Guinea C, obtained from the American
Type Culture Collection (ATCC) with catalog number VR-
1584 was adapted (Che et al., 2009). Several viruses have been
successfully studied using the cytopathic effect (CPE) assay to
find new antiviral substances (Lin et al., 2023; McCormick et al.,
2012).The expected outcome was that compounds increased ATP
levels, indicating increased cell viability compared to the positive
control (uninfected cells), and the neutral control was considered
positive and otherwise negative. The dataset retrieved for this
study comprised 5,946 active and 321,638 inactive compounds, a
ratio of about 1:50 compounds. To compute molecular
descriptors, the actives and inactives of the dataset were
downloaded in the Structure Data Format (SDF).

2.2 Calculation of molecular descriptors and
data preprocessing

Recent studies have demonstrated the utility of molecular
descriptors in predicting compound activity, toxicity, and other
properties from chemical structures (Comesana et al., 2022; Trinh
et al., 2023). The active and inactive datasets were converted from
SDF to Simplified Molecular-Input Line-Entry System (SMILES)
formats for easier manipulation for machine learning. PaDEL-
descriptor calculator (Yap, 2011) was used to compute
1440 molecular descriptors from the canonical SMILES of the
compounds. Before descriptor calculations, compound
standardization was performed, involving salt removal and nitro
group normalization, to ensure uniformity and accuracy of the
descriptor data (Viganò et al., 2024). The dataset used for
training and testing the models comprised 4470 active
compounds and 16780 inactive compounds, after reducing the
ratio between the active and inactive compounds to 1:4 to
enhance the computational efficiency.

The significant imbalance between active and inactive
compounds was acknowledged, but oversampling techniques to
balance the classes were not applied. A variance filter was
employed to address the issue of dimensionality and enhance the
relevance of features for predictive modeling (Velliangiri et al.,
2019). Mean imputation was applied to handle any missing
values within the dataset, ensuring a complete set of descriptors
for each compound. Standardization of the dataset was done by
removing the mean and scaling to unit variance using the Standard
Scaler from the scikit-learn library. This transformation ensures that
the features are centered around zero and have a standard deviation
of one, which is crucial for many machine learning algorithms to
perform optimally, as it ensures that the model is not biased towards
features with larger numerical ranges. The was computed using the
formula 1:

Standard Scaler X( ) � X i( ) −mean

standard deviation
(1)

Where i represent each value in the feature X.
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2.3 Development of machine
learning models

Five models were built from the training dataset using five
machine learning algorithms and the model with superior
performance in terms of classification metrics was chosen (Kee
et al., 2023; Tougui et al., 2021). A 70%–30% split of the pre-
processed data was used for training and testing the models,
respectively. The classification models developed included
Support Vector Machine (SVM), k-nearest neighbors (k-NN),
Gaussian Naïve Bayes (GaussianNB) (Adams et al., 2022),
Random Forest classifier (RF), and Logistic Regression (LR)
(Khorshid et al., 2021). For the k-nearest neighbors (k-NN)
model, k = 3 was used. The Gaussian Naïve Bayes model was
implemented using default settings from the scikit-learn library
(Pedregosa et al., 2011). The SVM model was optimized with the
probability parameter set to True (Sandhu et al., 2022). The Random
Forest model was built with a maximum depth of 8 and
100 estimators (J. Adams et al., 2022). Finally, the Logistic
Regression model was constructed with a maximum iteration
parameter of 1000.

2.4 Model validation

Prior to comparison with other optimized classifiers, each
classifier underwent optimization to determine the optimal
hyperparameters that yielded the maximum accuracy. The
optimized models were evaluated using 10-fold cross-validation.
This method splits the training data into kkk groups, trains the
model on k-1k-1k-1 folds, and tests the model on the remaining fold
to yield a trustworthy estimate of the model’s performance on
unseen data (Jung and Hu, 2015; Vabalas et al., 2019). It
computes performance metrics such as accuracy, accuracy,
precision, recall, and F1 score based on the confusion matrix,
which includes true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) (Tharwat, 2021). These
metrics (as shown in Equations 2–6) were used to compare and
select the best-performing model for predicting Dengue Virus
inhibitors (Adams et al., 2022; Orozco-arias et al., 2020)

Accuracy � TP + TN

TP + FP + TN FN
(2)

Precision � TP

TP + FP
(3)

Recall � TP

TP + FN
(4)

F1 � 2x
Precision pRecall

Precision + Recall
(5)

Specificity � TN

TN + FP
(6)

2.5 Prediction of compounds

The best-performing model was used to make predictions
against 812 compounds from Afrodb, and 1871 EANPDB
compounds. Prior to compound predictions, the model’s

predictive power was validated on known Dengue Virus
inhibitors post-cross-validation. The molecular descriptors of
these inhibitors were calculated and preprocessed similarly to the
training and test data. This was done to reinforce the credibility of
the cross-validation results for the best-performing model based on
the metrics. The number of correct predictions made by the model
on the submitted inhibitors defines the accuracy of the classification
or prediction. A total of 18 known inhibitors curated from literature
were submitted to the LR model as a result of their activity against
the Dengue Virus shown in different studies.

2.6 Preparation of target protein and
ligand libraries

The Crystal structure of the Dengue 2 Virus nonstructural
protein NS2B/NS3 was obtained from the RCSB Protein Data
Bank (http://www.rcsb.org/pdb) with PDB ID: 2FOM. Before
selecting 2FOM, different suitable structures such as 4M9M,
4M9T, and 4M9I were retrieved, however, 2FOM was chosen
based on its low resolution, low R values, and the number of
missing residues. The selected protein structure was
superimposed with the other suitable structure using PyMOL to
measure their root mean square deviation (RMSD). The structure
was cleaned using PyMOL (Yuan et al., 2017) to devoid the protein
of ions, water molecules, and other structures like ligands before
minimization was carried out by employing Groningen Machine for
Chemical Simulations (GROMACS) (Abraham et al., 2015). The
steepest descent minimization algorithm with a maximum number
of 50,000 steps and a minimization step size of 0.01 was used to
minimize the protein structure. The three-dimensional structures
(.sdf) of the natural compounds predicted by the machine learning
model were obtained for the molecular docking stage. Natural
products were chosen for this investigation because of their
structural and chemical variety, and the therapeutic effects of
phytochemicals found in plants.

2.7 Molecular docking and mechanism of
binding characterization

The molecular docking procedure for the predicted compounds
was carried out using AutoDock Vina (Trott and Olson, 2010). All
compounds were energy minimized in 200 steps using the Universal
force field (UFF) before being translated to the Protein Data Bank
partial charge and atom type (.pdbqt) format using Open Babel
software (O’Boyle et al., 2011). Visualization of the resultant energy
minimized protein structure and the removal of surrounding water
molecules before the virtual screening was done in PyMOL v1.5.0.4.
The prepared structure was then saved using PyMOL before
applying the “make macromolecule” option in PyRx to prepare
for the docking of selected hits. The library was screened against the
NS2B/NS3 protease using a grid box dimension of center_
x = −5.179Å center_y = −9.575Å center_z = 13.756Å size_x =
18.302Å size_y = 19.821Å size_z = 23.788Å.

All hit compounds that contributed binding affinities of at
least −8.0 kcal/mol were considered. The output of AutoDock
Vina is ranked in a decreasing order of binding affinity using a
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negative function; a more negative binding affinity is preferred. The
best mode for each compound was applied using the root mean
squared deviation. The result was then examined with PyMOL to
find the optimal-docked ligands. LigPlot + (v1.4.5) was used to
analyze the interactions between key residues in the active site of the
protein and the docked compounds (Laskowski and Swindells,
2011). The protein-ligand complexes generated in PyMOL were
used as input for LigPlot. The resulting output provides a 2D
depiction of intermolecular interactions, including hydrophobic
interactions and hydrogen bonds.

2.8 ADMET screening of
selected compounds

A pharmacokinetics profile, comprising an assessment of
absorption, distribution, metabolism, and excretion (ADME), was
applied to a subset of compounds using SwissADME (Daina et al.,
2017). Along with Veber’s rule, the ADMET testing also measured
five properties: total average molecular weight in g/mol, the number
of hydrogen bond donors, hydrogen bond acceptors, rotatable
bonds, and partition coefficient—collectively referred to as
Lipinski’s rule of five (Devadasu et al., 2018; Jia et al., 2020).
Using OSIRIS DataWarrior v06.02.05 (Sander et al., 2015), the
toxicity characteristics, including mutagenicity and
tumorigenicity, were predicted.

2.9 Molecular dynamics (MD) simulations

A 100 ns MD simulation was run on each protein-ligand
complex and the unbound protein using GROMACS-2020.5 on a

Dell EMC high-performance computing cluster at the WACCBIP,
University of Ghana, Accra. The CHARMM36 all-atom force field
produced the protein and ligand topology (July 2022). Utilizing a
cubic box for all simulations, the systems were each solvated with
water molecules, neutralized with ions, and energy-minimized to
optimize the system. To equilibrate each system, NVT, and NPT
ensemble were applied for 100 ps a piece before the production run.
The parameters for the production run included 50,000,000 steps
which translates into 100 ns and a step size of 0.002 (2 fs). Xmgrace
(Turner, 2005) was used to visualize and analyze the root mean
square deviation (RMSD), root mean square fluctuation (RMSF),
and radius of gyration (Rg) obtained from the MD simulations.

2.10 Calculations of MMPBSA parameters

The binding free energies of the protein-ligand complexes and
the individual energy contributions of the residues were calculated
using the Molecular Mechanics Poisson-Boltzmann Surface Area
(MMPBSA) method (Kumari et al., 2014). This is a corroboration
technique used to verify the limitations of the existing scoring
function utilizing the MD simulation output files (Wang C. et al.,
2018). R programming software was utilized to plot the graphs from
the MMPBSA computations.

3 Results

3.1 Data acquisition and processing

The bioactive dataset obtained from PubChem was an
imbalanced set, with approximately one-third of its constituents
being active compounds. As displayed in Figure 2, inactive
compounds dominated the dataset. Using PaDEL,
1,444 molecular descriptors were generated, which provide a
mathematical representation of the compounds for QSAR
modeling by converting chemical information about the
compounds into numerical values. The dataset underwent a
three-dataset splitting strategy to be divided into training,
validation, and test sets. The dataset of 21,250 compounds was
split into 14,875 training data, 3,187 test data, and 3,188 externally
held data. The first set is for training the algorithm, the validation set
tunes hyperparameters, and the test set is used to test model
performance and predicting ability. The application of a variance
filter reduced the number of descriptors from 1,444 to 684, using a
variance threshold of 0.1 to filter out descriptors with minimal

FIGURE 2
3D plot showing the correlation between the active and inactive
compounds based on ALogP, XLogP, and Zagreb. [Labels: Blue =
Actives, Red = Inactives, Pink = Outliers].

TABLE 1 Comparison ofmodel performance onwithheld data sets; showing
results for accuracy, precision, recall, and F1 scores.

Model Accuracy Precision Recall F1 score

LR 0.94 0.91 0.76 0.83

SVM 0.93 0.94 0.71 0.81

KNN 0.92 0.89 0.68 0.77

RF 0.91 0.94 0.6 0.73

NB 0.81 0.55 0.47 0.51
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variance. This step ensured that only the most informative features
were retained for subsequent modeling, as low-variance features are
often less useful in distinguishing between classes (Velliangiri
et al., 2019).

3.2 Model development and evaluation

Five machine learning models were developed to predict Dengue
Virus inhibitors: k-Nearest Neighbors (k-NN), Gaussian Naïve
Bayes (NB), Support Vector Machine (SVM), Random Forest
(RF), and Logistic Regression (LR). Each model was evaluated
using statistical metrics such as accuracy, precision, recall, and
F1 score, as displayed in Table 1 with the confusion matrix
shown in Supplementary Table S1.

Among the models, Logistic Regression demonstrated the
highest performance across most metrics, including an accuracy
of 94%, a precision of 91%, and an F1 score of 0.83. This superior
performance made Logistic Regression the most suitable model for
predicting Dengue Virus inhibitors in this study. The SVM model
followed closely, with an accuracy of 93%, a precision of 94%, and an
F1 score of 0.81. Although the k-NN and Random Forest models
performed well, they lagged behind the top two models in recall and
F1 scores, indicating that they were less effective in identifying all
active compounds.

Gaussian Naïve Bayes was the poorest-performing model, with
an accuracy of 81% and an F1 score of 0.51. This model’s low
precision (0.55) and recall (0.47) indicate that it struggled to balance

identifying true positives and minimizing false positives, particularly
in the imbalanced dataset where inactive compounds were
predominant. Overall, Logistic Regression emerged as the most
reliable model for predicting potential inhibitors due to its robust
performance across the different metrics.

3.3 Prediction of known inhibitors and
new compounds

The study further validated the performance of the developed
models by testing 18 known Dengue Virus inhibitors curated from
literature. The prediction made by the Logistic Regression model for
these compounds is listed in Table 2. The Logistic Regression model
correctly predicted 11 of the 18 inhibitors as active, outperforming
other models, including SVM and Random Forest.

Several inhibitors, such as Pentoxifylline, Prochlorperazine, and
Balapiravir, were correctly classified as active by Logistic Regression,
in line with their established mechanisms of action against the
Dengue Virus. Notably, inhibitors like Celgosivir and Bortezomib,
which inhibit viral replication, were also predicted accurately. This
validation process of known inhibitors provided confidence in the
model’s predictive capability, suggesting it could effectively
generalize to novel compounds with similar mechanisms of action.

Following this validation, the Logistic Regression model was
applied to predict 2,683 new compounds, including 812 from the
ZINC database and 1,871 from the EANPDB database. Out of these,
933 compounds were predicted to be active, representing a

TABLE 2 Classification and mechanisms of action of known DENV inhibitors identified by the Logistic Regression model.

Number Inhibitors Prediction* Mechanism of action References

1 Pentoxifylline 1 Immune modulation Salgado et al. (2012)

2 4-hydroxyphenyl retinamide 0 Inhibits viral replication Carocci et al. (2015), Fraser et al. (2014)

3 Prochlorperazine 1 Inhibits viral binding and viral entry Simanjuntak et al. (2015)

4 Balapiravir 1 Inhibits viral replication Nguyen et al. (2013)

5 Bortezomib 1 Inhibits viral replication Ci et al. (2023)

6 Leflunomide 1 Immunosuppressive effects (W.-L. Wu et al., 2011)

7 SKI-417616 1 Inhibition of D4R suppressed DENV infection Smith et al. (2014)

8 Celgosivir 1 Inhibits viral replication Tian et al. (2018)

9 UV-4B 1 Inhibits viral replication Franco et al. (2021)

10 2-C-methylcytidine 0 Inhibits viral replication (J.-C. Lee et al., 2015)

11 Ketotifen 1 Vascular leakage Lai et al. (2017)

12 Chloroquine 1 Inhibits viral replication Lai et al. (2017)

13 Dasatinib 0 RNA replication inhibition de Wispelaere et al. (2013)

14 Lovastatin 0 Inhibits viral replication Whitehorn et al. (2016)

15 ST-148 0 Inhibits viral replication Byrd et al. (2013)

16 Dexamethasone 0 Inhibits viral replication Kularatne et al. (2009)

17 Prednisolone 1 Inhibits viral replication Lai et al. (2017)

18 Ivermectin 0 Helicase inhibition Xu et al. (2018)

*[0 = inactive; 1 = active].
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promising pool of potential Dengue Virus inhibitors for further
experimental validation.

These predictions highlight the utility of the developed QSAR
models, particularly the Logistic Regression model, in identifying
novel drug candidates for Dengue Virus inhibition. The robust
performance on known inhibitors and newly predicted
compounds highlights its potential as a valuable tool in future
drug discovery efforts targeting the Dengue Virus. The study’s
ability to handle imbalanced data effectively and generate
accurate predictions underscores the importance of appropriate
descriptor selection and data preprocessing in QSAR modeling.

3.4 Target selection and molecular docking
of predicted compounds (PDB ID 2FOM)

In this study, the NS2B/NS3 protease was preferentially selected
amongst the seven nonstructural proteins of the Dengue Virus as the
target structure to corroborate the prediction by the logistic
regression model. The NS2B/NS3 protease is an essential enzyme
for viral replication and assembly, making it a principal antiviral
target for developing therapeutics against the virus (Erbel et al.,
2006; Norshidah et al., 2023). There are two potential locations for
inhibiting DENV protease: the active site and the blocking
attachment of protease (NS3) to its protein cofactor (NS2B). The
active site on the NS3 which is the prime target is made up of a
conserved catalytic triad like His51-Asp75-Ser135 (Noble et al.,
2012; Zamri et al., 2019). A search via the Protein Data Bank
repository for a solved structure of the NS2B/NS3 for the Dengue
Virus serotype showed IDs such as 4M9T, 2FOM, 4M9M, and 4M9I
with resolutions 1.74, 1.50, 1.53, and 2.40 Å respectively and R-value
work of 0.215, 0.176, 0.203, and 0.215 respectively. The 2FOM,
solved using x-ray diffraction, was selected for this study since it had
the lowest resolution and R-value, both of which are a measure of the
quality of the structure (Wlodawer et al., 2008). Additionally, the
RMSD values after superimposing the selected protein structure to
4M9T, 4M9M, and 4M9I were 0.358, 0.151, and 0.276 Å,
respectively, underlying their close structural similarity with the
2FOM. The three-dimensional structure of the 2FOM with a ligand

docked in the active site is shown Figure 3. The active site on the
NS3 used in this study, besides consisting of the catalytic triad which
is pivotal in inhibiting its activity, also consists of residues such as
Leu128, Pro132, Ser131, and Tyr161 (Norshidah et al., 2023; Purohit
et al., 2022).

A total of 853 compounds from the Logistic Regression
prediction were docked into the active site of the target using
Autodock. Anhydrophlegmacin showed the highest binding
affinity of −9.2 kcal/mol towards the protease among all docked
ligands. The docked compounds demonstrated binding affinities
between −9.2 and −3.6 kcal/mol. This reinforces the prediction
ability of the Logistic Regression model. Applying a threshold
of −8.0 kcal, 59 ligands with affinities of −8.0 kcal/mol or better
were considered for downstream analysis. A higher cutoff
of −7.0 kcal/mol, taken as the standard threshold for a
compound to be considered active against a particular target, was
employed (Kwofie et al., 2019a). The higher the binding affinity, the
stronger the bond between the ligands and the target protein. The
protein in the complex with the ligands was visually inspected using
PyMOL (Figure 4) to select the best-docked possess. In addition,
inhibitors such as Leflunomide and Prednisolone were also
incorporated into the docking to act as a control. They
demonstrated affinities of −7.1 and −7.0 kcal/mol respectively.
Table 3 shows the binding affinities of the top 20 of the selected
compounds and the inhibitors.

3.5 Mechanism of binding characterization
of selected compounds

In continuation of the structure-based molecular docking to
further confirm the binding affinities of the predicted compounds,
the interactions of the compounds within the predicted binding
pocket were determined. The biomolecular interactions between the
NS2B/NS3 protease and the compounds were generated using
LigPlot. Studies into these interactions are crucial in determining
promising lead compounds. Identification of crucial residues in the
corresponding targets’ active sites was made possible by
characterizing the binding interactions. To find the suitable

FIGURE 3
PyMOL visualization of NS2B/NS3 protease structure (A) Light-green cartoon structure representation; (B). Light-green surface representation of
the protein with ZINC000095486052 (blue) docked in the active site.
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compound that inhibits the activities of the NS2B/NS3 protease,
hydrogen and hydrophobic interactions between the shortlisted
compounds and the residues in the active site were elucidated.

For the interactions of the protease, the ligands docked to the
active site were observed to interact with the proposed residues such
as His51, Ser135, Leu128, Pro132, Ser131, Tyr161, and Asp75 as
shown in Table 3 and Supplementary Table S2. Anhydrophlegmacin
and anhydrophlegmacin-9,10-quinones_B2 which had the highest
binding affinities interacted with similar residues such as His51,
Asp75, Gly151, Leu128, Pro132, and Gly153. They interacted with
conserved catalytic triad residues Asp75, Ser135, and His51 through
hydrogen bonding with bond lengths of 2.57, 3.06, and 2.86 Å
respectively. ZINC38628344, which had an affinity of −8.5 kcal/mol
with the NS2B/NS3 protease formed hydrogen bond interaction
with His51 (2.89 Å), Ser135 (2.68 Å), Asp75 (2.57 Å), Phe130
(3.06 Å), Tyr150 (3.10 Å) and hydrophobic interactions with
residues Pro132, Ser131, Leu128, Tyr161, Gly153, Gly151
(Figure 4). The inhibitor Prednisolone interacted via hydrogen
bonding with Gly151 (2.90 Å, 2.71 Å), Asp75 (2.95 Å), His51
(3.21 Å), and Gly153 (2.93 Å, 3.16 Å) as shown in Figure 5. In
addition, ZINC14441502 formed hydrogen interactions with
Gly151 and Ser135 with bond length 2.86 and 2.99 Å
respectively; and hydrophobic bonding with Leu128, Gly153,
Asn152, Val72, Asp75, His151 and Phe130 (Supplementary Table
S2). 39 out of 56 hits docked firmly and interacted with critical
residues in the active site, and these were selected for
downstream analysis.

3.6 ADMET screening of
selected compounds

Pharmacokinetics controls howmedications are absorbed by the
body and eventually eliminated (Wang G. Y. et al., 2018). Analyses
were conducted on pharmacokinetic features, including

gastrointestinal (GI) absorption. Drugs taken orally can enter the
bloodstream through a process known as gastrointestinal absorption
(GI) (Suenderhauf et al., 2012). “High” compound absorption occurs
in the GI tract. To select druglike compounds, Veber’s criteria were
also applied, and the selected hits that do not conform to Lipinski’s
rule of five (RO5) were eliminated (Ogbodo et al., 2023). Out of the
39 hits, 20 were in violation of the rule (see Supplementary Table S3).
Twelve hits also broke one of the RO5s. The remaining 7 hits: 5,7′-
physcion-fallacinol, ZINC000095485956, ZINC000085594516,
amentoflavone, ZINC000095486111, voucapane-18,19-di-(4-
methyl)-benzenesulphonate, ZINC000095485927 showed the least
drug-likeness of two RO5 violations (Table 4). Veberr’s rule, with
TPSA ≤140 and rotatable bonds ≤10, was used as the main
determinant (Veber et al., 2002). 26 out of the selected hits
demonstrated 0 violations with the remaining showing only one
violation of the rule. The solubility and pharmacological profiles
such as GI absorption were also elucidated. Only
ZINC000095485927 was predicted to be insoluble (Supplementary
Table S3). Four of the 14 hits had a moderate solubility prediction
and four had a soluble prediction. However, 19 of the selected hits
were predicted to be poorly soluble (Supplementary Table S3).
Compounds are considered to have met the GI absorption
criteria if it is denoted as ‘High’ suggesting a high propensity of
absorption into the intestinal tract for orally administered drugs.
21 and 18 of the selected hits were estimated to be high and low
respectively. The mutagenicity and tumorigenicity levels of the hits
were also predicted using DataWarrior (Table 4). From the results
obtained, 26 out of the 39 hits tested were neither mutagenic nor
tumorigenic.

3.7 Molecular dynamics simulations

Molecular dynamics simulations were carried out using
GROMACS 2020.5 to further elucidate the stability of the

FIGURE 4
Ligand ZINC38628344 docked in NS2B/NS3 binding pocket; 3D pose and 2D protein-ligand interaction diagram generated using PyMOL and
LigPlot, respectively.
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predicted lead compounds within the active site of the NS2B/
NS3 protein (Mazumder et al., 2017). Understanding the
binding mechanisms of the various molecules in the active
site is crucial for the design of efficacious drugs. To analyze
the dynamic behavior of the unbound proteins and complexes,
the root mean square deviation, the radius of gyration, and the
root mean square fluctuation were plotted with the use of
Xmgrace (Agyapong et al., 2021; Kwofie et al., 2019b;
Musyoka et al., 2016). All simulations were carried out
for 100 ns.

3.7.1 Root mean square deviation (RMSD)
A reliable indicator of a protein’s stability is the RMSD, which

assesses the stability of the complex from the original protein
backbone atomic coordinates (Adinortey et al., 2022; Kwofie
et al., 2022). From the RMSD plot, the unbound protein and the
four lead compounds experienced stability throughout the 100 ns
run except for the inhibitor Prednisolone which was observed to be
unstable till 70 ns of the run. The unbound protein was observed to
have the least fluctuations. The RMSD plot for the NS2B/NS3pro-
Prednisolone complex rose sharply from 0 to 0.26 nm after which it

TABLE 3 Protein-ligand interactions of top 20 hits with NS2B/NS3 post-docking, including interactions of two known inhibitors.

Compounds names Binding affinity
(kcal/mol)

Hydrogen bonding with
bond length (Å)

Hydrophobic contacts

anhydrophlegmacin −9.2 Asn152 (2.76), Gly153 (2.88), Ser135
(3.06), Gly151 (2.86)

Val72, Asp75, His51, Pro132, Tyr150, Leu128

anhydrophlegmacin-9,10-quinones_B2 −9.2 Val72 (2.96), Asp75 (2.57), His51 (2.86),
Lys73 (2.94)

Leu128, Pro132, Gly151, Gly153, Tyr161, Trp50

ZINC000035941652 −9.1 Leu149 (3.06) Trp83, Asn152, Ala164, Ile165, Lys73, Asn167, Thr120,
Ile123, Ala166, Lys74, Gly148, Leu76

chryslandicin −9 Val72 (2.74) Gly153, Trp50, His51, Tyr161, Leu128, Pro132, Gly151,
Asn152, Asp75

ZINC000085594516 −8.8 Ser135 (3.09) Leu128, Tyr150, Pro132, Phe130, Gly151, His51, Asn152,
G1y153, Asp75

6a,12a-dehydromillettone −8.7 None His151, Asp75, Gly151, Gly153, Tyr150, Phe130, Pro132,
Leu128

ZINC000028462577 −8.6 Ser135 (2.67), Val72 (2.94) Trp50, Gly151, Leu128, Phe130, His51, Gly153, Pro132,
Tyr150

anhydrophlegmacin-9′,10′-quinone −8.6 Asn152 (2.88), Gly153 (2.84),
Ser135 (2.94)

Asp75, Val154, Val72, Trp50, His51, Pro132, Leu128,
Gly151

2′,4′-dihydroxychalcone-(4-O-5‴)-
4″,2‴,4‴-trihydroxychalcone

−8.6 Leu149 (2.99), Thr120 (3.26) Val154, Lys73, Val72, Asn152, His51, Asp75, Gly148,
Leu76, Gly153. Trp83, Lys74, Ile165, Ala166, Ala164,
Asn167, Ile123

ZINC000095485910 −8.6 Phe130 (2.71) Ser135, Gly151, Leu128, His51, Asp75, Gly153, Pro132,
Tyr150

ZINC000095485955 −8.6 Trp83 (2.84), Leu149 (3.20),
Asn152 (2.80)

Gly87, Val146, Met149, Leu76, Ala164, Asn167, Ile165,
Ala166, Gly148, Leu85, Val147

ZINC000095486025 −8.5 Leu128 (3.34) Gly153 (2.87) Val72, His51, Asp75, Ser135, Gly151, Phe130, Pro132,
Tyr150, Tyr161, Val54, Lys73, Asn152

ZINC000038628344 −8.5 His51 (2.89), Ser135 (2.68), Asp75 (2.57),
Phe130 (3.06), Tyr150 (3.10)

Pro132, Ser131, Leu128, Tyr161, Gly153, Gly151

ZINC000095486053 −8.4 Gly151 (2.99) His51, Pro132, Tyr150, Ser135, Phe130, Leu128

phaseollidin −8.4 Gly87 (2.83), Val146 (2.98) Leu85, Trp83, Gly148, Leu149, Ala164, Leu76, Asn167.
Asn152, Lys74, Ile165, Trp89, Ala166, Glu88, Glu86,
Val147

6-oxoisoiguesterin −8.4 Tyr150 (2.80, Phe130 (3.16, 2.83) Ser131, Leu128, Gly151, Gly153, His51, Pro132

ZINC000095486052 −8.4 Asn152 (3.20), Gly153 (3.14) Pro132, Tyr150, Leu128, Tyr161, Gly151, His151, Asp75

ZINC000014444870 −8.4 Asn152 (3.01), Leu149 (3.19) Leu85, Val147, Gly87, Val146, Asn167, Ile165, Val54,
Ala164, Ile123, Lys74, Gly148, Leu76, Trp83

Leflunomide −7.1 None Asn152, Val54, Ala64, Asn167, Leu76, Lys74, Ile123,
Ala166

Prednisolone −7.0 Gly151 (2.90, 2.71), Asp75 (2.95), His51
(3.21), Gly153 (2.93, 3.16)

Leu128, Phe130, Asn152, Ser135, Pro132
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remained relatively unstable with large fluctuations until 70 ns
where it demonstrated some stability (Figure 6). The RMSD of
the NS2B/NS3pro-ZINC38628344 complex increased to 0.25 nm
and stabilized, averaging 0.22 nm until the end. The complexes
NS2B/NS3pro-ZINC95485940, NS2B/NS3pro-ZINC14441502, and
NS2B/NS3pro-2′,4′-dihydroxychalcone showed similar fluctuations
with the RMSD averaging around 0.17 nm (Figure 6).

3.7.2 Radius of gyration for 100 ns MD simulations
The compactness and folding of the five complexes and the

unbound protein were examined in this work by charting the radius
of gyration (Rg) throughout a 100 ns simulation duration (Liao et al.,
2014). A stably folded protein maintains a reasonably steady Rg
throughout the simulation. The Rg of the unbound NS2B/
NS3 protease and protein-ligand complexes ranged from 1.51 to

FIGURE 5
Inhibitor Prednisolone docked in the NS2B/NS3 binding pocket, showing the protein-ligand interactions visualized in LigPlot and the 3D pose
in PyMOL.

TABLE 4 Prediction of ADME and toxicity profiles of top 15 selected hits.

Ligands ESOL solubility
class

GI
absorption

RO5 violation Veber’s rule
violation

Mutagenicity Tumorigenicity

ZINC000004095704 Soluble Low 1 1 None None

ZINC000095485958 Soluble Low 1 1 None None

ZINC000095485940 Soluble High 0 0 None None

ZINC000095485986 Soluble Low 0 1 None None

dihydrolanneaflavonol Moderately soluble High 0 0 None None

lettowianthine Moderately soluble High 0 0 High High

millettosine Moderately soluble High 0 0 None None

ZINC000095486053 Moderately soluble High 0 0 None None

ZINC000031168265 Soluble High 0 0 None None

ZINC000095485910 Moderately soluble High 0 0 High High

ZINC000014780240 Moderately soluble High 0 0 High None

ZINC000085594516 Poorly soluble Low 2 1 None None

5,7′-physcion-
fallacinol

Poorly soluble Low 2 1 Low None

ZINC000014441502 Moderately soluble High 0 0 None None

chryslandicin Poorly soluble Low 1 1 None High
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1.59 nm (Figure 7). Considering the unbound protease, it
experienced relatively steady fluctuation till the 50 ns mark from
which it rose sharply till the simulations ended. For the protein-

ligand complexes, they demonstrated similar trends in fluctuation
throughout the 100 ns run. The Rg for the NS2B/NS3pro-
Prednisolone displayed fluctuations with the highest peak at

FIGURE 6
RMSD versus time graph of unbound protein and NS2B/NS3pro-ligand complexes generated over a 100 ns MD run.

FIGURE 7
Rg graph of the NS2B/NS3pro-ligand complexes and unbound protein.
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1.59 nm (Figure 7). The complex NS2B/NS3pro-2′,4′-
dihydroxychalcone had the largest fluctuations compared to their
complexes, though most of the fluctuations occurred
around 40–80 ns.

3.7.3 Root mean square fluctuations (RMSF) for
100 ns MD simulations

Additionally, the RMSF trajectories of the protein-ligand
complexes and unbound NS2B/NS3pro were examined (L.
Adams et al., 2023; Ashley et al., 2024). According to Cheng and
Ivanov (2012), the RMSF reveals a protein’s flexibility in several
domains, some of which are connected to crystallographic B-factors.
By using this stability profile analysis, residuals that contribute to the
structural fluctuation can be evaluated. Greater variations are
implied by higher RMSF values. Greater fluctuations occur in
protein areas involved in catalysis and ligand binding (Dong
et al., 2018). These protein sequence areas that influence the
conformational changes of the complex are primarily responsible
for adaptive variation in flexibility (Dong et al., 2018).

All the predicted lead compounds caused some degree of
changes in comparable regions, according to the RMSF plot
(Figure 8). Large fluctuations were observed from residue index
28–33 followed by some fluctuations between residue index 60–65 as
well as 116–123. The RMSF graph also showed fluctuations in the
unbound protein around residues 102–106 (Figure 8).

3.8 MMPBSA computations

3.8.1 Contributing energy terms
The binding free energies of the complexes were estimated using

the Molecular Mechanics Poisson-Boltzmann Surface Area

(MMPBSA) calculation (Genheden and Ryde, 2015) (Table 5).
Van der Waals energies, electrostatic, polar solvation, and
solvent-accessible surface area energy are factors that contribute
to the binding free energy (Asiedu et al., 2021; Boateng et al., 2020).
The binding free energies were computed in terms of average and
standard deviations. The leads ZIN38628344, ZINC95485940, and
ZINC14441502 and 2′,4′-dihydroxychalcone had binding free
energy of −44.957, −18.586, −25.881, and −55.805 kJ/mol
respectively. 2′,4′-dihydroxychalcone demonstrated the lowest
binding free energy while ZINC95485940 was observed to have
the highest binding free energy among the four predicted lead
compounds. The binding free energy of the known inhibitor
Prednisolone was −17.682 kJ/mol. It has been found that
compounds that have high polar energies and low electrostatic
energies are active against receptors. (Gupta et al., 2018).

3.8.2 Per-residue energy decomposition
By employing per-residue decomposition, the binding energies

of individual residues can be computed using the MMPBSA
approach. This entails breaking down each residue by taking into
account the interactions that each residue participates in. These offer
helpful information on significant interactions between crucial
residues in the free energy contribution. Critical residues for
binding a ligand to a protein contribute binding free energy of at
least ±5 kJ/mol (Kwofie et al., 2019a).

For every complex, the per-residue energy decomposition
computation was carried out (Figure 9; Supplementary Figures
S1A-D). For the NS2B/NS3-ZINC14441502 complex, only
Tyr161 contributed energy of −6.4629 kJ/mol (Figure 9). For the
NS2/NS3B-ZINC38628344 complex, Tyr161 and
Leu128 contributed individual energies
of −6.6957 and −3.4011 kJ/mol respectively (Supplementary

FIGURE 8
Examination of the RMSF trajectories of the NS2B/NS3pro-ligand complexes and the unbound protein residues.
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Figure S1A). Key residues interacting with ZINC95485940, 2′,4′-
dihydroxychalcone, and Prednisolone contributed minor energies
(Supplementary Figure 1).

4 Discussion

Despite being one of the leading causes of morbidity and
mortality in different countries across the world, there is no
approved efficacious drug for DENV infection (Palanichamy Kala
et al., 2023; Bhatt et al., 2013).While there are currently no approved
antiviral drugs or reliable vaccines, a vast number of plants have
been tested against DENV through computational discovery
(Malabadi et al., 2018; Powers and Setzer, 2016; Rasool et al.,
2019; S et al., 2021). The effect of disrupting the function of
NS2B/NS3 protease has already been established, particularly
through interactions with critical residues
His51, Asp75, and Ser135 (Purohit et al., 2022; Tian et al., 2018).
In this study, we employed machine learning (ML) and molecular
docking techniques to predict potential inhibitors against Dengue

Virus (DENV). The combination of machine learning models,
molecular dynamics (MD) simulations, and molecular docking
enables the exploration of drug candidates and accelerates the
identification of lead compounds (Deo, 2015; Niazi and Mariam,
2023; Sarma et al., 2020).

The bioactive dataset from PubChem revealed a significant
imbalance, with a ratio of 1:50 between the active and inactive
compounds. This class imbalance phenomenon is commonly and
largely observed in many bioinformatics and chemoinformatics
studies (Japkowicz and Shah, 2011), which can lead to biased
model training if not properly addressed. After processing, the
dataset was refined to include 4,470 active compounds and
16,780 inactive compounds, achieving a ratio of approximately 1:
4. This truncation was performed not merely due to computational
constraints but as part of a deliberate effort to enhance the
computational efficiency and balance the representation of active
and inactive compounds. One key consideration was that excessively
large and imbalanced datasets may introduce noise or over-
represent the inactive class, thereby diminishing the model’s
ability to identify active compounds accurately.

TABLE 5 MMPBSA contributing energy terms for NS2B/NS3-ligand complexes displayed as averages ± standard deviations in kJ/mol.

Compounds van der waal
energy (kJ/mol)

Electrostatic
energy (kJ/mol)

Polar solvation
energy (kJ/mol)

SASA energy
(kJ/mol)

Binding
energy
(kJ/mol)

ZINC38628344 −73.805 ± 4.608 −10.304 ± 1.231 48.041 ± 3.817 −8.983 ± 0.555 −44.957 ± 3.383

ZINC95485940 −54.337 ± 3.716 −65.498 ± 5.335 65.388 ± 4.613 −7.682 ± 0.473 −18.586 ± 2.821

ZINC14441502 −52.459 ± 3.949 −22.090 ± 2.316 41.318 ± 3.042 −6.400 ± 0.476 −25.881 ± 3.519

Prednisolone −39.913 ± 4.112 −9.190 ± 1.346 36.390 ± 3.989 −5.355 ± 0.527 −17.682 ± 3.583

2′,4′-dihydroxychalcone-(4-O-5‴)-
4″,2‴,4‴-trihydroxychalcone

−160.105 ± 5.769 −41.801 ± 2.540 164.633 ± 6.076 −18.440 ± 0.639 −55.805 ± 3.467

FIGURE 9
MMPBSA plot of binding free energy contributions per residue for NS2B/NS3-ZINC14441502 complex.
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The application of variousmachine learning algorithms, including
k-NN, Gaussian Naïve Bayes, SVM, Random Forest, and Logistic
Regression, highlights the diversity of approaches available for
predictive modeling of active compounds in pharmacoinformatics
(Leardi, 2001; W.Wu&Herath, 2016). The Logistic Regression model
emerged as the most effective of the five tested, achieving the highest
accuracy, recall, and F1 scores, which are critical metrics for evaluating
classifier performance, particularly in imbalanced datasets (Davis and
Goadrich, 2006; Mwanga et al., 2023). The performance of other
antiviral ML classification models (Gawriljuk et al., 2021; Gupta and
Mohanty, 2021; Sandhu et al., 2022), compared to our models though
none of themwere trained on the dataset used in this study. The recall
of 0.76 shows the number of active compounds classified correctly as
active while the F1 score of 0.83 illustrates the overall accuracy of the
models by combining precision and recall metrics. The SVM closely
followed the performance of the LR with a recall and F1 score of
0.71 and 0.81 respectively. In addition, the accuracy of the LRmodel at
0.94 was not far off from that of the SVM averaging an accuracy of
0.91. An SVMmodel (Sandhu et al., 2022) trained on 5692 molecules
with inhibitory activity against acetylcholinesterase from the
bindingDB database establishing accuracy and F1 score of 0.83 and
0.81, respectively. Validation of the model’s predictive power involved
testing against known DENV inhibitors, demonstrating the model’s
reliability in predicting active compounds. These predictions expand
the pool of potential candidate Dengue Virus inhibitors for further
validation.

TheNS2B/NS3 protease complex, used in this study is composed of
the NS3 protease, which carries out the catalytic activity, and the NS2B
cofactor, which stabilizes the active conformation of NS3. A serine
protease domain located at the N-terminal of NS3 is structurally
responsible for cleaving the viral polyprotein into functional units
required for viral replication (Low et al., 2011; Bhatt et al., 2013).
Given its central role in viral replication, targeting the NS2B/
NS3 complex disrupts a key step in the Dengue virus life cycle
making NS2B/NS3 protease a key antiviral target for the
development of therapeutic agents against the Dengue virus (Erbel
et al., 2006; Norshidah et al., 2023; Bhatt et al., 2013). The selection of
the PDB ID 2FOM for docking studies was based on structural quality
metrics, underscoring the importance of selecting appropriate protein
structures for virtual screening (Wlodaweret al., 2008). The results of the
docking simulations indicated that anhydrophlegmacin exhibited
superior binding affinity, reinforcing the predictive capabilities of the
Logistic Regression model. Applying a high threshold of −8.0 kcal/mol
improved selection conditions for further studies on active compounds
(Kwofie et al., 2019b). Using a threshold of −8.0 kcal/mol, 56 hit
compounds that docked firmly were selected for further analysis.

Characterization of ligand interactions using LigPlot provided
insight into the binding mechanisms, which are vital for
understanding how compounds can effectively inhibit the target
protein (Laskowski and Swindells, 2011). This analysis is critical
given that it helps identify key residues that contribute significantly
to ligand binding, as a means of guiding future drug design efforts.
Therefore, hydrogen and hydrophobic interactions between the
shortlisted compounds and the residues in the active site helped
to elucidate the top-hit compound that inhibits the activities of the
NS2B/NS3 protease. Hydrophobic and hydrogen bonds between the
selected compounds and catalytic triad His51-Asp75-Ser135 were
the main determinants of good interaction and possible inhibition.

A structural similarity check between different NS2B/NS3pro
confirms the conserved regions and residues (His51-Asp75-
Ser135) on the NS3 protease sequence across all serotypes
(Purohit et al., 2022; Wahaab et al., 2022), thus the lead
compounds identified in this study can serve as cross-serotype
inhibitors. The interactions such as His51, Tyr161, Pro132,
Asp75, Gly153, and Ser135 by the compounds in this study are
consistent with reported binding interactions through docking
(Hariono et al., 2019; Purohit et al., 2022; Rasool et al., 2019).
The four lead compounds were superimposed to compare their
binding modes, revealing that key residues His51, Asp75, and
Tyr161 were consistently present across all four complexes.
Notably, the residue Ser135 was observed in three lead
compounds, ZINC14441502, ZINC95485940, and ZINC38628344.
These findings suggest that the four lead compounds share a similar
mechanism of action. In addition, the ADMET helps to predict safe
compounds by assessing the pharmacokinetic profiles and toxicity of
compounds (Wang C. et al., 2018). The integration of Veber’s rules
and other drug-like filters serves to prioritize compounds that are
more likely to succeed in preclinical and clinical phases denoted as
“druglike compounds” (Veber et al., 2002).

Molecular dynamics simulations serve as a powerful tool to explore
the stability of protein-ligand complexes over time (Maricarmen et al.,
2016). The stability observed in the RMSDplots correlates with the low
binding affinities observed during the molecular docking of the
compounds. Lower fluctuations often indicate stronger and more
stable interactions (Adinortey et al., 2022). However, the inhibitor
Prednisolone was observed to be unstable, with its RMSD peaking at
0.3 nm. The predicted leads, ZINC14441502, 2′,4′-dihydroxychalcone,
ZINC95485940, and ZINC38628344 demonstrated high fluctuations
compared to the unbound state indicating that binding with
compounds may have caused conformation changes in the
structure. The Rg analysis further supported this by demonstrating
the compactness of the complexes, a key indicator of structural
integrity during simulations (Liao et al., 2014). A stable Rg between
a range of 1.51–1.59 nm, shows a stably folded complex.

Molecular Mechanics Poisson-Boltzmann Surface Area
(MMPBSA) calculations provided detailed insights into the
energetic contributions of binding interactions, which are crucial
for understanding the thermodynamic viability of the ligand-protein
complexes (Genheden and Ryde, 2015). The findings indicate that
the leads 2′,4′-dihydroxychalcone, ZINC14441502, ZINC95485940,
and ZINC38628344 exhibited the most favorable binding free
energies of -55.805, -25.881, and -44.957 kJ/mol, respectively,
reinforcing their potential as lead compounds for further
development (Abdullah et al., 2023; Saleh & Kamisah, 2021). The
lead compounds demonstrated a more negative binding energy to
the NS2B/NS3 protease than the inhibitor Prednisolone, which is
suggestive of a stronger attraction.

Some limitations associated with the study include; the machine
learning model was trained on a dataset heavily imbalanced toward
inactive compounds, which could influence the model’s ability to
generalize well to external datasets. The results validate the logistic
model in handling imbalanced datasets, a common issue in
bioinformatics studies. While steps were taken to mitigate this,
further work could involve data balancing techniques or increasing
the number of active compounds to improve predictive accuracy.
Additionally, while the molecular docking results are promising,
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in vitro and in vivo validations of these compounds are essential to
confirm their inhibitory effects against the Dengue virus. Furthermore,
pharmacokinetic profiling, though performed in silico, would require
experimental validation to ensure the predicted compounds meet safety
and efficacy standards in a biological system.

5 Conclusion

Natural products used as a reservoir for novel therapeutic agents
must be tapped and repurposed as effective DENV inhibitors. The
significance of this study lies in applying a comprehensive approach to
drug discovery, integrating Machine Learning, Molecular Docking, and
Dynamics simulations to identify novel potential DENV inhibitors.
From this study, five classification models were developed, from which
the best-performing model based on accuracy, F1 score, precision, and
specificity was employed to make predictions. With an accuracy and
precision of 0.94 and 0.91 respectively, the Logistic Regression
outperformed the other models and thus was used to predict
potential inhibitors against the protease. Four lead compounds
ZINC38628344, ZINC95485940, 2′,4′-dihydroxychalcone, and
ZINC14441502 with high binding affinities of −0.85, −0.81, −8.6,
and −0.81 kcal/mol respectively, and interactions with the conserved
catalytic triad, His51-Asp75-Ser135 in the active site of the NS2B/
NS3 protease were discovered. The successful prediction and
characterization of binding interactions enhance our understanding
of ligand-target dynamics based on natural compounds which can be
biosynthesized, paving the way for further experimental validations and
in vitro drug development. The compounds were predicted to possess
pharmacokinetic properties and exhibit characteristics of non-
tumorigenicity and non-mutagenicity, based on the physicochemical
and toxicological characterization, adjourning them to be safe and drug-
like. The probable inhibition of the activities of the NS2B/NS3pro of
DENV by the leads was corroborated by 100 ns molecular dynamics
simulation involving MMPBSA calculations. The study’s approach
provides a foundation for the continued use of computational tools
in the fight against viral diseases, suggesting a promising path for rapid
drug discovery in the future. In addition, the prospective compounds
can be considered suitable anti-DENV scaffolds for fragment-based
drug design and, thus, are worthy of further experimental validation.
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