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Integrated proteogenomic characterization of ampullary
adenocarcinoma
Qiao Zhang1,5, Xiaomeng Xu1,5, Dongxian Jiang2,5, Yunzhi Wang1,5, Haixing Wang2,5, Jiajun Zhu1, Shaoshuai Tang1, Ronghua Wang3,
Shuang Zhao3, Kai Li1, Jinwen Feng 1, Hang Xiang1, Zhenmei Yao1, Ning Xu1, Rundong Fang1, Wenjia Guo4, Yu Liu3✉,
Yingyong Hou2✉ and Chen Ding 1,4✉

© The Author(s) 2025

Ampullary adenocarcinoma (AMPAC) is a rare and heterogeneous malignancy. Here we performed a comprehensive
proteogenomic analysis of 198 samples from Chinese AMPAC patients and duodenum patients. Genomic data illustrate that 4q loss
causes fatty acid accumulation and cell proliferation. Proteomic analysis has revealed three distinct clusters (C-FAM, C-AD, C-CC),
among which the most aggressive cluster, C-AD, is associated with the poorest prognosis and is characterized by focal adhesion.
Immune clustering identifies three immune clusters and reveals that immune cluster M1 (macrophage infiltration cluster) and M3
(DC cell infiltration cluster), which exhibit a higher immune score compared to cluster M2 (CD4+ T-cell infiltration cluster), are
associated with a poor prognosis due to the potential secretion of IL-6 by tumor cells and its consequential influence. This study
provides a comprehensive proteogenomic analysis for seeking for better understanding and potential treatment of AMPAC.
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INTRODUCTION
Ampullary adenocarcinoma (AMPAC) is a rare malignant neoplasm
that forms in an area called the ampulla of Vater. AMPAC with an
incidence of ~4–7 cases per 1,000,000 people1, accounts for ~7%
of all periampullary cancers and 0.2% of gastrointestinal cancers2,3.
The 5-year survival rate ranges from 20%–75%, based on different
stages of cancer progression4,5. Histologically, AMPAC is separated
into intestinal-type, pancreatobiliary-type, or mixed-type, and the
intestinal-type patients have a better prognosis than the
pancreatobiliary-type patients6. Due to its characteristics of an
unknown etiology, extremely low incidence rate, and complex
anatomical structure, ampullary adenocarcinoma has long been a
challenging subject for clinical and pathological research, and
multi-omics cohort studies.
The incidence of AMPAC remains unknown, and targeted drugs

and treatments are lacking7. The prevailing therapeutic regimen
for AMPAC primarily entails the utilization of pancreaticoduode-
nectomy8, with some chemotherapy and radiation therapy after
surgery9,10. According to the differences in cellular origins and
immunohistochemistry (IHC) between intestinal-type and
pancreatobiliary-type patients, the intestinal-type patients were
starting to be treated with the fluorouracil-based regimen, and the
pancreatobiliary-type patients were treated with the gemcitabine-
based regimen. Nevertheless, the chemotherapy seems ineffective
and only relies on the subtype that was estimated by cellular
morphology and immunohistochemistry.

Two previous genomic cohort studies revealed the gene
mutation pattern of AMPAC and assessed the driver mutated
genes involved in tumorigenesis, including TP53, KRAS, APC,
SMAD4, ARID2, CTNNB1, and ELF311,12. In addition, Yachida et al.9

and Ginsgras et al.10 also revealed changes in alterations in WNT
signaling, RTK/RAS, and TGF-β signaling pathway in AMPAC, which
have a similar alteration frequency with our data (Supplementary
Fig. S1i). However, current genomic studies have not yet
elucidated the intratumoral biological mechanisms of AMPAC,
such as pathway alterations influenced by copy number variations
(CNVs), which still require further investigation. Thus, the
integrated study contained data from both proteome and
genomic alterations that would be necessary to uncover the
molecular characteristics of AMPAC.
In this study, we included tumor samples from 198 patients

along with paired adjacent non-tumor samples. Due to the
location of AMPAC, these 198 samples also included 12 cases of
duodenal cancer (DAC), which were very close to the location of
AMPAC. Proteogenomic analysis unveiled the downstream path-
ways impacted by CNV events. At the level of chromosomal
alterations in the AMPAC, the loss of 4q occurred frequently, and
the low expression level of HADH (the cis effect in 4q) leads to the
accumulation of fatty acids, consequently inducing cell prolifera-
tion. For the focal event, 9p21.3 deletion and 5p22.1 deletion were
also found to be risk factors for AMPAC. A genetic study has
disclosed several frequent mutations including KRAS, TP53, APC,
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ARID2, SMAD4, CTNNB1, and ELF3, et al. The comparative analysis
illustrated the distinctive pathway differences between
pancreatobiliary-type and intestinal-type and identified potential
therapeutic targets, PCNA for intestinal-type and ANO1 for
pancreatobiliary-type AMPAC. Based on the proteomic classifica-
tion, three clusters with distinctive features were established and
the cluster with the poorest prognosis was characterized by
enrichment of focal adhesion. Immune infiltration analysis
indicated that a higher immune score was accompanied by a
poorer prognosis in AMPAC patients. Based on the multi-omics
analysis of AMPAC, our study can serve as a valuable dataset
supporting biological discoveries and provide insights for
therapeutic development in the future.

RESULTS
Comprehensive proteogenomic characterization of AMPAC
samples
We had established an extensive multi-omics research cohort
(Fudan cohort) for AMPAC on a global scale. To systematically define
the proteogenomic landscape of AMPAC, we collected formalin-
fixed paraffin-embedded (FFPE) tumor samples and paired normal
adjacent tissues (NATs) from 186 AMPAC patients and 12 DAC
patients spanning from 2008 to 2017. A total of 186 AMPAC patients
comprised 96 intestinal-type patients, 82 pancreatobiliary-type
patients, and 8 mixed-type patients (Fig. 1a, Supplementary Fig.
S1a and Table S1a). The examination and assessment of HE-stained
slides were performed independently by two experienced pathol-
ogists, who provided details about the tumor’s histological subtype,
degree of differentiation, and TNM stage (Supplementary Table S1a).
Clinical attributes, including the age at diagnosis, gender, tumor
grade, etc., are summarized based on clinicopathological features in
Supplementary Table S1a. Demographically, all patients entitled in
this study were from Asia. Other risk factors and information
associated with patient prognoses were also collected via follow-up
in this study (Supplementary Table S1a). The Whole-exome
sequencing (WES) analysis was conducted on 133 tumor and 133
NAT samples. RNA sequencing (RNA‐seq) was performed for the
transcriptome analysis on 67 tumor and 65 NAT samples. For all 198
paired tumor and NAT samples, a mass spectrometry (MS)-based
proteomic analysis was carried out. In addition, phosphoproteomic
analysis was performed on 96 tumor samples and 90 NAT samples
using a Fe-NTA phosphopeptides enrichment strategy (Fig. 1a and
Supplementary Fig. S1a).
WES led to 110‐fold mean target coverage and identified 9108

mutated genes, including 14,233 non-silent point mutations and
1599 small insertions or deletions. A total of 14,150 somatic
mutations with a median rate of 15.85 coding mutations per
megabase. Significantly mutated genes (SMGs) were identified
using MutSigCV. Among the 133 patients, we observed several
SMGs, including KRAS (65%), TP53 (53%), APC (26%), ARID2 (14%),
SMAD4 (12%), CTTNB1 (12%), ATM (9%), ACVR2A (8%), ARID1A (8%),
SOX9 (7%), ELF3 (5%), PBRM1 (5%), and CTTND1 (5%) (Fig. 1b and
Supplementary Table S1b). Among these SMGs, the mutational
frequency of APC was higher in intestinal-type patients, and KRAS
mutation was significantly higher in pancreatobiliary-type
patients. Correlation analysis was performed using mutational
frequencies from Yachida’s work and Gingras’s work (Fisher’s exact
test p < 0.05; Fig. 1c)11,12, and Spearman correlation reflected
similar mutational profiles across the three cohorts (Fig. 1d). The
previous studies also revealed changes in alterations in WNT
signaling, RTK/RAS signaling, and TGF-β signaling pathways in
AMPAC, which have a similar alteration frequency in our data
(Supplementary Fig. S1i). Additionally, there was a similar TMB
between Fudan cohort and Gingras’s cohort (Fig. 1e).
Non-negative matrix factorization (NMF) was employed to

assess the frequencies of mutated trinucleotide sequence
motifs13,14. We identified five mutational signatures by Sigminer.

These 5 signatures corresponded to the known COSMIC (Catalog
of Somatic Mutations in Cancer) signatures: SBS30 (Defective DNA
base excision repair due to NTHL1 mutations, n= 100), SBS20
(Concurrent POLD1 mutations and defective DNA mismatch
repair, n= 2), SBS6 (Defective DNA mismatch repair, n= 15),
SBS2 (Activity of APOBEC family of cytidine deaminases, n= 15),
and SBS18 (Damage by reactive oxygen species, n= 1) (Supple-
mentary Fig. S1j). The overall proportions of single nucleotide
variants (SNVs) were similar to those observed in other
cohorts11,12, with cytosine to thymine (C > T) transition being the
most frequent SNV. Transcriptome sequencing identified 15,328
genes with fragments per kilobase of transcript per million
fragments mapped (FPKM) values > 1. A total of 15,196 and 14,847
transcripts were identified in the tumor and NAT samples,
respectively (Supplementary Fig. S1d, e).
For the proteomics analysis, whole-cell extracts of human

embryonic kidney-derived HEK293T cells were utilized as controls
to ensure data quality. This showed the robustness and consistency
of the mass spectrometer, which is evidenced by a high Spearman
correlation coefficient (r > 0.9) between the proteomes of QC
samples (Supplementary Fig. S1h). Additionally, proteomic analysis
identified 15,363 proteins in total and 14,280 and 13,447 proteins
in the tumor and NAT samples, respectively. We then applied
quality control for whole proteomic data and filtered the proteins
with less than 1% FDR. As a result, 13,092 proteins were utilized for
further analysis (Supplementary Fig. S1b–e).
Phosphoproteomics analysis identified 28,714 phosphosites

including 21,088 (73.4%) on serine, 6836 (23.8%) on threonine,
790 (2.8%) on tyrosine; from 5964 phosphoproteins in 96 tumor
samples, 22,776 phosphosites including 16,721 (73.4%) on serine,
5421 (23.8%) on threonine, 634 (2.8%) and on tyrosine, from 5147
phosphoproteins in 90 NAT samples (Supplementary Fig. S1e). The
ratio of S/T/Y in this research is similar to the phosphorylation site
S/Y/T distribution among CRC cohort (serine: 76.2%, threonine:
19.9%, tyrosine: 3.9%)15, GC cohort (serine: 74.0%, threonine:
20.9%, tyrosine: 5.1%)16, HCC cohort (serine: 77.8%, threonine:
16.9%, tyrosine: 5.3%)17, PDAC cohort (serine: 73.2%, threonine:
23.7%, tyrosine: 3.1%)18, indicating that the ratio of S/T/Y in
AMPAC is comparable (Supplementary Fig. S1f, g). In total, our
study has presented systematic molecular characteristics of
AMPAC at the multi-omics level.
Thus, our study has so far established a comprehensive

landscape of AMPAC at the multi-omics levels (Fig. 1a and
Supplementary Fig. S1a).

Impact of somatic copy number variations in the AMPAC
Fudan cohort
The impacts of copy-number variations (CNVs) on mRNA, protein,
and phosphoprotein abundances in both cis and trans modes
were characterized (Fig. 2a). A total of 4928, 1980, and
573 significant correlations (cis effects) were observed for mRNA,
proteins, and phosphoproteins, respectively (Supplementary Table
S2e). GO pathway analysis indicated consistency among pathways
subjected to enrichment by CNV-affected 1114 mRNAs and
proteins, which were enriched in pathways related to tight
junction, adherens junction, cell–cell adhesion fatty acid
β-oxidation, and cell cycle (Fig. 2b, c and Supplementary Table
S2e). These reflected CNV impact on the signaling pathway. We
investigated the impact of CNVs on mRNA, protein and
phosphoprotein abundances of 593 cancer-associated genes
(CAGs)19 via either cis or trans effects. Our analysis revealed that
CNVs have cis effects on both the mRNA and protein abundances
of 52 CAGs, as well as on three omics level abundances of 6 CAGs
(ERBB2, EP300, MYH9, MKL1, DACH1, and MACF1) (Fig. 2d), and the
annotations for these 6 CAGs are shown in Fig. 2e. Additionally,
according to the STRING database, these 6 CAGs that had
previously demonstrated direct or indirect interactions with each
other, and primarily impacted the focal adhesion and cell cycle
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pathways (Fig. 2f). The cis effects and trans effects correlation of
these three pathways are shown in Fig. 2g. Gene Set Variation
Analysis (GSVA) was utilized to analyze these pathways enrich-
ment. Cell cycle was significantly upregulated in the intestinal-
type (One-way ANOVA test, p= 0.019), and focal adhesion was

highly enriched in the pancreatobiliary-type (one-way ANOVA test,
p= 0.0014) (Fig. 2h). The results suggest that pathway differences
are impacted by different CNVs in two histological subtypes.
Gistic2.0 was employed to analyze the somatic copy-number

alteration profiles of 133 AMPAC samples. The most frequent gains
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were identified in chromosomes 20q (1.8e−5), 13q (3.1e−3) and
7q (9.7e−4), and the most losses were found in chromosomes 9p
(4.88e−14), 17p (4.54e−11), and 4q (3.6e−3) (Supplementary Fig.
S2a and Table S2a). The 4q loss was the only event at the
chromosome arm level that was negatively correlated with overall
survival (OS) (HR= 2, p= 0.019) (Supplementary Table S2b).
Furthermore, we detected focal alterations and identified 51
significant (q < 0.1) amplified peaks and 125 significant (q < 0.1)
deleted peaks (Supplementary Fig. S2b). In addition, we identified
focal events in driver oncogenes, including MTAP (9p21.3 deletion,
78 cases), KRAS (16q23.1 deletion, 28 cases) and TYK2 (19p13.2
deletion, 49 cases), which were negatively associated with OS
(Hazard ratio (HR) > 1, p < 0.05) (Supplementary Fig. S2b, c and
Table S2c, d).
Among them, 9p21.3 deletion was particularly prevalent in

Fudan cohort. MTAP, located on 9p21.3, showed a significant cis
effect on its protein and mRNA expression levels, which encoded
S-methyl-5’-thioadenosine phosphorylase (Supplementary Fig.
S2d and Table S2g). Both IHC staining and qualification of IHC
results presented the downregulation of MTAP in samples with
9p21.3 deletion compared to the WT samples (Supplementary Fig.
S2e, f). MTAP serves as the pivotal enzyme responsible for cleaving
MTA in the methionine salvage pathway20 (Supplementary Fig.
S2g). In MTAP-deficient tumor cells, the accumulation of MTA
within cells binds to PRMT5, forming the PRMT5/MTA complex.
This complex inhibits PRMT5 activity and enhances the sensitivity
of PRMT5 gene inhibition21,22. Thus, inhibition of PRMT5 was
predicted to recapitulate the selective synthetic lethality observed
in MTAP knockdown cells23. We utilized siRNA to knock down the
expression of MTAP in the AMPAC cell line (SNU-478) (Supple-
mentary Fig. S2h), and treated them with MRTX-1719, a potent
and selective binder to the PRMT5/MTA complex that could
selectively inhibit PRMT5 activity in MTAP-deleted cells24,25. The
effects of MRTX-1719 on cell viability were measured. Consistently,
MTAP-knockdown cells were more sensitive to MRTX-1719 with
lower IC50 values (median IC50: 3.7 μM in MTAP-knockdown cells vs
7.0 μM in SNU-478 cells) (Supplementary Fig. S2i). This result
indicated the applicability of the synthetic lethal inhibitor MRTX-
1719 in AMPAC, and proposed a potential therapeutic approach
for AMPAC MTAP-deleted patients (Supplementary Fig. S2j).
Although tyrosine phosphorylations were a small fraction of the

total phosphoprotein, they played important roles in cell
proliferation and suppression of the immune environment.
Therefore, we examined the RTK phosphorylation data in this
study. The phosphoproteomic analysis identified 914 tyrosine
phosphosites in total, with 602 tyrosine phosphosites from 477
phosphoproteins in 96 tumor samples, and 495 phosphosites from
407 phosphoproteins in 90 NAT samples, respectively (Supple-
mentary Fig. S2k). To explore the influence of tyrosine phosphor-
ylation on the downstream signaling pathway, we performed
differential tyrosine phosphosites analysis, and 22 differential
expressed tyrosine phosphosites were identified. Among them, 15
tyrosine phosphosites had a significantly higher expression
abundance in tumor samples and 7 tyrosine phosphosites had a
significantly higher expression abundance in NAT samples
(Supplementary Fig. S2l). Additionally, we employed pathway
enrichment analysis on the 602 phosphoproteins in 96 tumor

samples and 407 phosphoproteins in 90 NAT samples. As a result,
we found these phosphoproteins were enriched in pathways such
as Focal adhesion, ErbB signaling pathway, PD-L1 expression and
PD-1check points pathway in tumor samples, and regulation of
actin cytoskeleton, platelet activation, and motor proteins were
enriched in NAT samples (Supplementary Fig. S2m).
ERBB2 and EGFR were recurrently amplified in AMPAC26. To

investigate these 2 amplifications impact on AMPAC tumorigen-
esis, we calculated the Spearman correlation to assess the
relationship between the copy number of EGFR/ERBB2 and their
corresponding protein, mRNA, and phosphoprotein expression
abundances. Herein, we found that EGFR and ERBB2 were both
amplified frequently in our study, of which both had the cis-effects
at the protein level, and ERBB2 had the cis effect at the mRNA level
(Supplementary Fig. S2n). However, we did not observe that EGFR
amplification could increase the kinase activity of EGFR, nor did we
observe that ERBB2 amplification could increase the kinase activity
of ERBB2 (Supplementary Fig. S2n)27,28. Therefore, ERBB2 and EGFR
amplification mainly affected the downstream signaling pathway
by their protein expression abundance. Besides, we checked the
correlation between EGFR/ERBB2 amplification and the prognosis
of ampullary adenocarcinoma. Although the result showed the
copy number of EGFR/ERBB2 showed a worse prognosis than the
low copy number patients, the results showed no statistical
significance between the copy number of EGFR/ERBB2 and
the prognosis of ampullary adenocarcinoma (Supplementary
Fig. S2o, p).

4q loss-induced fatty acid metabolism disruption promotes
cell proliferation
Notably, chromosome 4q loss was the only event at the
chromosome arm level that was negatively correlated with overall
survival (Fig. 3a and Supplementary Fig. S3a). To investigate the cis
effect of 4q loss, KEGG pathway enrichment analysis was utilized
on differentially expressed proteins (DEPs) in the 4q loss group
and WT group at both the mRNA and protein levels. A total of 231
proteins and 188 mRNAs (FC (4q loss/WT) > 1.5, p < 0.05) were
upregulated in the 4q loss group, which were enriched in cell
cycle at both the protein and mRNA levels, while 156 proteins and
109 mRNAs (FC (4q loss/WT) > 1.5, p < 0.05) were downregulated
in the 4q loss group, which were enriched in fatty acid metabolism
and fatty acid degradation at the protein level and metabolic
pathways at the mRNA level (Fig. 3b). We also discovered genes
involved in fatty acid metabolism (such as ACSL1, ACADS, HADH,
and ADH1C) were downregulated in the 4q loss group, which
suggests a weakening of the ability of fatty acid β-oxidation in
AMPAC (Fig. 3c and Supplementary Table S2f). To examine the
influence of fatty acid metabolism on the prognosis of AMPAC
patients, we performed survival analysis according to the GSVA
scores of fatty acid metabolism. The results indicated that patients
with lower GSVA scores had worse prognosis (Supplementary
Fig. S3i).
To explore how 4q loss impacts fatty acid metabolism, we

examined all genes located on 4q loss that had cis effect on both
protein and mRNA levels, and we found the copy number of HADH
was significantly positive correlated with its mRNA and protein
expression abundance (mRNA: Spearman’s r= 0.29, p= 0.03,

Fig. 1 Proteogenomic landscape of AMPAC. a The workflow of the experiment. Top panel, overview of the experimental design and the
number of samples for the genomic, transcriptomic, proteomic, and phosphoproteomic analyses. Bottom panel, sample numbers and multi-
omics datasets of Fudan cohort. b Profile of significantly mutated genes (SMGs) and associated clinical features of patients with AMPAC. SMGs
in this dataset identified by MutSigCV and OncodriveCLUST (q value < 0.1) are shown. Top panel, number of mutations per sample. Middle
panel, the clinical characteristics of each sample and distribution of significant mutations across the sequenced samples, color-coded by
mutation type. Bottom panel, the distribution of SCNVs across the sequenced samples. Frequent focal somatic copy-number variations. Right
panel, percentage of samples affected. c Comparisons of mutation frequencies of top 10 mutated genes in the Fudan cohort and previously
published cohorts. d Correlation plot of the mutation frequencies observed in the Fudan cohort compared to those in previously published
cohorts (Spearman correlation). e Comparison of TMB in the tumors of our cohort and the Marie-Claude’s cohort.
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protein: Spearman’s r= 0.23, p= 0.0075, Fig. 3d and Supplemen-
tary Fig. S3f, g). This means that with the copy number alteration
of 4q loss, the HADH also experienced a loss of copy number, and
both the HADH protein and mRNA expression abundance also
decreased with corresponding trends. Besides, we found that
HADH was the only protein whose low expression abundance was

associated with a poorer prognosis in AMPAC (log-rank test,
p= 0.019, Fig. 3e) and displayed a downregulation in the 4q loss
group compared to the WT group (Supplementary Fig. S3b, c).
Both IHC staining and qualification of IHC results presented the
downregulation of HADH in samples with 4q loss compared to the
WT samples (Supplementary Fig. S3d, e). HADH encodes
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hydroxyacyl-coenzyme A dehydrogenase, which plays a role in
fatty acid metabolism by participating in fatty acid degradation/
β-oxidation pathway. It was found to be downregulated in
hepatocellular carcinoma (HCC) and kidney renal clear cell
carcinoma (KIRC) coinciding with the downregulation of the fatty
acid β-oxidation pathway29–31. Significantly positive correlations
between the HADH expression and the GSVA score of fatty acid
metabolism at both the protein and mRNA levels were also
observed in our cohort (Fig. 3f, g). These findings suggested that
the downregulation of fatty acid metabolism was the conse-
quence of HADH downregulation.
To further elucidate the impact of accumulated long-chain fatty

acids resulting from downregulated HADH, we transfected the
AMPAC cell lines SNU-478 and SNU-869 with HADH siRNA (SNU-478-
HADH-KD, SNU-869-HADH-KD) and scrambled siRNA (SNU-478-Si-
Vector, SNU-869-Si-Vector as a control, and then performed
comparative proteomic analysis32. HADH mRNA levels were
significantly downregulated in the SNU-478-HADH-KD group
(Supplementary Fig. S3j). We also evaluated the concentration of
metabolites in SNU-478-HADH-KD and SNU-869-HADH-KD cells, and
conducted a pathway enrichment analysis of these metabolites. The
lipid metabolites, accumulated in SNU-478-HADH-KD cells, were
associated with mitochondrial β-oxidation of long-chain saturated
fatty acids, valine, leucine, and isoleucine degradation and pyruvate
metabolism pathways (Fig. 3h); the lipid metabolites detected in
SNU-869-HADH-KD cells were involved with fatty acid biosynthesis,
fatty acid degradation and biosynthesis of unsaturated fatty acids
pathways (Fig. 3i). Notably, palmitaldehyde, the initial substrate for
fatty acid β-oxidation, was significantly accumulated in SNU-478-
HADH-KD cells (Fig. 3j); the palmitic acid was identified a high level
in the SNU-869-HADH-KD cells (Fig. 3k). These results suggested that
the downregulation of HADH repressed fatty acid β-oxidation
resulting in the accumulation of long chain fatty acids in the AMPAC.
Consequently, we proposed that the accumulation of long-chain
fatty acids (palmitic acid/palmitaldehyde) could be a characteristic
feature within the 4q loss AMPAC patients.
Previous study illustrated that the reduction of HADH-mediated

gastric cancer showed a deceleration of β-oxidation that leads to
the accumulation of fatty acids, activating the PI3K-Akt signaling
pathway, which often promotes malignant tumor growth33. We
sought to investigate whether HADH downregulation activates
the PI3K-Akt signaling pathway in AMPAC tumor cells. To explore
this, we performed a correlation analysis between the protein
expression of HADH and the GSVA score of PI3K-Akt signaling
pathway. The HADH expression was positively associated with the
GSVA score of the PI3K-Akt signaling pathway (Fig. 3l). Addition-
ally, we utilized MS-based proteomic analysis to nominate the
proteins that participate in PI3K-Akt signaling pathway, and
performed differential analysis in SNU-478-HADH-KD and SNU-
869-HADH-KD cells and the control groups cells. The result
revealed the upregulation of the PI3K-Akt signaling pathway in
the SNU-478-HADH-KD and SNU-869-HADH-KD groups compared
to the control (Fig. 3m, n). These illustrated that HADH

downregulation followed with PI3K-Akt signaling pathway eleva-
tion in AMPAC. A previous study described that tumor prolifera-
tion was promoted by activating the PI3K-Akt signaling pathway33.
Given the observed upregulation of the cell cycle in the 4q loss
group as illustrated in Fig. 3b, c, it is plausible that HADH
downregulation could induce the accumulation of long-chain fatty
acids, and may activate the PI3K-Akt signaling pathway, thereby
promoting cell proliferation in AMPAC.
To validate whether HADH downregulation could promote

tumor cell growth, we conducted the cell growth ability
assessment on SNU-478-HADH-KD and SNU-869-HADH-KD cells.
The results displayed a significantly increased proliferation ability
in SNU-478-HADH-KD and SNU-869-HADH-KD cells compared to
the control (Fig. 3o, p). The palmitic acid supplementation
increased proliferation ability in SNU-478-HADH-KD and SNU-
869-HADH-KD groups, and this increase was significantly higher
than that observed in the control groups (Fig. 3o, p). This suggests
that palmitic acid could promote the proliferation ability in SNU-
478-HADH-KD and SNU-869-HADH-KD groups. Furthermore, it
demonstrated that HADH downregulation leads to the accumula-
tion of fatty acids, which indeed facilitates proliferation ability in
the HADH-KD cells. We further constructed xenograft mouse
models using HADH-KD and control group cells, and conducted
subcutaneous tumor experiments in mice. The downregulation of
HADH was found to significantly promote xenograft growth
compared to the control (Fig. 3q, r). These results provided
additional confirmation that the accumulation of long-chain fatty
acids resulting from the low expression of HADH promoted tumor
cell proliferation.
In summary, we concluded that in AMPAC tumor cells, the

downregulation of HADH expression, mediated by cis effect
resulting from chromosome 4q loss, disrupted the metabolism of
long-chain fatty acids. The accumulated long-chain fatty acids
served as signaling stimuli that activated the PI3K-Akt signaling
pathway, ultimately triggering cell proliferation (Fig. 3s).

Integrated multi-omics features in tumor tissues compared
with NATs of the AMPAC
Generating multi-omics profiles from both tumors and NATs
provided a valuable opportunity to comprehensively investigate
the interplay among AMPAC’s transcriptome, proteome, and
phosphoproteome during tumorigenesis, offering insights into
multi-omics remodeling. Principal component analysis (PCA) of
RNA-seq data (14,131 genes) and proteome data (10,002 proteins)
showed a clear distinction between tumors and NATs (Supple-
mentary Fig. S4a, b and Table S3a). A total of 3128 genes and 2605
genes were upregulated (FC (T/N) > 1.5, p < 0.05) in tumors on
both the proteome and transcriptome levels, respectively
(Supplementary Fig. S4c, d). Further KEGG enrichment analysis
indicated that in tumor tissues, both at the protein and mRNA
levels, pathways such as ECM-receptor interaction, focal adhesion,
PI3K-Akt signaling, and p53 signaling were significantly enriched
(Supplementary Fig. S4e and Table S3b). These pathways were

Fig. 2 Impacts of somatic copy number variations in AMPAC Fudan cohort. a Functional effect of CNVs on mRNA and proteins. Top panels,
the correlations of CNV to mRNA and protein abundance. Positive and negative correlations are indicated in red and green, respectively.
Genes were ordered by chromosomal location on the x and y axes. Diagonal lines indicate cis effects of CNV on mRNA or proteins. Bottom
panels, the numbers of mRNAs or proteins that were significantly associated with a specific CNV. Gray bars indicate correlations specific to
mRNA or proteins, and black bars indicate correlations with both mRNA and proteins. b Venn diagrams depicting the cascading effects of
CNVs and the overlap between cis events via the transcriptome, proteome, and phosphoproteome analyses (Spearman’s correlation, p < 0.05).
c The pathways enriched by 1114 significant cis effect genes overlapped with the transcriptome and proteome. d Venn diagram showing the
CAGs with significant CNV cis effects via multi-omics data analyses (Spearman’s correlation, p < 0.05). e Locations of the CAGs with cascading
copy number cis regulation of their cognate mRNA, protein, and phosphoprotein levels. f The protein–protein interaction network
constructed by the 6 CAGs. g Cis and trans effects of significant cis effect genes from focal adhesion, cell cycle, and fatty acid metabolism
pathways. h Top panel, heatmap of the GSVA score of focal adhesion, cell cycle, and fatty acid metabolism pathways in the different pathology
subtypes. Bottom panel, boxplot of the GSVA score of focal adhesion, cell cycle, and fatty acid metabolism pathways in the different pathology
subtypes (one-way ANOVA test).
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similar to those that we discovered previously (Fig. 2c). In contrast,
pathways including fatty acid degradation, PPAR signaling, the
citrate cycle, glycolysis/gluconeogenesis, and retinol metabolism
were significantly enriched in NATs at both the protein and mRNA
levels (Supplementary Fig. S4f and Table S3b).

Kinases play important roles in various cellular processes via
signaling transduction, influencing the cellular proteome34. To
unravel the dynamic alterations in both kinases and phosphopro-
teins, and the impact on the proteome in AMPAC, we conducted
kinase-substrate enrichment analysis (KSEA). We detected ten
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kinases that were specifically activated in tumors, with five (CDK2,
CDK1, CDK7, CDK4, and CDK6) of them belonging to the cyclin-
dependent kinase (CDK) family (Supplementary Fig. S4g). There-
fore, we screened for phosphorylation substrates of CDK1, CDK2,
and CDK7 that exhibited high expression levels in the tumors (FC
(T/N) > 1.5, p < 0.05) within Fudan cohort, identifying specific
phosphorylation sites on some phosphoproteins (DNM2, HNRNPK,
NPM1, PML, PPP1CA, RB1, and TCOF1) targeted by CDK1 as well as
CDK2 (Supplementary Fig. S4h). Furthermore, it is noteworthy that
all of these phosphorylation substrates exhibit interactions among
themselves. Functionally, according to the STRING database, these
interactions contribute to the impact on focal adhesion and the
cell cycle in AMPAC tumors, providing partial insight into the
enrichment of cell cycle at the protein level in tumors
(Supplementary Fig. S4i). Moreover, survival analysis indicated a
negative correlation between CDK2 kinase activity and patient
overall survival (Supplementary Fig. S4j). The abundances of
CDK2/CDK1 phosphorylation substrates, including DNM2/S764,
HNRNPK/S216, NPM1/S70, PML/S518, and GIGYF2/S593, CDK7’s
phosphorylation substrate CDK1/T161, exhibited significant nega-
tive correlations with overall survival (Supplementary Fig. S4k–p).
In summary, we identified CDKs, especially CDK2, that play a
crucial role in AMPAC tumorigenesis processes by promoting the
cell cycle and focal adhesion pathway. Furthermore, it is
hypothesized that CDK2 could be a potential druggable protein
to improve AMPAC patients’ prognostic outcomes (Supplementary
Fig. S4q).

Intestinal-type features with PCNA amp and pancreatobiliary-
type features with ANO1 amp
According to the AJCC eighth edition 2017 staging system35. AMPAC
was classified into intestinal-type, pancreatobiliary-type, and mixed-
type. Our cohort contained 12 DAC patients and 186 AMPAC
patients, comprising 92 intestinal-type patients, 86 pancreatobiliary-
type patients and 8 mixed-type patients. Regarding histologic
grading, the pancreatobiliary-type, with a higher grade, low-grade
differentiation, and high lymph node metastasis rate compared to
the intestinal-type, had the poorest overall survival and progression-
free survival (Fig. 4a, b and Supplementary Fig. S5a, b). Differential
analysis was performed to reveal the molecular differences among
the four subtypes. KEGG pathway enrichment analysis showed that
the intestinal-type was involved in RNA degradation and nucleotide
excision repair, while the pancreatobiliary-type was characterized by

focal adhesion, the mixed-type mainly participated in DNA
replication and DAC was enriched with the PPAR signaling pathway
(Fig. 4a and Supplementary Table S3c).
In Fudan cohort, we observed larger tumor sizes in the

intestinal-type than in the pancreatobiliary-type (Fig. 4c). The
higher metastasis rate occurred in pancreatobiliary-type patients
than in the intestinal-type patients (Supplementary Fig. S5e). To
further investigate the instinct causes of these phenotypes in the
two subtypes, we examined all mutations and cis effect genes
accumulation across all subtypes. PCNA amplification (amp)
displayed a more frequent occurrence in the intestinal-type than
pancreatobiliary-type (Supplementary Fig. S5c), and ANO1 ampli-
fication occurred more frequently in the pancreatobiliary-type
compared to the intestinal-type (Supplementary Fig. S5g). The 4q
loss group had a higher multi-gene proliferation scores (MGPS)
score compared to WT group (Supplementary Fig. S3h). Here, we
checked the correlation between 4q loss and histology. We found
that 4q loss also occurred more frequently in the intestinal-type
than in the pancreatobiliary-type (Supplementary Fig. S5d).
Based on the cis effect of PCNA amp, PCNA expression level was

upregulated in the intestinal-type (Fig. 4d). As shown in Fig. 4e, g,
it was evident that the expression level of PCNA was higher in
intestinal-type patients compared to pancreatobiliary-type
patients. The boxplot of H-Score derived from the IHC result also
verified this finding (Fig. 4i). However, it was still unknown
whether the high expression level of PCNA in the intestinal-type
was due to the PCNA amp or the influence of the different
morphology of the two histological subtypes. To address this
question, we performed an IHC analysis to compare the PCNA
expression abundance in the PCNA amp and WT samples from the
pancreatobiliary-type and intestinal-type, respectively. As shown
in Fig. 4e, g, we found that the intestinal-type samples with PCNA
amp had a significantly higher expression abundance of PCNA
than the intestinal-type samples without PCNA amp, and the
boxplot of the H-score illustrated the same fact that PCNA
expression was higher in the intestinal-type samples with PCNA
amp than WT (Fig. 4e, f). Meanwhile, we found that the
pancreatobiliary-type samples with PCNA amp also had a higher
expression abundance of PCNA than the intestinal-type samples
without PCNA amp, the comparison of H-score showed a higher
PCNA expression in the pancreatobiliary-type samples with PCNA
amp than WT (Fig. 4g, h). Therefore, the higher expression in the
intestinal-type samples was indeed due to the PCNA amp.

Fig. 3 4q loss induced fatty acid metabolism disruption promotes cell proliferation. a Forest plot showed the hazard ratios of the
significant arm events (q value < 0.1), p values were listed on the right. b Comparison between the 4q loss group and the WT group. Top panel,
selection of significantly different expressed genes (FC > 1.5, p < 0.05) at both the mRNA and protein levels. Middle panel, pathways enriched
by genes that upregulated proteins and mRNAs in 4q loss group. Bottom panel, pathways enriched by genes that downregulated proteins
and mRNAs in 4q loss group. c Heatmap of the GSVA scores of pathways enriched by differentially expressed genes in b. d Screening of the cis
gene on chromosome 4q. Top panel, selection of candidate cis genes on 4q according to expression level in the 4q loss group compared with
WT group and correlation with the overall survival. Bottom panel, heatmap showing the HADH copy number, protein expression, and mRNA
abundance. e Kaplan–Meier curves for overall survival based on the protein expression of HADH (log-rank test, p= 0.011). f The scatter plot
showed the correlations between GSVA scores of the KEGG pathways and the expression of HADH at both proteins and mRNA levels. The x-
axis represented the Spearman’s correlations at the protein level, and the y-axis represented the Spearman’s correlations at mRNA level.
Positive correlates were colored pink, and negative correlates were colored blue (Spearman’s p value < 0.05). g Schematic diagram of the
comparison between the 4q loss group and the WT group of fatty acid metabolism pathway in AMPAC. h Heatmap of MS-based 191 fatty acyls
in SNU-478 cells and the pathway enrichment of the 191 metabolites were shown on the right. i Heatmap of MS-based 130 fatty acyls in SNU-
869 cells and the pathway enrichment of the 130 metabolites were shown on the right. j Bar plot illustrated the abundance of palmitaldehyde
in the control, empty vector, and HADH-KD groups in SNU-478 according to the MS-based untargeted metabolomics result (two-way ANOVA
test). k Bar plot illustrated the abundance of palmitic acid in the control, empty vector, and HADH-KD groups in SNU-869 according to the MS-
based untargeted metabolomics result (two-way ANOVA test). l The scatter plot described the correlation between HADH protein expression
and the GSVA score of the PI3K-AKT pathway (Spearman’s r= 0.32, p < 1e−4). m The violin plot of the GSVA score of Hallmark PI3K-AKT
pathway in the control group and HADH-KD group in SNU-478 (Student’s t-test, p < 0.05). n The violin plot of the GSVA score of Hallmark PI3K-
AKT pathway in the control group and HADH-KD group in SNU-869 (Student’s t-test, p < 0.05). o Proliferation of SNU-478 cells associated with
various treatments (n= 5, mean ± SEM, two-sided Student’s t-test). p Proliferation of SNU-869 cells associated with various treatments (n= 3,
mean ± SEM, two-sided Student’s t-test). q Xenograft tumor volumes of HADH-KD groups and empty vector groups (SNU-478). r Xenograft
tumor images of the SNU-478 cells subcutaneously injected into nude mice. s The systematic diagram summarized the impact of
dysregulation of fatty acid metabolism due to the 4q loss promotes cell proliferation.
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Survival analysis indicated that higher PCNA expression led to a
poorer prognosis (Fig. 4j). Spearman correlation analysis of PCNA
and MGPS showed a significantly positive correlation (Spearman’s
r= 0.36, p < 1e−4) (Fig. 4k). Next, the correlation of PCNA
expression and GSVA score was employed to analyze the most
significant pathway associated with PCNA (Fig. 4l, m); these
pathways were characterized by RNA degradation, DNA replica-
tion, cell cycle and nucleotide excision repair. All the results above
indicated that PCNA amplification promoted tumor cell prolifera-
tion in intestinal-type patients (Supplementary Table S3d).

Considering the cis effect of HADH in 4q loss would promote
fatty acid accumulation and further induce cell proliferation
described earlier. To explore the stacking effect of 4q loss and
PCNA amplification, we performed the Fisher’s exact test between
4q loss and PCNA amp (Fisher’s exact test, p= 0.41) (Fig. 4n) and
the results showed that there was no co-occurring or exclusive
relationship between 4q loss and PCNA amp. We checked the
tumor size differences in the PCNA amp & 4q loss group, 4q loss
group, PCNA amp group, and WT group. The results showed that
patients in the PCNA amp & 4q loss group had the largest tumor
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sizes. The patients in the 4q loss group had a larger average tumor
size than the patients in the PCNA amp group, and the WT group
had the smallest average tumor size (Kruskal–Wallis test,
p= 0.029) (Fig. 4o). In conclusion, the cis effect of PCNA amp
elevates PCNA protein expression, inducing cell proliferation and
leading to an increase in tumor size in the intestinal-type.
Meanwhile, this process is further aggravated due to frequent
4q loss in the intestinal-type. The cis effect of HADH decreases its
protein abundance, causing an accumulation of fatty acids that
promotes tumor growth via the PI3K-Akt signaling pathway
(Fig. 4p).
For pancreatobiliary-type patients, ANO1 amplification was the

only somatic copy number alteration (SCNA) that occurred more
frequently in pancreatobiliary-type than intestinal-type patients
(Supplementary Fig. S5f), and ANO1 amp was a the risk factor for
AMPAC (HR= 1.7, p= 0.2) (Fig. 5a). The cis effect of ANO1 had an
impact on its expression level, which was higher in the
pancreatobiliary-type compared to intestinal-type (Fig. 5b). IHC
staining illustrated ΑΝΟ1 high expression in the pancreatobiliary-
type, and the H-Score quantified by IHC results also demonstrated
the high expression of ANO1 in the pancreatobiliary-type samples
(Fig. 5d, e). Survival analysis demonstrated that ANO1 expression
level was negatively correlated with overall survival (Fig. 5c). As
mentioned earlier, the pancreatobiliary-type was accompanied by
a higher metastasis rate (Supplementary Fig. S5e). ANO1 amp was
also found to frequently occur in the metastasis group (Supple-
mentary Fig. S5g), which also had a higher ANO1 protein
expression (Supplementary Fig. S5h). The results above led us to
investigate whether ANO1 amp was associated with the
metastasis process in pancreatobiliary-type patients.
To further verify the hypothesis, the Spearman correlation was

entitled to examine the correlation of ANO1 copy number (CN)
with GSVA score, and ANO1 CN was found to be significantly
associated with the GSVA score of tight junction (Fig. 5f and
Supplementary Table S3e). The utilization of Spearman correlation
analysis was entailed in ANO1 copy number and proteins in the
tight junction pathway, and the most significantly positive
correlation with ANO1 copy number among these genes was
PRKCI (Fig. 5g), which encoded a member of the protein kinase C
family of serine/threonine protein kinases. PRKCI was also found to
be highly expressed in the pancreatobiliary-type and metastasis
group, which was confirmed by IHC staining and the H-Score (Fig.
5h–j and Supplementary Fig. S5i). In addition, PRKCI protein
abundance was negatively associated with overall prognosis (Fig.
5k). We investigated the relationship between the kinase activity
of PRKCI and its expression abundance. As a result, the protein
expression of PRKCI was positively correlated with its kinase

activity (Spearman’s r= 0.26, p= 0.042) (Fig. 5m), and PRKCI
kinase activity was also higher in pancreatobiliary-type (Fig. 5n). To
further explore functional phosphor-substrates for PRKCI, we
screened the referred kinase substrate pairs from database36–38

and executed correlation analysis. The result displayed that the
most associated substrates were involved in adherens junction
and cell migration, which are associated with metastasis processes
(Fig. 5o, p), suggesting that the link between PRKCI protein
expression upregulation and metastasis processes. Therefore, we
hypothesized that the cis effect of ANO1 elevated ANO1 protein
abundance and interacted with PRKCI to regulate cell adhesion,
thereby promoting metastasis in pancreatobiliary-type patients.
To verify the results mentioned above, we constructed ANO1

overexpressing and PRKCI overexpressing SNU-478 and SNU-869
cell lines (SNU-478-ANO1-OE, SNU-869-ANO1-OE, SNU-478-PRKCI-
OE, SNU-869-PRKCI-OE), and transfected SNU-478 and SNU-869
with empty vector as a control (SNU-478-vector, SNU-869-vector).
The relative mRNA level of ANO1 and PRKCI was increased
compared to the control (Supplementary Fig. S5j, k). We
performed transwell migration assay to further evaluate the
migration ability of ANO1 overexpression and PRKCI overexpres-
sion SNU-478 cells. As a result, transwell migration assay
confirmed our findings and showed increased cell migration
ability after ANO1 and PRKCI overexpressed in SNU-478 and SNU-
869 cell lines (Fig. 5q–t), as shown in the barplots of the Fig. 5q–t,
the ANO1 and PRKCI overexpression cell lines exhibited enhanced
cell migration ability (Fig. 5q–t). These results all indicated that
ANO1 high expression and PRKCI high expression could promote
cell migration ability (Supplementary Fig. S5n). To further confirm
the causal link between ANO1, PRKCI and metastasis, we
conducted IP-MS to investigate ANO1-interacting proteins using
anti-ANO1 antibody in both control group cells and ANO1
overexpressing cells. Compared to the control group, we
identified 34 proteins that specifically interacted with ANO1 in
ANO1 overexpressing group cells (Supplementary Table S3f). GO
enrichment analysis revealed the dominant pathways that were
most significantly enriched by ANO1-interacting proteins were cell
migration, cell adhesion, cation transport and angiogenesis (Fig. 5l
and Supplementary Fig. S5l). The IP-MS results illustrated that
ANO1 could interact with PRKCI in ANO1 overexpressing cells and
showed a strong interaction with PRKCI (Supplementary Fig. S5m).
Besides, to verify the signaling pathways proposed in Fig. 4a,

where the Mixed-type was primarily characterized by DNA
replication and the Duodenum group was predominantly
characterized by PPAR signaling pathway; we selected the key
molecules MCM7 and POLA2 associated with the DNA replication
and performed IHC staining in the Mixed-type. The IHC results

Fig. 4 Intestinal-type features with PCNA amp. a Heatmap illustrated the characterization of four pathology subtypes. Each column
represents a patient sample and rows indicate proteins. The color of each cell shows the z-score of the protein in that sample. AMPAC
pathology classification, clinical features, and CNV status are shown above the heatmap. The χ2 test was used to evaluate the association of
pathology subtypes with the variables on the heatmap, and p values were listed on the right. Single-sample Gene Set Enrichment Analysis
(ssGSEA) based on proteomics data was also applied to identify the dominant pathway signatures in each pathology subtype. b The
Kaplan–Meier curve for overall survival based on pathology subtype (log-rank test, p= 0.035). c PCNA amplification status in intestinal-type
(left column, yellow) and pancreatobiliary-type (right column, blue) (Fisher’s exact test, p= 0.019). d Boxplot illustrated the tumor size among
intestinal-type (yellow) and pancreatobiliary-type (blue) (Wilcoxon rank-sum test, p= 0.029). e IHC staining images exhibited the expression of
PCNA between the intestinal-type samples with and without PCNA amp (Scale bars= 100 μm). f Boxplot exhibited the H-score of PCNA IHC
images in the intestinal-type samples (Student’s t test, p < 0.0001). g IHC staining images exhibited the expression of PCNA between the
pancreatobiliary-type samples with and without PCNA amp (Scale bars= 100 μm). h Boxplot exhibited the H-score of PCNA IHC images in the
pancreatobiliary-type samples (Student’s t test, p < 0.0001). i Boxplot exhibited the H-score of PCNA IHC images in the intestinal-type and
pancreatobiliary-type samples (Student’s t test, p < 0.0001). j The Kaplan–Meier curve for overall survival based on the PCNA mRNA expression
(log-rank test p= 0.0018). k Spearman correlation of the abundance of PCNA and multi-gene proliferation scores (MGPS) (Spearman’s r= 0.33,
p= 3.3e−6). l Spearman correlation of PCNA protein abundance and GSVA score (Spearman correlation). m Heatmap illustrated the PCNA
amplification, the mRNA/protein abundance of PCNA, and GSVA scores. Spearman correlation tests were performed between PCNA
amplification and the mRNA/protein abundance of PCNA, and p values were shown on the right. n The heatmap indicated the CNV status of
PCNA amplification and 4q loss. Fisher’s exact test was used to evaluate the association between 4q loss and PCNA amplification, and the p
value was on the right. o Violin plot indicated the comparisons of the four groups for the tumor sizes (Kruskal–Wallis test, p= 0.049).
p Illustration of the regulatory role of PCNA amplification.
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Fig. 5 Pancreatobiliary-type features with ANO1 amp. a Metastasis status in intestinal-type (left column, yellow) and pancreatobiliary-type
(right column, blue) (Fisher’s exact test, p= 0.0025). b The diagram illustrated the selection process of frequently occurred cis effect in the
pancreatobiliary-type. c ANO1 amplification status in intestinal-type (left column, yellow) and pancreatobiliary-type (right column, blue)
(Fisher’s exact test, p= 0.018). d The forest plot indicated the hazard ratios of metastasis status and ANO1 amplification. e Boxplot exhibited
the H-score of ANO1 IHC images in the intestinal-type and pancreatobiliary-type samples (Student’s t-test, p < 0.0001). f Spearman correlation
of ANO1 protein abundance and GSVA score (Spearman’s correlation). g Spearman correlation of ANO1 protein abundance and gene in tight
junction pathway (Spearman’s correlation). h Boxplot illustrated PRKCI protein expression among intestinal-type (yellow) and pancreatobiliary-
type (blue) (Wilcoxon rank-sum test, p < 1e−4). i IHC staining illustrated PRKCI was highly expressed in the pancreatobiliary-type sample
compared to the intestinal-type sample (Scale bar= 100 μm). j Boxplot exhibited the H-score of PRKCI IHC images in the intestinal-type and
pancreatobiliary-type samples (Student’s t-test, p < 0.0001). k The Kaplan–Meier curve for overall survival based on the ANO1 protein
expression (log-rank test, p= 0.035). l GO pathways enriched by proteins interact with ANO1. m Spearman correlation of PRKCI protein
abundance and PRKCI kinase activity (Spearman’s r= 0.26, p= 0.042). n Boxplot illustrated PRKCI kinase activity among intestinal-type (yellow)
and pancreatobiliary-type (blue) (Wilcoxon rank-sum test, p= 0.042). o Spearman correlation of PRKCI kinase activity and the substrates of
PRKCI (Spearman correlation). p Heatmap illustrated the PRKCI kinase activity and the abundance of substrates of PRKCI. q Transwell assay
illustrated that OE-ANO1 groups in SUN-478 had enhanced migration ability compared with the control groups. The bar plots indicated the
migrated cell counts of SNU-478 cells under different treatments (Student’s t-test). r Transwell assay illustrated that OE-ANO1 groups in SUN-
869 had enhanced migration ability compared with the control groups. The bar plots indicated the migrated cell counts of SNU-478 cells
under different treatments (Student’s t-test). s Transwell assay illustrated that OE-ANO1 groups in SUN-478 had enhanced migration ability
compared with the control groups. The bar plots indicated the migrated cell counts of SNU-478 cells under different treatments (Student’s t-
test). t Transwell assay illustrated that OE-ANO1 groups in SUN-869 had enhanced migration ability compared with the control groups. The
bar plots indicated the migrated cell counts of SNU-478 cells under different treatments (Student’s t test).
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showed that the expression levels of MCM7 and POLA2 in the
Mixed-type were significantly higher than those in the other three
pathological groups (Supplementary Fig. S6a, c). Additionally, we
quantified the staining results by H-Score. We found that the
H-Score of these two molecules was also significantly higher than
that in the other three case groups (Supplementary Fig. S6b, d).
Similarly, we also validated the upregulation of the PPAR signaling

pathway in the Duodenum pathological group by performing IHC
staining on FABP1 and PCK1, which were the key molecules of PPAR
signaling pathway. As shown in Supplementary Fig. S6e, f, it could
be observed that the two molecules, which participated in PPAR
signaling pathway, were highly expressed in the Duodenum
pathological group. The H-score of PCK1 and FABP1 in the
Duodenum pathological group was significantly higher than that
in the other three pathological groups (Supplementary Fig. S6g, h).
In summary, two cis effects influenced their protein abundances

to regulate the downstream signaling network, PCNA amp in the
intestinal-type had a significant impact on cell proliferation, while
ANO1 amp in the pancreatobiliary-type had driven metastasis
processes. The comprehensive proteogenomic analysis has pre-
sented the diversity between the intestinal-type and
pancreatobiliary-type at both the genomic and proteomic levels.
Additionally, IHC results validated the molecular features in the
Mixed-type and Duodenum group patients, which were char-
acterized by DNA replication and PPAR signaling pathway,
respectively. These findings improved our understanding of the
tumorigenesis mechanism related to the histological morphology
and clinical characterization.

Proteomic clusters of AMPAC patients
The current pathologic staging system utilized for AMPAC is
unable to accurately predict prognosis precisely or provide
effective indications for treatment. Therefore, to systematically
investigate the malignant cell heterogeneity of the pathologic
subtype, consensus clustering was employed based on protein
expression ranks in the tumor samples, and three clusters (C-FAM:
n= 53; C-AD: n= 78; C-CC: n= 67) were identified among the 198
patients (Fig. 6a, Supplementary Fig. S7a and Table S4a). These
three subgroups were found to be obviously different in overall
survival (OS; log-rank test, p= 0.012, Fig. 6b). In addition, the
distribution of histological subtypes varied among the proteomic
clusters (χ2 test, p= 0.008) (Supplementary Fig. S8a and Fig. 6c).
The C-FAM cluster was characterized by the best prognosis;

KEGG analysis illustrated that fatty acid metabolism was sig-
nificantly enriched in C-FAM, and the crucial molecules involved in
fatty acid metabolism, such as ACLY, FASN, ELOVL5, LDLR, and
ACLS, showed high expression in the C-FAM cluster (Fig. 6a and
Supplementary Fig. S9a). IHC staining further demonstrated that
ACLY and FASN were highly expressed in the C-FAM cluster, and
the H-Score qualified by IHC results illustrated that the expression
of ACLY and FASN was higher in the C-CC cluster compared with
the other two clusters (Supplementary Fig. S9b–d). Considering
that 4q loss was identified as a CNV event related to fatty acid
metabolism, we investigated its distribution in the C-FAM cluster
and found that the C-FAM cluster had a lower proportion of 4q
loss across three proteomic clusters (Supplementary Fig. S8h).
These results indirectly validated that the cis effect on the 4q loss
indeed regulated fatty acid metabolism. The C-FAM cluster
harbored a lower incidence of 4q loss and was characterized by
an upregulation of fatty acid metabolism.
The cluster C-AD was associated with the worst prognosis and

was enriched in focal adhesion (Fig. 6a and Supplementary Fig.
S8b). Additionally, the C-AD cluster displayed the largest propor-
tion (55.1%) of pancreatobiliary-type samples (Supplementary Fig.
S8a and Fig. 6c), the highest proportion of lymph node metastasis
(LNM), the highest incidence rate of fascicular invasion, and the
highest metastasis rate. The cis effect of ANO1 amp could interact
with PRKCI and promote the metastasis-associated processes. We

observed that ANO1 amp showed a slightly high level of
enrichment in the C-AD cluster (Supplementary Fig. S8j). The
mentioned above illustrated the heterogeneity of the tumor, and
the role of ANO1 amp in promoting metastasis.
The cluster C-CC had better overall survival than the C-AD

cluster but poorer overall survival than the C-FAM cluster, which
was characterized by cell cycle (Fig. 6a and Supplementary Fig.
S9e). The cluster C-CC had the largest proportion (64.2%) of
intestinal-type samples (Supplementary Fig. S8a and Fig. 6c). The
intestinal-type samples were characterized by cell proliferation
and influenced by PCNA amp and 4q loss. Consequently, we
examined the distribution of PCNA amp and 4q loss, observing a
greater accumulation of these two CNV events in the C-CC cluster
(Supplementary Fig. S8h, i). Based on our genomic analysis results,
genomic variations have an impact on the proteome, emphasizing
the importance of multi-omics analyses for a deeply comprehen-
sive understanding of tumor molecular mechanisms. Although
these genomic variations associated with poor prognosis dis-
played a distinct distribution among the three clusters, there were
no statistically significant differences in the distribution. We
speculated that the distinction of proteins and phosphoproteins
among the three clusters is crucial for the differences in
prognostic outcome.
Therefore, we conducted differential analysis across the

proteomic clusters at both the protein and phosphoprotein levels.
PDGFRB protein expression level and RNA expression level were
found to be the highest in the C-AD cluster and negatively
correlated with overall survival (OS; log-rank test, p= 7.7e−4,
Fig. 6d, g and Supplementary Table S4b, c). We found that PDGFRB
kinase activity had a significantly positive correlation with its
expression and was higher than that of the other two clusters (Fig.
6e, f). Spearman correlation analysis between PDGFRB kinase
activity and GSVA score indicated that the most significant
correlated pathways were epithelial mesenchymal transition
(EMT) and angiogenesis (Fig. 6h). Then, we screened for PDGFRB
substrates that were involved in EMT pathway, which had the
highest expression in C-AD cluster. We identified a transcription
factor (TF) FOXC2 (Supplementary Fig. S8c), phosphorylated by
PDGFRB at Ser 240. The abundance of this phosphorylation site
was positively correlated with PDGFRB kinase activity (Fig. 6i).
FOXC2 is a TF belonging to the forkhead family that plays a crucial
role in various processes, including angiogenesis, lymphangiogen-
esis, and adipogenesis39. We found FOXC2 TF activity was
positively associated with FOXC2/S240 abundance (Fig. 6j), and
also positively correlated with PDGFRB kinase activity (Supplemen-
tary Fig. S8e). These results illustrated the TF activity of FOXC2 was
dominantly contributed by phosphor-FOXC2. In addition, FOXC2 TF
activity was found to be negatively correlated with overall survival
(OS; log-rank test, p= 2.1e−3, Supplementary Fig. S8d).
To gain insight into the mechanism of how FOXC2 TF activity

impacted prognosis, we inferred the FOXC2 TF activity based on
mRNA expression of its target genes (TGs) using the GSVA
algorithm. ANGPT2 was the only TG of FOXC2 according to the
database40, which was referred to as angiopoietin 2, affected
angiogenesis and regulated endothelial cell adhesion, migration,
and growth during tumorigenesis. The transcriptional regulatory
pattern was inherited at the mRNA level, validated by a positive
correlation between the ANGPT2 mRNA expression abundance
and FOXC2 TF activity (Spearman’s r= 0.26, p= 0.034) (Fig. 6k)41.
These findings above indicated that PDGFRB is highly expressed in
the C-AD cluster, significantly influencing the downstream
regulatory network associated with angiogenesis and EMT
(Supplementary Fig. S8g).
To further verify PDGFRB impaction, we confirmed the high

expression of PDGFRB in the C-AD cluster by IHC staining, and the
angiogenesis marker CD34 was also verified highly expressed in
C-AD cluster by IHC staining (Fig. 6l). Besides, the H-Score qualified
by IHC staining results validated the high expression of PDGFRB
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and CD34 in the C-AD cluster compared with the other two
clusters (Fig. 6m). We then transfected SNU-478 and SNU-869 cell
lines with PDGFRB overexpressed plasmid to construct PDGFRB
overexpression cells (SNU-478-PDGFRB-OE, SNU-869-PDGFRB-OE).
RT-PCR analysis demonstrated that the PDGFRB mRNA level was

significantly increased in PDGFRB overexpressing cells (Supple-
mentary Fig. S8f). We then evaluated cell migration rates using
transwell assay. As a result, the transwell migration assay verified
our findings and validated increased cell migration ability after
PDGFRB was overexpressed in SNU-478 and SNU-869 cell lines
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(Fig. 6n); the barplots in Fig. 6n also showed the enhanced cell
migration ability in PDGFRB overexpressed cells (Fig. 6n).
Furthermore, we noted the highest levels of both PRKDC

expression and kinase activity in C-CC (Supplementary Fig. S9f, g
and Table S4b, c). IHC staining and the H-Score qualified by IHC
result further confirmed elevated expression of PRKDC in the C-CC
cluster (Supplementary Fig. S9h, i). We then investigated the
relationship between the kinase activity of PRKDC and its
expression abundance. As a result, the protein expression of
PRKDC was positively correlated with its kinase activity (Spear-
man’s r= 0.21, p= 0.051) (Supplementary Fig. S9j). PRKDC
encoded the catalytic subunit of the DNA-dependent protein
kinase, we then investigated functional phosphor-substrates for
PRKDC and referred kinase-substrates pairs from database36–38.
These substrates involved in cell cycle showed a positive
correlation with PRKDC kinase activity (Supplementary Fig. S9k).
Notably, ATM/S1885 displayed a strongly positive correlation with
PRKDC kinase activity (Supplementary Fig. S9l, m). ATM-encoded
protein belongs to the PI3/PI4-kinase family, which is a crucial cell
cycle checkpoint kinase that was phosphorylated by PRKDC in our
data. Therefore, the C-CC cluster was correlated with cell cycle and
might be accompanied by high PRKDC protein abundance and
kinase activity, which led to downstream ATM phosphorylation,
thereby promoting cell proliferation (Supplementary Fig. S9n).
Our findings not only reflected genomic alterations (including

4q loss, PCNA amp, ANO1 amp) but also revealed the substantial
role of protein and phosphoprotein profiles contribution to the
proteomic cluster. We summarized the characteristics of three
clusters and proposed potential therapeutic targets. The C-FAM
cluster, characterized by fatty acid metabolism, can be potentially
targeted using lipid synthesis inhibitors to suppress tumor
development. Cluster C-AD was notable for its prominent
angiogenesis signaling. In this context, inhibitors targeting PDGFRB
could potentially be employed to suppress tumor progression in
patients exhibiting characteristics of this cluster. The subtype
characterized by the cell cycle can theoretically be targeted using
PRKDC inhibitors to suppress tumor cell proliferation (Fig. 6o).

Characterization of immune infiltration in AMPAC
Immunotherapy has been applied to the treatment of several
cancers. To explore the immune microenvironment characteristics
of AMPAC, we utilized xCell analysis based on proteomic data to
infer the relative abundance of different cell types in the tumor
microenvironment42 (Fig. 7a and Supplementary Table S5a).
Subsequently, consensus clustering based on inferred cell

proportions identified three sets of tumors with noticeable clinical
features and immune cell types: macrophage infiltration cluster (M1:
n= 92), CD4+ T cell infiltration cluster (M2: n= 52) and DC cell
infiltration cluster (M3: n= 54) (Fig. 7a, Supplementary Fig. S10a and
Table S5b). Survival analysis displayed that the immune clusters
significantly differed in overall survival (OS; log-rank test, p= 0.048),
suggesting that different clusters of immune cell infiltration could
lead to diverse prognostic outcomes. Among them, the CD4+ T cell
infiltration cluster had the best prognostic outcome, and the DC cell
infiltration cluster exhibited the worst prognostic outcome (Fig. 7c).
The macrophage infiltration cluster was characterized by

macrophages, macrophage M2, monocytes, and neutrophils, and
showed the highest immune score (Kruskal–Wallis test, p < 1e−4)
(Fig. 7d and Supplementary Table S5c). Moreover, the macrophage
infiltration cluster displayed upregulation of interferon γ response,
T cell receptor signaling pathway, toll-like receptor signaling
pathway, and chemokine signaling pathway (Kruskal–Wallis test,
p < 0.05) (Fig. 7a, b). CD4+ T cell infiltration cluster showed the
lowest immune score which was characterized by CD4+ T cell,
CD4+ Tcm, and CD4+ memory T cell (Kruskal–Wallis test, p < 0.05)
(Fig. 7d). GSVA analysis indicated an elevation in several pathways,
including fatty acid metabolism, cell cycle, and tyrosine metabo-
lism, within the CD4+ T cell infiltration cluster (Kruskal–Wallis test,
p < 0.05) (Fig. 7a, b). The DC cell infiltration cluster predominantly
displayed the infiltration of NKT, Tregs, DC, aDC, and cDC in
deconvolution analyses (Fig. 7a, b). Compared to the CD4+ T cell
infiltration cluster, the DC cell infiltration cluster had the higher
immune score (Kruskal–Wallis test, p < 1e−4) (Fig. 7d). KEGG
pathway enrichment analysis in the DC cell infiltration cluster
revealed significant enrichment of the angiogenesis, epithelial
mesenchymal transition, TNFα signaling via NFκB, complement
and coagulation cascades, focal adhesion, JAK-STAT signaling
pathway (Kruskal–Wallis test, p < 0.05) (Fig. 7a, b). The immune
score was found to be varied among the three immune clusters
(Fig. 7d), and survival analysis displayed a negative correlation
between immune score and overall survival (OS; log-rank test,
p= 0.04, Fig. 7e). Furthermore, it seemed that the differences in
prognostic outcome among the three clusters could be linked to
the distinct immune score in each immune cluster. This motivated
us to explore the factors causing the negative correlation between
immune score and overall survival.
The immune score was calculated by the sum of all immune

and stromal cell types42. Therefore, before investigating the
factors that cause the negative correlation between immune score
and overall survival, it was necessary to examine which cell type

Fig. 6 Proteomic subtypes of AMPAC patients. a Heatmap illustrated the characterization of three proteomic clusters. Each column
represents a patient sample and rows indicate proteins or mRNAs. The color of each cell shows the z-score of the protein in that sample.
AMPAC pathology classification, clinical features, and CNV status are shown above the heatmap. The χ2 test was used to evaluate the
association of pathology clusters with the variables on the heatmap, and p values (****p < 1.0e−4, ***p < 1.0e−3, **p < 1.0e−2, *p < 0.05, n.s. >
0.05) were listed on the right. Single-sample Gene Set Enrichment Analysis (ssGSEA) based on proteomics data was also applied to identify the
dominant pathway signatures in each proteomic cluster. b The Kaplan–Meier curve for overall survival based on proteomic clusters (log-rank
test, p= 0.012 for comparison of 3 proteomic clusters, p= 0.32 for C-FAM and C-CC, p= 0.046 for the comparison of C-AD and C-CC,
p= 0.0077 for the comparison of C-AD and C-FAM). c Sankey plot revealing the association between our proteomic clusters and pathology
subtypes. d Boxplot illustrated PDGFRB protein expression among C-FAM (pink), C-AD (gray), and C-CC (yellow) (Kruskal–Wallis test, p < 1e−4).
e Boxplot illustrated PDGFRB kinase activity among C-FAM (pink), C-AD (gray), and C-CC (yellow) (Kruskal–Wallis test, p= 6e−3). f Spearman
correlation of PDGFRB protein expression and PDGFRB kinase activity (Spearman’s r= 0.33, p= 8.9e−4). g The Kaplan–Meier curve for overall
survival based on the PDGFRB protein expression (log-rank test, p= 7.7e−4). h The scatter plot described the correlation between PDGFRB
protein expression and the GSVA scores (Spearman’s correlation). i Spearman correlation of PDGFRB kinase activity and FOXC2/S240
abundance (Spearman’s r= 0.28, p= 5.2e−3). j Spearman correlation of the expression of FOXC2/S240 and the FOXC2 TF activity (Spearman’s
r= 0.31, p= 0.016). k Spearman correlation of FOXC2 TF activity and ANGPT2 protein expression (Spearman’s r= 0.26, p= 0.034). l IHC staining
illustrated that PDGFRB and CD34 were highly expressed in C-AD compared to C-FAM and C-CC cluster (Scale bars= 100 μm). m Boxplot
exhibited the H-score of PDGFRB IHC images in the proteomic clusters (one-way ANOVA test, p < 0.0001). n Transwell assay illustrated that
SNU-478-PDGFRB-OE group cells and SNU-869-PDGFRB-OE group cells had higher migration abilities compared to the control groups. The bar
plots indicated the migrated cell counts of SNU-478 and SNU-869 cells under different treatments (Student’s t-test). o Schematic summary of
the molecular characteristics of three proteomic clusters in C-FAM (left panel), C-AD (middle panel), and C-CC (right panel). Clinical features,
molecular features, and potential treatment schedules for each proteomic cluster were listed on the top panel, middle panel, and bottom
panel, separately.
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predominantly contributes to the immune score. Spearman
correlation analysis was utilized to check the relationship between
cell type enrichment score and immune score. Macrophages, aDC,
macrophage M2, and monocytes showed a significant association
with immune score (Fig. 7f). Interestingly, the immune score was

found to be negatively correlated with overall survival. CNVs were
utilized to explore the internal mechanism of a high immune score
linked to a poor prognosis.
To investigate what caused the high immune score featured

with poor prognosis, Spearman correlation analysis was employed
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to explore the correlation of CNVs with the immune score. The
copy number of 5q22.1 was found to be significantly positively
correlated with the immune score (Spearman’s r= 0.27,
p= 0.0016, Fig. 7g and Supplementary Table S5d). The copy
number alteration, 5q22.1, was identified as a deletion event in
the GISTIC analysis results in this study. Therefore, 5q22.1 deletion
frequently occurred in the patients with a lower immune score. To
investigate the potential mechanism by which 5q22.1 affected the
immune score of AMPAC, genes with a significantly positive
correlation between genes’ copy number and their mRNA or
protein expression abundance located on 5q22.1 would be
focused. CAMK4 was observed to have the most significantly
positive correlation between its copy number and protein
expression abundance (Spearman’s r= 0.33, p= 0.00012,
Fig. 7h, i and Supplementary Table S2h). Since CAMK4 was
located on 5q22.1, the copy number loss CAMK was induced by
5q22.1 deletion. Additionally, the copy number of CAMK4 showed
a significant positive correlation with its expression abundance. In
other words, 5q22.1 deletion is accompanied by a low CAMK4
copy number, resulting in a low expression abundance of CAMK4
(Fig. 7i). Therefore, the patients with a high immune score had a
higher copy number of 5q22.1 and a higher copy number and
expression abundance of CAMK4 (Fig. 7i). CAMK4 encoded the
protein belonging to the serine/threonine protein kinase family
and showed a negative correlation with overall prognosis in our
study (OS; log-rank test, p < 1e−4, Fig. 7j). The kinase activity of
CAMK4 was positively associated with its protein expression
abundance (Spearman’s r= 0.32, p= 0.0015). This suggested that
the high copy number of CAMK4 elevated its protein expression
and upregulated its kinase activity. To explore the downstream
signaling network of CAMK4, we conducted a correlation analysis
between the substrate expression abundance of CAMK4 and
CAMK4 kinase activity by using Spearman’s correlation test.
CAMK4 kinase activity showed the most significant elevation of
the CREB1/S142 phosphorylation (Fig. 7k, Spearman’s r= 0.44,
p < 1e−4). CREB1 is a TF that regulates multiple signaling
pathways43. Then, we inferred the CREB1 TF activity based on
the mRNA expression of its target genes (TGs) using the GSVA
algorithm. The inferred TF activity of CREB1 displayed high
correlations with the abundance of CREB1/S142 (Fig. 7l, Spear-
man’s r= 0.56, p= 0.049). All of the TGs of CREB1, IL-6 showed the
highest correlation with CREB1 TF activity (Fig. 7m, Spearman’s
r= 0.56, p= 0.049) and negative correlation with overall prognosis
at mRNA level (Fig. 7n).
IL-6 is a proinflammatory cytokine that plays a crucial role in

cancer progression and high levels of IL-6 are associated with

promoting tumorigenesis, invasiveness, and metastasis in various
types of cancer44. Notably, we observed a significant elevation in
the expression levels of IL-6 (Kruskal–Wallis test, p= 0.01) in
macrophage infiltration cluster and DC cell infiltration cluster
compared to CD4+ T cell infiltration cluster (Supplementary Fig.
S11a). This was further confirmed by IHC staining and H-Score
(Supplementary Fig. S11h, i). IL-6 signaling transduction requires
interaction with its receptor. Thus, we conducted a comprehensive
analysis of gene expression profiles, focusing on IL-6, IL6ST, and
IL6R, across three distinct immune clusters, and calculated the
Spearman correlation between IL-6 and IL6ST. Similarly, IL6ST and
IL6R expression exhibited a corresponding increase with IL-6 in
Macrophage infiltration cluster and DC cell infiltration cluster
compared to CD4+ T cell infiltration cluster (IL6ST: Kruskal–Wallis
test, p= 0.03), and IL-6 showed positively correlated with IL6ST
(Spearman’s r= 0.3, p= 0.013) (Supplementary Fig. S11a, c). We
postulated that the IL-6 identified in our data might interact with
IL6ST expressed in tumor cells, immune and stromal cells. The
secreted IL-6 may bind to IL-6 receptor expressed in immune cells,
thereby promoting the release of IL-6 from these immune cells,
potentially leading to the occurrence of a cytokine storm45.
Furthermore, the interaction could trigger downstream activation
of IL-6/JAK/STAT, facilitating transcription and translation pro-
cesses, thus promoting downstream diverse biological processes.
The findings above encouraged us to investigate the synergistic

association between IL-6 and IL-6/JAK/STAT signaling pathway.
Before this, we checked the IL-6/JAK/STAT GSVA score across three
distinct immune clusters. We observed a substantial upregulation
of the IL-6/JAK/STAT3 signaling pathway, evident at both protein
(Kruskal–Wallis test, p < 1e−4) and mRNA levels (Kruskal–Wallis
test, p= 0.002) within macrophage infiltration cluster and DC cell
infiltration cluster, in contrast to CD4+ T cell infiltration cluster
(Supplementary Fig. S11b). Then, we investigated the correlation
between the abundance of IL-6 and IL-6/JAK/STAT GSVA score.
The Spearman correlation test was utilized to examine the
correlations. The results displayed that IL-6 abundance was
positively associated with the GSVA score of the IL-6/JAK/STAT
signaling pathway (Spearman’s r= 0.26, p= 0.038) (Supplemen-
tary Fig. S11c, d). The positive correlation between IL-6 and the
GSVA score of the IL-6/JAK/STAT signaling pathway indicated that
the upregulation of IL-6 indeed increased the IL-6/JAK/STAT
signaling pathway in this study. Furthermore, we checked the
relationship between the expression levels of genes involved in IL-
6/JAK/STAT (JAK1, JAK3, STAT1, STAT3) and IL-6. The expression
levels of both JAK1 (Spearman’s r= 0.29, p= 0.017) and JAK3
(Spearman’s r= 0.37, p= 0.0023) showed a significant positive

Fig. 7 Characterization of immune infiltration in AMPAC. a Heatmap illustrated the characterization of three immune clusters. Each column
represents a patient sample and rows indicate xCell signatures. The color of each cell shows the z-score of the xCell signature in that sample.
AMPAC pathology classification, clinical features, and CNV status are shown above the heatmap. The χ2 test was used to evaluate the
association of pathology subtypes with the variables on the heatmap, and p values (****p < 1.0e−4, ***p < 1.0e−3, **p < 1.0e−2, *p < 0.05, n.s.
> 0.05) were listed on the right. Single-sample Gene Set Enrichment Analysis (ssGSEA) based on proteomic and transcriptomic data were also
applied to identify the dominant pathway signatures in each immune cluster. b Contour plot of two-dimensional density based on immune
scores (y-axis) and stromal scores (x-axis) for different immune clusters. For each immune cluster, key upregulated pathways and molecules
were reported based on RNA-seq (R), and proteomics (P) in the annotation boxes. c Kaplan–Meier curves for overall survival based on immune
clusters (log-rank test, p= 0.048 for the comparison of 3 immune clusters, p= 0.16 for the comparison of M1 and M2, p= 0.18 for the
comparison of M2 and M3, p= 0.013 for the comparison of M2 and M3). d The boxplot indicated immune scores among the three immune
clusters (Kruskal–Wallis test, p < 1e−4). e Kaplan–Meier curves for overall survival based on immune score (log-rank test, p= 0.04). f The scatter
plot described the correlation between the immune score and the xCell signatures (Spearman correlation). g The scatter plot described the
correlation between the immune score and all focal events copy number (Spearman correlation). h Volcano plot showing the cis effect genes
on 5q22.1 (Spearman correlation). i The top panel was 5q22.1 deletion focal event distribution, and the medium panel was the immune cluster
distribution; the bottom heatmap showed immune score, 5q22.1 copy number, CAMK4 copy number, CAMK4 protein expression abundance,
and CAMK4 mRNA abundance. j Kaplan–Meier curves for overall survival based on CAMK4 protein expression (log-rank test, p < 1e−4). k The
scatter plot described the correlation between the CAMK4 kinase activity and substrates of CAMK4 (Spearman correlation). l Spearman
correlation of CREB1 TF activity and expression of CREB1/S142 (Spearman’s r= 0.56, p= 0.049). m The scatter plot described the correlation
between the CAMK4 TF activity and target genes of CAMK4 (Spearman correlation). n Kaplan–Meier curves for overall survival based on IL-6
mRNA expression (log-rank test, p= 0.014). o The schematic diagram summarized that CAMK4 cis effect changed its downstream signaling,
and led to alterations in the immune microenvironment, which were associated with a poorer prognosis for patients.
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correlation with IL-6 (Supplementary Fig. S11e). The correlation of
STAT1 (Spearman’s r= 0.25, p= 0.039), STAT3 (Spearman’s
r= 0.37, p= 0.0021) and IL-6 has also exhibited a positive
association (Supplementary Fig. S11f). We confirmed the high
expression of STAT1 in macrophage infiltration cluster and DC cell
infiltration cluster compared to CD4+ T cell infiltration cluster by
IHC staining and H-Score (Supplementary Fig. S11h, j). In addition,
we observed a positive correlation between the transcriptional
activity of both STAT1 (Spearman’s r= 0.41, p= 0.00055) and
STAT3 (Spearman’s r= 0.47, p < 1e−4) and the expression of IL-6
(Supplementary Fig. S11g). These findings suggested that IL-6,
through its interaction with its receptor, activated the IL-6/JAK/
STAT signaling pathway, thereby promoting downstream tran-
scription associated processes.
Collectively, our findings demonstrated a significantly positive

correlation between the immune score and the copy number of
5q22.1. Therefore, in patients with low immune score, the copy
number of 5q22.1 was low. These individuals carried 5q22.1
deletion, resulting in a low copy number of CAMK4, a gene located
on 5q22.1. Consequently, the protein expression level of CAMK4
was also low, leading to reduced kinase activity of CAMK4. This
reduction prevented the phosphorylation of the CREB1 and
subsequent transcriptional activation of IL-6, contributing to the
downregulation of IL-6/JAK/STAT signaling pathway, which led to
a better prognosis. In contrast, the patients without 5q22.1
deletion suffered the upregulated IL-6/JAK/STAT signaling path-
way resulting from high CREB1 transcriptional activity, which led
to a poor prognosis (Fig. 7o).

DISCUSSION
AMPAC is a rare malignant neoplasm with an incidence of around
4–7 cases per 1,000,000 individuals. To date, only a limited
number of genomic cohort studies exist, and a comprehensive
multi-omics study has yet to be performed. This work represented
a proteogenomic comprehensive analysis performed for 186
AMPAC patients and 12 DAC patients of the Fudan cohort.
Proteomics, phosphoproteomics, whole-exome sequencing, and
RNA sequencing data were generated as resources from this
cohort. The previous studies identified a series of significantly
mutated genes, TP53, KRAS, APC, SMAD4, ARID2, CTNNB1, and
ELF311,12. In Fudan cohort, KRAS, TP53, APC, ARID2, SMAD4, CTTNB1,
ATM, ELF3, PBRM1, CTTNB1 was also significantly identified.
Consistent with previous studies, we identified focal events such
as 9p21.3 deletion, 18q21.2 deletion, 8q24.21 amplification, 12q15
amplification, and 3q26.2 amplification. Arm-level events, such as
1q gain, 1p loss and 8p loss, have been consistently identified in
both our data and previous studies. In addition, we have also
observed additional CNVs such as 4q loss, 5q22.1 deletion in
our data.
Compared to previous work, we identified a chromosome arm

event, 4q loss, which was negatively correlated with overall
prognosis. The most significant cis effect on 4q was hydroxyacyl-
CoA dehydrogenase (HADH), which participated in fatty acid
metabolism. Due to the cis effect, HADH downregulation
decreased the fatty acid metabolism in our cohort and induced
the accumulation of fatty acids. Dysregulation of fatty acid
metabolism may lead to excessive accumulation of fatty acids in
cancer cells, promoting uncontrolled cell proliferation and the
development of cancer46, and a previous study illustrated that
HADH downregulation promotes cell proliferation in tumor cells
via PI3K-Akt signaling pathway33. In our data, we observed rapid
tumor growth in mice treated with subcutaneous injection of
HADH siRNA SNU-478 cells. This metabolism disruption was
supposed to be linked to the metabolic therapy, ketogenic diet.
The ketogenic diet (KD) containing high-fat, moderate-to-low-
protein, and low-carbohydrate levels, which may target cancer cell
metabolism, has the potential to impact tumor treatment and

prognosis47. The KD had been discovered to possess an anti-
tumor effect as a therapeutic intervention in cancer48, encom-
passing various types of tumors, such as colon and rectal cancer
(CRC)49, pancreatic adenocarcinoma (PDAC)50 and hepatocellular
carcinoma (HCC)51. However, the KD has also been reported to
promote prostate cancer52 tumorigenesis and play a role in glioma
recurrence53. The intestinal-type and pancreaticobiliary-type of
AMPAC exhibit similarities with both colorectal cancer and
pancreatic cancer54. Our study revealed that the accumulation
of fatty acids, resulting from metabolic disruptions, may lead to a
glucose dependency in tumor cells. These findings suggest that
AMPAC patients might benefit from a ketogenic diet.
At the histological level, intestinal-type and pancreatobiliary-

type belong to the category of AMPAC, which harbored distinct
prognostic outcomes and molecular characteristics. Our study
built upon previous research by incorporating genomic, proteomic
and phosphoproteomic data, provides a deeper understanding of
the mechanisms underlying the tumorigenesis of different AMPAC
histological subtypes. We found that the intestinal-type featured
cell proliferation and the pancreatobiliary-type featured a higher
metastasis rate, which were induced by PCNA amp and ANO1 amp,
respectively. PCNA amp elevated PCNA expression level and
promoted cell proliferation. ANO1 amp induced ANO1 high
expression, which interacted with PRKCI and facilitated the
elevation of adherens junction and cell migration. This study
revealed the important role in the tumorigenesis of PCNA in
intestinal-type, and ANO1 in pancreatobiliary-type tumorigenesis.
The results raised therapeutic targets for AMPAC. Specifically, the
PCNA inhibitors (such as AOH199655, T2AA56) are suggested for
the intestinal-type to suppress cell proliferation, while the ANO1
inhibitors (such as benzbromarone57, Cepharanthine58, Ani959) are
recommended for the pancreatobiliary-type to attenuate the
metastasis process.
Currently, there is no specific targeted therapy for AMPAC.

Treatment regimens tend to favor gemcitabine for the
pancreaticobiliary-type and fluorouracil for the intestinal-type,
but there is no significant difference in chemotherapy effect
within the two histological subtypes60,61. Nevertheless, due to the
inherent subjectivity of histological classification and the limited
specificity and sensitivity of these drugs for AMPAC, both
therapies yielded poor responses. Thus, based on the current
histological classification, our research presented the first proteo-
mic classification of AMPAC, and the three proteomic clusters had
distinct molecular features associated with the prognostic out-
come and pathological characteristics. These three clusters
effectively stratify the intestinal-type and pancreatobiliary-type
into more aggressive pancreatobiliary-type, more aggressive
intestinal-type, and better-prognosis pancreatobiliary-type and
intestinal-type. The phosphoproteome was applied to analyze the
kinase features of the proteomic cluster. The results showed that
PDGFRB was activated in C-AD characterized by focal adhesion,
PRKDC was activated in C-CC featured with cell cycle, the rest of
the three clusters, and C-FAM displayed fatty acid metabolism
upregulation. These observations suggest that PDGFRB inhibitor
has the potential to be considered as a therapeutic drug for C-AD,
and PRKDC inhibitor as a potential drug target for C-CC, the
inhibitor to block fatty acid metabolism for C-FAM. This work
demonstrated the impact of genomic alterations on the proteomic
cluster and unveiled the crucial roles played by protein and
phosphoprotein profiles in the determination of the proteomic
cluster. Furthermore, our classification provides a resource for
exploring biomarker candidates or potentially therapeutic targets
in the future.
XCell scoring based on the proteomic data delineated distinct

immune subtypes characterized by varying immune cell infiltra-
tion with distinctive molecular features. The M1 cluster and M3
cluster with poor prognosis exhibited a higher immune score
compared to the M2 cluster. These features have been suggested
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to be induced by the significant correlation between the copy
number of CAMK4 and its protein expression. CAMK4 functioned
by phosphorylated serine 142 of CREB1 to elevate CREB1
transcription factor activity, and further promote IL-6 secretion.
IL-6 is a proinflammatory cytokine that plays a complex role in
cancer progression. Previous research has reported that high
levels of IL-6 are associated with promoting tumorigenesis,
invasiveness, and metastasis in various types of cancer, such as
gastric cancer, pancreatic cancer, colorectal cancer, lung cancer,
and bile duct cancer44,62, with its substantial involvement in
driving tumor progression via the IL-6/JAK/STAT pathway. We
observed substantial IL-6 secretion in AMPAC, supporting the
reasonable hypothesis that IL-6 could serve as a potential
immunotherapy target for AMPAC. The abundance of IL-6 was
negatively correlated with overall prognosis in our data, and it was
found to activate the IL-6/JAK/STAT pathway. Consequently, the
treatment targeting IL-6 has the potential to prolong the overall
survival for patients in AMPAC.
In this research, we must acknowledge that there were indeed

common flaw of multi-omics studies in our work. It underplayed the
variability in response to the same genomic drivers among different
groups. This was shown by box plots that have significant
differences in mean abundance values but overlapping expression
ranges. This could be caused by the heterogeneity among tumor
samples. The similar phenomenon also occurred in some multi-
omics cancer research17,63; the molecules reported in these studies
were validated not only at the IHC level but also with further
functional experiments, potentially leading to their development as
drug targets or biomarkers. These illustrated that the overlapping
range of expression of differentially expressed proteins was
generally observed in multi-omics cancer studies. Nevertheless, this
was still a point that must be acknowledged and noted, requiring
careful verification and validation after proposing such biomarkers
or drug targets. Additionally, The partial Spearman correlation in this
study was not very strong, possibly due to the cohort size and other
clinical factors. Statistical significance was used to assess biological
process inferences, but outliers and extreme values might affect the
results. Removing extreme values and verifying processes through
cell line assays could improve reliability.
In this study, the pancreatobiliary-type ampullary adenocarci-

noma cell line SNU-478 and the intestinal-type ampullary
adenocarcinoma cell line SNU-869 were used to functionally
validate potential molecular targets identified through multi-
omics data analysis. Despite using two cell lines, the number of
cell lines available for functional validation remains very limited
compared to the multiple cell lines available for other tumors. This
limitation is related to the rarity of ampullary adenocarcinoma, as
there are currently few recognized primary cell lines for ampullary
adenocarcinoma, which are also difficult to obtain. Nevertheless,
the limitation of the small number of AMPAC cell lines employed
for functional validation should be acknowledged.
In summary, this multi-omics research facilitated the identification

of the disruptions in fatty acid metabolism in AMPAC, attributed to
the cis effect of 4q loss. The work offered insight into the mechanisms
driving tumorigenesis in the two histological subtypes of AMPAC, and
presented potential therapeutic targets based on CNV events.
Furthermore, we performed the proteomic classification and immune
clustering for AMPAC, and raised corresponding theoretical drug
targets based on clusters. Overall, our study provides a comprehen-
sive data resource which helps elucidate the functional mechanisms
of genomic alterations that impact survival, treatment and other
factors affecting the patient outcome and quality of life.

MATERIALS AND METHODS
Sample selection
The 186 ampullary adenocarcinoma and 12 duodenum adenocarcinoma FFPE
tissues and paired NATs were acquired from Zhongshan Hospital, Fudan

University from 2008 to 2017. All cases were collected regardless of histologic
grade or surgical stage. Clinical information of these patients, including gender,
age, drinking status, smoke status, vessel invasion, fascicular invasion,
histological subtypes, TNM stages (AJCC cancer staging system 8th edition),
cancer metastasis status, survival status, is listed in Supplementary Table S1a.
All the patients received primary resection without any anti-cancer treatments
prior to surgery. Postoperative surveillance and treatment were conducted
consistently according to Zhongshan Hospital’s guidelines. Each sample was
assigned a new research ID, and the patient’s name or medical record number
used during hospitalization was deidentified.

Sample preparation
FFPE specimens were prepared and provided by Zhongshan Hospital. One
3-μm-thick slide from FFPE blocks was sectioned for hematoxylin and eosin
(H&E) staining. For genomic, proteomic, and phosphoproteomic sample
preparation, 10-μm-thick slides were sectioned, deparaffinized with xylene
and washed with gradient ethanol. Samples were just sectioned by 10-μm-
thick slides without xylene deparaffinization nor gradient ethanol wash for
RNA sample preparation. Selected specimens according to H&E staining
were scraped, and materials were aliquoted and kept in storage at −80 °C
until further processing.

Pathology review
All samples were systematically evaluated to confirm the histopathological
diagnosis and any variant histology according to the AJCC eighth edition
2017 staging system35 by three expert pathologists. Additionally, all tumor
samples were assessed for tumor content, the presence and extent of
tumor necrosis, and signs of invasion into the muscularis propria. The
samples used for multi-omics analysis were characterized with histologic
tumor purity ranged from 70% to 90%. Tumor samples were also evaluated
for the presence and extent of inflammatory infiltrates, as well as for the
type of the infiltrating cells (lymphocytes, neutrophils, eosinophils,
histiocytes, plasma cells) in the tumor microenvironment. Any non-
concordant diagnoses among the three pathologists were re-reviewed,
and a resolution was reached following discussion.
The ABSOLUTE algorithm was utilized to evaluate the overall computa-

tional purity score for each sample. Computational tumor purity was
inferred by R package ABSOLUTE64 using WES data, respectively. The
detailed was provided in Supplementary Table S1c. Tumor purity among 4
pathological groups, proteomic clusters and Immune clusters were shown
in Supplementary Figs. S1k, l, S8k and S11k, respectively.

DNA extraction
For the WES analysis, DNA from 133 FFPE specimens of AMPAC was
extracted according to the manufacturer’s instructions (QIAamp DNA Mini
Kit; QIAGEN, Hilden, Germany). The isolated DNA quality and contamina-
tion were verified using the following methods:

(1) DNA degradation and contamination were monitored on 1%
agarose gels.

(2) DNA concentration was measured via Qubit® DNA Assay Kit in
Qubit® 2.0 Fluorometer (Invitrogen, CA, USA).

Library preparation
A total quantity of 0.6 μg genomic DNA per sample was used as the input
material for DNA preparation. Sequencing libraries were generated using
Agilent SureSelect Human All Exon Kit (Agilent Technologies, CA, USA)
following the manufacturer’s recommendations; further, index codes were
added to each sample. Briefly, fragmentation was carried out by a
hydrodynamic shearing system (Covaris, Massachusetts, USA) to generate
180–280- bp fragments. The remaining overhangs were converted into
blunt ends via exonuclease/polymerase activity. Adapter oligonucleotides
were ligated after adenylation of the 3′-ends of the DNA fragments. DNA
fragments with ligated adapter molecules on both ends were selectively
enriched via a polymerase chain reaction (PCR). Thereafter, libraries were
hybridized with the liquid phase of biotin-labeled probes, and magnetic
beads with streptomycin were used to capture the exons of genes.
Captured libraries were enriched in another PCR reaction to add index tags
to prepare them for sequencing. Finally, the products were purified using
AMPure XP system (Beckman Coulter, Beverly, USA) and quantified using
an Agilent high sensitivity DNA assay (Agilent) on an Agilent Bioanalyzer
2100 system (Agilent Technologies, CA, USA).
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Clustering and DNA sequencing
The clustering of the index-coded samples was performed on a cBot
Cluster Generation System using a HiSeq PE Cluster Kit (Illumina) according
to the manufacturer’s instructions. After cluster generation, the DNA
libraries were sequenced on Illumina NovaSeq 6000 platform, and 150 bp
paired-end reads were generated.

WES quality control
The original fluorescence image files obtained from Novaseq platform are
transformed into short reads (Raw data) by base calling and these short
reads are recorded in FASTQ format, which contains sequence information
and corresponding sequencing quality information. Sequence artifacts,
including reads containing adapter contamination, low-quality nucleotides,
and unrecognizable nucleotides65, undoubtedly set the barrier for the
subsequent reliable bioinformatics analysis. Hence quality control is an
essential step applied to guarantee meaningful downstream analysis. The
steps of data processing were as follows:

(1) Discard the paired reads if either one read contains adapter
contamination (> 10 nucleotides aligned to the adapter, allowing
≤ 10% mismatch).

(2) Discard the paired reads if more than 10% of bases are uncertain in
either one read.

(3) Discard the paired reads if the proportion of low quality (Phred
quality < 5) bases is over 50% in either one read.

All the downstream bioinformatics analyses were based on the high-
quality clean data, which were retained after these steps. At the same
time, QC statistics including total reads number, raw data, raw depth,
sequencing error rate, percentage of reads with Q30 (the percent of
bases with phred-scaled quality scores > 30), and GC content distribution
were calculated and summarized. WES was conducted with mean
coverage depths of 108X for tumor samples and 118X for adjacent non-
tumor brain samples, which is consistent with the recommendations
for WES.

Read mapping to reference sequence
Valid sequencing data were mapped to the reference human genome
(UCSC hg19) using Burrows–Wheeler aligner (BWA) software to obtain
the original mapping results stored in BAM format66. If one read, or one
paired read, was mapped to multiple positions, the strategy adopted by
the BWA was to choose the most likely placement. If two or more most
likely placements were present, the BWA picked one randomly. Then,
SAMtools67 and Picard (http://broadinstitute.github.io/picard/) were
used to sort BAM files and perform duplicate marking, local realignment,
and base quality recalibration to generate final BAM files for computa-
tion of the sequence coverage and depth. The mapping step was very
difficult due to mismatches, including true mutations and sequencing
errors, and duplicates resulting from PCR amplification. These duplicate
reads were uninformative and should not be considered as evidence for
variants. We used Picard to mark these duplicates for the follow-up
analysis.

Variant calling
Samtools mpileup and bcftools were used to perform variant calling and
identify SNPs and InDels. Somatic SNP variant calls were assessed using
MuTect68, and the Indels variant calls were assessed using Strelka69 with
default options. The resulting somatic mutations were annotated using the
ANOVAR RefSeq gene-based annotation.

Copy number analysis
CNVs were called by following the somatic CNV calling pipeline in GATK’s
(GATK 4) Best Practice. The results of this pipeline and segment files of
every 1000 were input in GISTIC270, to identify significantly amplified or
deleted focal-level and arm-level events, with a q value < 0.1 considered
significant. A log2 ratio cutoff 1 was used to define SCNA amplification and
deletion. We further summarize the arm-level copy number change based
on a weighted sum approach15, in which the segment-level log2 copy
ratios for all the segments located in the given arm were added up with
the length of each segment being weighted. To exclude false positives as
much as possible, relatively stringent cutoff thresholds were used with the
following parameters: -ta 0.1 -tb 0.1 -brlen 0.98 -conf 0.9. Other parameters
were the same as default values.

Co‑occurrence and mutual exclusivity analysis of mutations
Co-occurrence and mutually exclusive mutated genes were detected using
Fisher’s exact test in order to determine the co-occurrence and mutually
exclusively of significantly mutated genes in our mutational dataset.

Analysis of significantly mutated genes
Filtered mutations (including SNV and indel) were further used to identify
significantly mutated genes by MutSigCV (https://
software.broadinstitute.org/cancer/cga/mutsig, version 1.41) with default
parameters. Final MutSigCV p values were converted to q values using the
method of Benjamini and Hochberg71, and genes with q ≤ 0.1 were
declared to be significantly mutated.

Mutation frequency in the Fudan cohort and previous AMPAC
studies
Mutation frequencies for previous AMPAC studies were obtained from
their supplementary materials11,12. The frequencies of all genes were
compared with those from the Fudan cohort using Fisher’s exact test.

Mutational signature analysis using the sigminer approach
Mutation signatures were jointly inferred for 133 tumors using the R
package sigminer72. The sigminer approach (https://github.com/
ShixiangWang/sigminer) was used to extract the underlying mutational
signatures. The 96 mutation vectors (or contexts) generated by somatic
SNVs based on six base substitutions (C > A, C > G, C > T, T > A, T > C, and
T > G) within 16 possible combinations of neighboring bases for each
substitution were used as input data to infer their contributions to the
observed mutations. Sigminer using a non-negative matrix factorization
(NMF) approach was applied to decipher the 96 × 133 (i.e., mutational
context-by-sample) matrix for the 30 known COSMIC cancer signatures
(https://cancer.sanger.ac.uk/cosmic/signatures) and infer their exposure
contributions.

Tumor mutational burden
Tumor mutational burden (TMB) was defined as the number of somatic
mutations (including base substitutions and indels) in the coding region.
Synonymous alterations were also counted73. To calculate the TMB, the
total number of mutations counted was divided by the size of the coding
sequence region of the Agilent SureSelect Human All Exon V6.

RNA extraction
RNA was extracted from tissues by using TIANGEN® RNAprep Pure FFPE Kit
(#DP439) according to the reagent protocols. For library preparation of
RNA sequencing, a total amount of 500 ng RNA per sample was used as the
input material for the RNA sample preparations. Sequencing libraries were
generated using Ribo-off® rRNA Depletion Kit (H/M/R) (Vazyme #N406) and
VAHTS® Universal V6 RNA-seq Library Prep Kit for Illumina (#N401-NR604)
following the manufacturer’s recommendations, and index codes were
added to attribute sequences to each sample. The libraries
were sequenced on an Illumina platform and 150 bp paired-end reads
were generated.

RNA‑seq data analysis
RNA-seq raw data quality was assessed using FastQC (v0.11.9), and the
adapter was trimmed with Trim_ Galore (version 0.6.6) before any data
filtering criteria were applied. Reads were mapped onto the human
reference genome (UCSC hg19) using STAR software (v2.7.7a). The mapped
reads were assembled into transcripts or genes by using StringTie software
(v2.1.4) and the genome annotation file (version hg19). For quantification
purpose, the relative abundance of the transcript/gene was measured
using the normalized metrics, fragments per kilobase of transcript per
million mapped reads (FPKM). Transcripts with an FPKM score above 1
were retained, resulting in a total of 19,193 gene IDs. All known exons in
the annotated files were 100% covered.

Protein extraction and tryptic digestion
Lysis buffer (0.1 M Tris-HCl (pH 8.0), 0.1 M DTT (Sigma, 43,815), 1 mM PMSF
(Amresco, M145)) was added to the extracted tissues and subsequently
sonicated for 1 min (3 s on and 3 s off, amplitude 25%) on ice. The
supernatants were collected, and the extracted tissues were then lysed
with 4% sodium dodecyl sulfate (SDS) and kept for 2 h at 99 °C with
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shaking at 1500 rpm. The solution was collected by centrifugation at
12,000× g for 5 min. A fourfold volume of acetone was added to the
supernatant and kept in –20 °C for a minimum of 4 h. Subsequently, the
acetone-precipitated proteins were washed three times with cooled
acetone and then pumped out using the Concentrator plus (Eppendorf,
Germany). Filter-aided sample preparation (FASP) procedure was used for
protein digestion74. The proteins were resuspended in 200 μL 8 M urea (pH
8.0) and loaded twice in 30 kD Microcon filter tubes (Sartorius) and
centrifuged at 12,000× g for 20 min. The precipitate in the filter was
washed twice by adding 200 μL 50mM NH4HCO3. The precipitate was
resuspended in 50 μL 50mM NH4HCO3. Protein samples underwent trypsin
digestion (enzyme-to-substrate ratio of 1:50 at 37 °C for 18–20 h) in the
filter and then were collected by centrifugation at 12,000× g for 15 min.
Additional washing, twice with 200 μL of MS water, was essential to obtain
greater yields. Finally, the centrifugate was dried by using the Concentrator
plus (Eppendorf, Germany) for sub-sequential MS analysis.

Phosphopeptide enrichment
For the phosphoproteomic analysis, peptides were extracted from the FFPE
slides after trypsin digestion using the methods described above. The
tryptic peptides were then enriched with High-Select™ Fe-NTA Phospho-
peptide Enrichment Kit (Thermo Scientific cat. A32992), following the
manufacturer’s recommendation. Briefly, peptides were suspended with
binding/wash buffer (contained in the enrichment kit), mixed with the
equilibrated resins, and incubated at 21–25 °C for 30min. After incubation,
the resins were washed thrice with binding/wash buffer and twice with
water. The enriched peptides were eluted with elution buffer (contained in
the enrichment kit) and dried in a Concentrator plus (Eppendorf, Germany).

LC-MS/MS analysis
LC-MS/MS were performed on Easy-nLC liquid chromatography system
(Thermo Scientific) coupled to an Orbitrap Fusion Lumos Tribrid platform
with FAIMS (Thermo Fisher Scientific).
The peptides were dissolved with 10 μL loading buffer (5% methanol

and 0.2% formic acid), and 5 μL was loaded onto a 360 μm I.D. × 2 cm, C18
trap column at a maximum pressure 280 bar with 12 μL solvent A (0.1%
formic acid in water). Peptides were separated on 150 μm I.D. × 30 cm
column (C18, 1.9 μm, 120 Å, Dr. Maisch GmbH) with a linear 5%–35%
Mobile Phase B (ACN and 0.1% formic acid) at 600 nL/min for 150min.
FAIMS separations were performed with the following settings: inner
electrode temperature= 100 °C (except where noted), outer electrode
temperature= 100 °C, FAIMS carrier gas flow= 2.3 L/min. The dispersion
voltage (DV) was set at −5000 V, and the compensation voltage was
stepped into 40 V, 55 V and 70 V.
These analyses utilized a 120,000 resolving power survey scan with

AGC= 3,000,000, followed by MS/MS of the most intense precursors for
80ms. The MS/MS analyses were performed by 1.6 m/z isolation with the
quadrupole, normalized HCD (higher-energy collisional dissociation)
collision energy of 27%, and analysis of fragment ions in the ion trap
using the “Turbo” speed scanning from 200 to 1200m/z. Dynamic
exclusion was set to 12 s. Monoisotopic precursor selection (MIPS) was
set to Peptide, maximum injection time was set to 20ms, AGC target was
set to 20,000, and charge states unknown, +1, or > +5 were excluded and
the advanced peak determination was toggled on.
For the phosphoproteomic analysis, the phosphopeptides were

analyzed on FAIMS interfaced Orbitrap Fusion Lumos Tribrid Mass
Spectrometer (Thermo Fisher Scientific, Rockford, IL, USA) equipped with
an Easy nLC-1000 (Thermo Fisher Scientific, Rockford, IL, USA) and a
Nanoflex source (Thermo Fisher Scientific, Rockford, IL, USA). Dried peptide
samples re-dissolved in buffer A (0.1% FA in water) were loaded to a 2 cm
self-packed trap column using buffer A and separated on a 150 μm inner
diameter column with a length of 30 cm over a 150min gradient (buffer A:
0.1% FA in water; buffer B: 0.1% FA in 80% ACN) at a constant flow rate of
600 nL/min (0–150min, 0 min, 4% B; 0–10min, 4%–15% B; 10–125min,
15%–30% B; 125–140min, 30%–50% B; 140–141min, 50%–100% B;
141–150min, 100% B). The eluted phosphopeptides were ionized and
detected. Compensation Voltages (CV) among –30 V, –60 V, and –120 V
were interrogated to find precursor rich CVs. Mass spectra were acquired
over the scan range of m/z 350–1500 at a resolution of 120,000 (AUG
target value of 5E5 and max injection time 50ms). For the MS2 scan, the
higher-energy collision dissociation fragmentation was performed at a
normalized collision energy of 30%. The MS2 AGC target was set to 1e4
with a maximum injection time of 10ms, peptide mode was selected for
monoisotopic precursor scan, and charge state screening was enabled to

reject unassigned 1 +, 7 +, 8 +, and > 8 + ions with a dynamic exclusion
time of 45 s to discriminate against previously analyzed ions between
±10 ppm.

Metabolites extraction
Lipid extraction MS water (200mL) and methanol (240mL) was added to a
sample aliquot, and the tube was vortexed. After grinding beads was
added to each tube, the grinding tube was placed in the precooled
adapter, the frequency of the grinding instrument was set to be 60 Hz, the
grinding operation to be 15 s, the grinding interruption to be 5 s, and the
grinding operation times to be 10min. Then, 800mL of methyl tert-butyl
ether (MTBE) was added, and the mixture was placed in the ultrasonic
cleaner for ice bath ultrasonic for 30min. After the mixture was centrifuged
at 14,000× g for 10 min, the upper (organic) phase was collected and dried.

LC-MS/MS analysis of metabolites
LC-MS/MS of lipids were performed on Easy-nLC liquid chromatography
system (Thermo Scientific) coupled to Q Exactive HFX platform (Thermo
Fisher Scientific). A 2.1 mm I.D. 3 100mm column (Waters, Acclaim C30)
was balanced with 70% solvent A (10mM ammonium formate and 60%
ACN in water). The lipids were dissolved with 10mL loading buffer (50%
isopropyl alcohol (IPA) and 50% ACN), and 5mL was loaded onto a 2.1 mm
I.D. 3 100mm column (Waters, Acclaim C30) at 0.26mL/min. Lipids were
separated with a linear 30%–100% Mobile Phase B (10mM ammonium
formate and 0.1% formic acid, 90% IPA in ACN) for 20min. These analyses
utilized a 120,000 resolving power survey scan with AGC= 1,000,000,
followed by MS/MS of the most intense precursors for 80ms. The MS/MS
analyses were performed by 1.5 m/z isolation with the quadrupole,
normalized HCD (higher-energy collisional dissociation) collision energy
of 20%, 40%, and 60% and analysis of fragment ions in the ion trap
scanning from 200 to 2000 m/z. Maximum injection time was set to 20ms,
AGC target was set to 200,000.

Metabolite identification and quantification
Metabolite profiles were analyzed by LipidSearch 4.2 (Thermo Fisher
Scientific, CA, USA), a leading commercial lipidomics software platform75.
The target database was Q Exactive HFX and the peak detection was recalc
isotope. The search options were as follows: parent tolerance, 5 ppm,
product tolerance, 8 ppm; m-score threshold, 2; Quan m/z tolerance
± 5 ppm; Quan retention time (RT) range ± 0.5 min; use of main isomer
filter and for the ID quality filter, A-B; adduct ions, H+ and NH4+ for
positive ion mode and H− and HCOO− for negative ion mode. Lipid
alignments were performed with below parameters: ExpType, LC-MS;
Alignment method, Mean; R. T. Tolerance, 2; Calculate unassigned peak
area, on; Filter Type, New Filter; Toprank Filter, on; Main Node Filter, Main
isomer peaks; m-Score Threshold, 5.0; ID quality filter: A, B, C and D. The
results were extracted using LipidSearch 4.1.3 software. Finally, the lipids
were manually filtered according to the following rules:

(1) The peak areas of lipids with m-Score < 10 were revised to 0;
(2) The peak areas of the lipids with AreaScore < 0.7 were revised to 0;
(3) The peak areas of the lipids with PeakQuality < 0.9 were revised to 0;
(4) The peak areas of the lipids with Occupy < 5 were revised to 0;
(5) The peak areas of the lipids with Grade C and D were revised to 0.

MS database searching peptide and protein identification
MS raw files were processed with a “Firmiana” (a onestop proteomic cloud
platform)76 against the human National Center for Biotechnology
Information (NCBI) RefSeq protein database using Mascot 2.4 (Matrix
Science Inc., London, UK). The maximum number of missed cleavages was
set to two. Mass tolerances of 10 ppm for the precursor and 10 ppm for
production were allowed. The fixed modification was cysteine carbamido-
methylation, while the variable modifications were N-acetylation and
methionine oxidation. For the quality control of protein identification, the
target-decoy-based strategy was applied to confirm that the false
discovery rate (FDR) of both peptides and proteins was lower than 1%.
The program percolator was used to obtain the probability value (q value)
and showed that the FDR (measured by the decoy hits) of every
peptide–spectrum match (PSM) was lower than 1%. All peptides shorter
than seven amino acids were removed. The cutoff ion score for peptide
identification was set at 20. All PSMs in all fractions were combined for
protein quality control, which was a stringent quality control strategy. The
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q values of both target and decoy peptide sequences were dynamically
increased employing the parsimony principle until the corresponding
protein FDR was less than 1%. Finally, to reduce the false positive rate,
proteins with at least two unique peptides were selected for further
investigation.
Phosphoproteome MS raw files were searched against the human

RefSeq protein database using Proteome Discoverer (version 2.3.0.523)
with a Mascot77 (version 2.3.01) engine with a percolator78. Carbamido-
methyl cysteine was used as a fixed modification, and oxidized
methionine, protein N-term acetylation, and phospho (S/T/Y) were set as
variable modifications. The false discovery rate (FDR) of peptides and
proteins was set at 1%. The tolerance for spectral searches a mass
tolerance of 20 ppm for the precursor. The maximum number of missing
cleavage site was set at 2. For phosphosite localization, ptmRS79 was used
to determine phosphosite confidence and a phosphosite probability > 0.75
was used for further analysis.

Label‑free‑based MS quantification of proteins
The one-stop proteomic cloud platform, “Firmiana,” was further employed
for protein quantification. The identification results and the raw data from
the mzXML files were loaded. Then, for each identified peptide, the
extracted-ion chromatogram (XIC) was extracted by searching against MS1
based on its identification information, and the abundance was estimated
by calculating the area under the extracted XIC curve. For protein
abundance calculation, the non-redundant peptide list was used to
assemble proteins following the parsimony principle. Protein abundance
was then estimated by a traditional label-free, intensity-based absolute
quantification (iBAQ) algorithm, which divided protein abundance (derived
from identified peptide intensities) by the number of theoretically
observable peptides80,81. The fraction of total (FOT), a relative quantifica-
tion value that was defined as a protein’s iBAQ divided by the total iBAQ of
all identified proteins in one experiment, was calculated as the normalized
abundance of a particular protein in the experiments. Finally, the FOT was
further multiplied by 1e6 for the ease of presentation, and NA values were
replaced with 1e−5 to adjust extremely small values.
For the phosphoproteomic data, the intensities of the phosphopep-

tides were extracted from the Proteome Discover (version 2.3). For the
phosphoprotein abundance calculation, the non-redundant phosphor-
peptide list was used to assemble the proteins by following the
parsimony principle. Next, the phosphoprotein abundance was esti-
mated by a traditional label-free, iBAQ algorithm, which divided the
protein abundance (derived from the intensities of the identified
peptides) by the number of theoretically observable peptides81. For
phosphosite localization, the ptmRS79 was used to determine phos-
phosite confidence and phosphosite probability > 0.75 is considered as
confident phosphosites.

Quality control of the MS data
For the quality control of the performance of MS, the HEK293T cell
(National Infrastructure Cell Line Resource) lysate was measured every
3 days as the quality control standard. The quality control standard was
digested and analyzed using the same method and conditions. A pairwise
Spearman’s correlation coefficient was calculated for all quality control
runs in the statistical analysis environment R (version 4.0.2). The average
correlation coefficient among the standards was 0.9, demonstrating the
consistent stability of the mass spectrometry platform.

Kinase activity prediction
To estimate changes in kinase activity, we performed kinase enrichment
analysis on significantly differentiated phosphosites in tumors compared
to NATs, for intestinal-type and pancreatobiliary-type or each subtype via
kinase–substrate enrichment analysis (KSEA)82. Known kinase–substrate
site relationships from PhosphoSitePlus (PSP)83 or NetworKIN 3.084 with
scores greater than 1 were used for kinase–substrate analysis. A kinase
score was given for each kinase based exclusively on the collective
phosphorylation status of its substrates and transformed into a z-score. For
kinase enrichment analysis, the threshold used for significantly enriched
kinases was p < 0.05.

Missing value imputation
For the proteomic and phosphoproteomic data, FOTs multiplied by 1e5
were used for quantification, and missing values were imputed with 1e−5
and finally, log2-transformed, if necessary.

Differential protein analysis
Differential protein analysis Student t-test was used to examine whether
proteins were differentially expressed between the tumors and NATs.
Upregulated or downregulated proteins in tumors were defined as proteins
differentially expressed in tumors compared with NATs (T/NAT > 2 or < 1/2,
Wilcoxon rank-sum test, Benjamini–Hochberg adjusted p< 0.05). Kruskal–Wallis
test was used to examine whether proteins were differentially expressed
between patients with different histological subtypes (Benjamini–Hochberg
adjusted p< 0.05). Kruskal–Wallis test was used to examine whether proteins
were differentially expressed among three proteomic subtypes and immune
subtypes (Benjamini–Hochberg adjusted p< 0.05).

Pathway enrichment analysis
Differentially expressed genes were subjected to gene ontology and KEGG
pathway enrichment analysis in DAVID85 with a p value/FDR < 0.1. We used
gene sets of molecular pathways from the KEGG86/Hallmark87/Reactome88/
GO89 databases to compute pathways.

Pathway scores and correlation analysis
ssGSEA90 was utilized to obtain pathway scores for each sample based on
RNA-seq, proteomic, and phosphoproteomic data using the R package GSVA91.
Correlations between the pathway scores and other features were determined
using Spearman’s correlation. Inferred activity was performed using ssGSEA
implemented in the R package GSVA with a minimum gene set size of 10. The
transcriptional targets of TFs mentioned in this work were collected from the
ENCODE Project Consortium92 and used to infer TF activity via ssGSEA.

Cell cycle analysis
Multi-gene proliferation scores (MGPSs) were calculated as the mean
expression level of all cell cycle-regulated genes in each sample as
described previously93,94. Briefly, MGPS was calculated from the mean
normalized proteomic data in each sample in our study.

Phosphopeptide analysis-kinase and substrate regulation
KSEA algorithm was used to estimate the kinase activities based on the
abundance of phosphosites. Kinase-substrate enrichment analysis (KSEA)
estimates changes in a kinase’s activity by measuring and averaging the
amounts of its identified substrates instead of a single substrate, which
enhances the signal-to-noise ratio from inherently noisy phosphoproteo-
mic data82,95. If the same phosphorylation motif was shared by multiple
kinases, it was used for estimating the activities of all known kinases. The
use of all curated substrate sequences of a particular kinase minimizes the
overlapping effects from other kinases and thus improves the precise
measurement of kinase activities. The information of kinase-substrate
relationships was obtained from publicly available databases including
PhosphoSite38, Phospho.ELM36, and PhosphoPOINT37. The information of
substrate motifs was obtained either from the studies96 or from an analysis
of KSEA dataset with Motif-X82.

Protein–protein interaction network construction
Interaction network among the proteins and phosphorylated proteins was
generated with STRING v 11.0 (https://string-db.org/) using medium
confidence (0.4), and experiments and database as the active interaction
sources. The network was visualized using Cytoscape version 3.8.097.

Consensus clustering analysis
The protein expression matrix of the 198 tumor samples was used to
identify the proteomic clusters using the consensus cluster method.
Consensus clustering was performed using the ConsensusClusterPlus
(R package ConsensusClusterPlus v.1.48.0)98,99, with the top 50% most
varied protein. The following detail settings were used for clustering:
number of repetitions= 10,000 bootstraps; pItem= 0.8 (resampling
80% of any sample); pFeature= 1 (resampling 100% of any protein); and
clusterAlg= “pam”; and distance= “spearman. The number of cluster-
ing was determined by three factors, the average pairwise consensus
matrix within consensus clusters, the delta plot of the relative change in
the area under the cumulative distribution function (CDF) curve, and the
average silhouette distance for consensus clusters. The consensus
matrices for k= 2, 3, 4, and 5 clusters are shown in Supplementary Fig.
S7a. A consensus matrix with k= 3 appeared to yield the clearest cut
between clusters and showed a significant association with the patient
survival.
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Correlation between proteomic subtypes and clinical features
For the purpose of measuring correlations between proteomic subtypes and
clinical features, Fisher’s exact test was performed on histological subtypes,
genomic alterations, gender, smoke status, alcohol habit, vessel invasion,
fascicular invasion, metastasis, lymph node metastasis and TNM stage.

Survival analysis
Kaplan–Meier survival curves (log-rank test) were used to determine the
overall survival (OS) and progression-free survival (PFS) of proteomic
subtypes and patients. The coefficient value, which is equal to ln (HR), was
calculated using Cox proportional hazards regression analysis. p values less
than 0.05 were considered significantly different and selected for Cox
regression multivariate analysis. Prior to the log-rank test of a given
protein, phosphoprotein, or phosphosite, survminer (version 0.2.4, R
package) with maximally selected rank statistics (https://
rpkgs.datanovia.com/survminer/reference/surv_cutpoint.html) was used
to determine the optimal cutoff point for the selected samples according
to a previous study100. OS curves were then calculated (Kaplan–Meier
analysis, log-rank test) based on the optimal cutoff point.

Effects of copy number alterations
SCNAs affecting mRNA and protein/phosphoprotein abundance in either
“cis” (within the same aberrant locus) or “trans” (remote locus) mode were
visualized by multiOmicsViz (R package)101 (diagonal patterns in Fig. 2a).
Spearman’s correlation coefficients and associated multiple-test adjusted p
values were calculated for all CNV–mRNA pairs, CNV–protein pairs and
CNV–phosphoprotein pairs, respectively. The usage of the cis effect in this
work was followed by the definition provided in the previous published
research101, which defined the impact of copy number alteration (CNA) on
the same loci protein or mRNA abundance as the cis effect, and the trans
effect was defined as chromosomal loci whose alteration is significantly
associated with abundance changes of many transcripts or proteins at
other loci.

Defining cancer‑associated genes
Cancer-associated genes (CAG) were compiled from genes defined by Bailey
et al.102 and cancer-associated genes listed in Mertins et al.103 and adapted
from Vogelstein et al.104. Gene Set Enrichment Analysis (GSEA) was performed
by the GSEA software (https://www.gsea-msigdb.org/gsea/index.jsp). Gene sets
including KEGG, GO Biological Process (BP), Reactome, and HALLMARK
downloaded from the Molecular Signatures Database (MSigDB v7.1, http://
software.broad institute.org/gsea/msigdb/index.jsp) were used.

Immune subtype analysis
The immune score, stromal score and tumor purity were inferred using the
R package ESTIMATE v1.0.11 using transcriptome data (Supplementary
Table S5c)105. The abundances of 64 different cell types for AMPAC
samples in protein level were computed via xCell (https://xcell.ucsf.edu/)
(Supplementary Table S5a). Based on these 64 signatures, consensus
clustering was performed in order to identify groups of samples with
similar immune/stromal characteristics. Consensus clustering was per-
formed using the R package ConsensusClusterPlus98. Consensus Cluster
Plus parameters were reps= 1000, pItem= 0.8, pFeature= 1, clusterAlg=
“pam,” distance= “spearman.” As summarized in Fig. 7, the clustering
analysis of the tumors (vertical column) by xCell score (horizontal rows)
divided 198 samples into three immune clusters. A consensus matrix with
k= 3 appeared to have the clearest cut between clusters and showed
significant association with the patients’ survival.

IHC
Formalin-fixed, paraffin-embedded tissue sections of 10 μM thickness were
stained in batches for detecting HADH, MTAP, PCNA, ANO1, PRKCI,
PDGFRB, CD34, ACLY, FASN, PRKDC, IL-6, STAT1, CD4 in a central laboratory
at the Zhongshan Hospital according to standard automated protocols.
Deparaffinization and rehydration were performed, followed by antigen
retrieval and antibody staining. HADH, MTAP, PCNA, ANO1, PRKCI, PDGFRB,
CD34, ACLY, FASN, PRKDC, IL-6, STAT1 and CD4 IHC were performed using
the Leica BONDMAX auto staining system (Roche). HADH Polyclonal
antibody (Proteintech, Cat No. 19828-1-AP), MTAP Polyclonal antibody
(Proteintech, Cat No. 11475-1-AP), PCNA Polyclonal antibody (Proteintech,
Cat No. 10205-2-AP), ANO1/TMEM16A Polyclonal antibody (Proteintech,
Cat No. 12652-1-AP), PKC Iota Polyclonal antibody (Proteintech, Cat No.

13883-1-AP), PDGFR beta Polyclonal antibody (Proteintech, Cat No. 13449-
1-AP), CD34 Polyclonal antibody (Proteintech, Cat No. 14486-1-AP), ACLY
Monoclonal antibody (Proteintech, Cat No. 15421-1-AP), FASN Monoclonal
antibody (Proteintech, Cat No. 66591-1-Ig), DNA-PKcs Polyclonal antibody
(Proteintech, Cat No. 19983-1-AP), IL-6 Polyclonal antibody (Proteintech,
Cat No. 21865-1-AP), STAT1 Monoclonal antibody (Proteintech, Cat No.
66545-1-Ig), and CD4 Monoclonal antibody (Proteintech, Cat No. 67786-1-
Ig) were introduced, followed by detection with a Bond Polymer Refine
Detection DS9800 (Bond). Slides were imaged using an OLYMPUS BX43
microscope (OLYMPUS) and processed using a ScanScope (Leica).

Cell lines
Human ampullary adenocarcinoma cell lines including SNU-869 and SNU-
478 were obtained for Chinese Academy of Sciences (Shanghai, China). All
cell lines were routinely tested for mycoplasma contamination and
authenticated by Short Tandem repeat (STR) profiling. Cells were
maintained in recommended medium, Roswell Park Memorial Institute-
1640 (RPMI-1640, Corning) or DMEM (ATCC) supplemented with 10% fetal
bovine serum (FBS, Sigma‐Aldrich) and 1% penicillin–streptomycin
antibiotic (Sigma‐Aldrich) and incubated at 37 °C and 5% CO2 in a
humidified atmosphere in an incubator.

Plasmids
The sequence of human PDGFRB, ANO1 and PRKCI open reading frame
was obtained using Polymerase chain reaction (PCR) from CDNA. The PCR
fragment was inserted into pCMV-N-Flag, pcDNA3.1 Myc HisA by the
recombinant method and was confirmed by sequencing identification.

Cell transfections
Plasmid transfections were carried out by the polyethylenimine (PEI),
Lipofectamine 3000 (Invitrogen), and Lipofectamine 2000 (Invitrogen)
methods. In the PEI transfection method, 400 μL of DMEM (serum-free
medium) and the plasmid were placed in an empty EP tube and PEI was
added into the medium. The mixture was incubated for 15min.
Meanwhile, the cell culture medium was replaced with fresh 10% FBS
medium. After 15min, the mixture was added to the cells, and the fresh
medium was replaced after 12–16 h. After 36–48 h, the transfection was
completed. In the Lipofectamine 3000 transfection method, DMEM
(250 μL) was added to two empty EP tubes and Lipofectamine 3000 was
added to one of the tubes and mixed for 5 min. The plasmid and P3000
were added in the other tube and then added to the medium containing
Lipofectamine 3000, mixed, and allowed to stand for 5 min. Meanwhile, the
cell culture medium was replaced with fresh 10% FBS medium. After 5 min,
the mixture was added to the cells, and the fresh medium was replaced
after 12 h. After 36–48 h, the transfection was completed and the cells
were treated. In the Lipofectamine 2000 transfection method, 125 μL of
DMEM (serum-free medium) and the siRNA were placed in an empty EP
tube. A total of 125 μL of DMEM (serum-free medium) and the
Lipofectamine 2000 were placed in another empty EP tube then added
to the medium containing siRNA. The mixture was incubated for 5 min.
Meanwhile, the cell culture medium was replaced with fresh 10% FBS
medium. After 5 min, the mixture was added to the cells. After 36–48 h, the
transfection was completed.

Gene silencing
To generate cells stably knockdown for HADH, MTAP was transfected into
cells, using pCMV-VSVG and pCMV-Gag as packaging plasmids. Twenty-
four hours after transfection, the virus supernatant was collected to infect
target cells. Puromycin was used to select stable cells for ~7 days.
HADH siRNA-homo-sense: 5′-GGACTGGATACTACGAAGTTC-3′
HADH siRNA-homo-antisense: 5′-GAACTTCGTAGTATCCAGTCC-3′
MTAP siRNA-homo-sense: 5′-AAAAUUAAGGCAUCAGAUGGC-3′

MTAP siRNA-homo-antisense: 5′-CAUCUGAUGCCUUAAUUUUGG-3′

Transwell migration assays
Cell migration assays were performed with 24-well transwells (8-μm pore
size, Falcon). In total, 1.5 × 105 transfected cells were suspended in serum-
free DMEM medium and added to the upper chamber, and 700 μL DMEM
with 10% FBS was placed in the lower chamber. After 16 h of incubation,
cells on the lower surface of membrane were fixed in 4% paraformaldehyde
and stained with crystal violet. Cells in six microscopic fields were counted
and photographed.
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AMPAC cells proteome
For the proteomic analysis of AMPAC cells, cells were lysed in lysis buffer
(8 M Urea, 100mM Tris Hydrochloride, pH 8.0) containing protease and
phosphatase Inhibitors (Thermo Scientific) followed by 1min of sonication
(3 s on and 3 s off, amplitude 25%). The lysate was centrifuged at 14,000× g
for 10 min and the supernatant was collected as whole tissue extract.
Protein concentration was determined by Bradford protein assay. Extracts
from each sample (500 μg protein) was reduced with 10mM dithiothreitol
at 56 °C for 30min and alkylated with 10mM iodoacetamide at room
temperature (RT) in the dark for additional 30 min. Samples were then
digested using the filter-aided proteome preparation (FASP) method with
trypsin. Briefly, samples were transferred into a 30 kD Microcon filter
(Millipore) and centrifuged at 14,000× g for 20 min. The precipitate in the
filter was washed twice by adding 300 μL washing buffer (8 M urea in
100mM Tris, pH 8.0) into the filter and centrifuged at 14,000× g for 20 min.
The precipitate was resuspended in 200 μL 100mM NH4HCO3. Trypsin with
a protein-to enzyme ratio of 50:1 (w/w) was added into the filter. Proteins
were digested at 37 °C for 16 h. After tryptic digestion, peptides were
collected by centrifugation at 14,000× g for 20 min and dried in a vacuum
concentrator (Thermo Scientific). Dried peptides were then used for
proteomic analysis.

Immunoprecipitation
For immunoprecipitation, cells were lysed with 0.5% NP-40 buffer
containing 50mM Tris-HCl (pH 7.5), 150mM NaCl, 0.3% NONIDET P-40,
1 μg/mL aprotinin, 1 μg/mL leupeptin, 1 μg/mL pepstatin, and 1mM PMSF.
Cell lysates were incubated with Flag beads (Sigma) for 3 h at 4 °C. The
binding complexes were washed with 0.5% NP-40 buffer and mixed with
loading buffer for SDS-PAGE.

IP-MS for ANO1
The AMPAC SNU-478 cell line (SNU-478-ANO1-OE and SNU-478-vector)
were lysed on ice in 0.5% NETN buffer (0.5% Nonidet P-40, 50 mM Tris-
HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, and protease inhibitor mixture).
After the removal of insoluble cell debris by highspeed centrifugation,
protein concentration was then determined by Braford assay. Then 2 mg
proteins were incubated with ANO1/TMEM16A Polyclonal antibody
(1:100 dilution, Proteintech, Cat No. 12652-1-AP) and rotated overnight
at 4 °C. Further, 20 μL Pre-wash magnetic beads (Protein A Magnetic
Beads, #73778) were added for another 20 min incubation at room
temperature. Pellet beads using magnetic separation rack. Wash pellets
five times with 500 μL of 1x cell lysis buffer. Keep on ice between
washes. Beads were further washed twice with ddH2O, and three times
with 50 mM NH4HCO3. Then, “on-bead” tryptic digestion was performed
at 37 °C overnight. The peptides in the supernatant were collected by
centrifugation and dried in a speed vacuum (Eppendorf). Lastly, the
samples were redissolved in loading buffer containing 0.1% formic acid
before being subjected to MS.

Quantitative RT‑PCR
The Superscript III RT kit (Invitrogen) was used with random 3 hexamer
primers to produce cDNA from 4 μg total RNA. ACTIN was used as the
endogenous control for samples. All primers for analysis were synthesized
by TSINGKE Biological Technology (Shanghai). The analysis was performed
by using an Applied Biosystems 7900HT Sequence Detection System, with
SYBR green labeling.
QPCR-ANO1-F: 5′-CAAGT TTGGC TACAG CACGC-3′
QPCR-ANO1-R: 5′-AGACT AGGGA GCGAC GAAGT-3′
QPCR-PRKCI-F: 5′-GACGC AGGAG GTGTC TTGG-3′
QPCR-PRKCI-R: 5′-CTTGG CTTGG AAAGT GTGGC-3′
QPCR-PDGFRB-F: 5′-CCATC AGCAG CAAGG CGA-3′
QPCR-PDGFRB-R: 5′-CCAGA AAAGC CACGT TGGTG-3′
QPCR-HADH-F: 5′-AACTC GGGTT TGGGC TTTTC-3′
QPCR-HADH-R: 5′-TTTAA GGATG GGCTG GGCTG-3′
QPCR-MTAP-F: 5′-CGTGA AGGTG AGATG AGCCC-3′
QPCR-MTAP-R: 5′-TGTTC GCCTG GTAGT TGACC-3′

Cell proliferation assay
Different groups of cells (2000 cells/well) were seeded into 96-well plates.
At the indicated detection times, CCK8 reagent was added into each well.
The plates were incubated at 37 °C for 1 h, and then, absorbance of the 96-
well plates was detected at a wavelength of 450 nm.

Xenograft tumorigenesis experiments
Different groups of ampullary adenocarcinoma cells (5 × 106) were re-
suspended in PBS and injected subcutaneously (SC) into the right flank of
5-week-old BALB/c-nude mice. The weight and the tumor diameter of each
mouse were measured every week. Tumor volume (mm3) was calculated
as follows: (shortest diameter)2 × (longest diameter) × 0.5. Four weeks later
all mice were killed.

Quantification and statistical analysis
Statistical details of experiments and analyses were noted in the figure
legends and supplementary tables. Standard statistical tests were used to
analyze the association between clinical information and multi-omics data.
Student’s t-test, Wilcoxon rank-sum test, one-way ANOVA, and
Kruskal–Wallis test were used for continuous data; Fisher’s exact test and
χ2 test was used for categorical data. The Benjamini–Hochberg adjusted p
values of differentially expressed RNA/proteins/phosphoproteins were
calculated. Log-rank tests and Kaplan–Meier survival curves were used to
compare the overall survival and progression-free survival. All statistical
tests were two-sided, and statistical significance was considered when
p < 0.05. Variables associated with survival were identified using univariate
Cox proportional hazards regression models. The correlation between two
sets of data was calculated using Spearman’s correlation. All the analyses
of clinical data were performed in R (version 4.0.2) and GraphPad Prism 8.
For functional experiments, each was repeated at least three times
independently, and results were expressed as mean ± standard error of the
mean (SEM). Statistical analysis was performed using GraphPad Prism 8.
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