Table 3.
Performance of different algorithms in models 1 and 2.
| F1 Score | Accuracy | Sensitivity (Recall) | Specificity | AUC-PR | Precision (PPV) | NPV | Brier score | |
|---|---|---|---|---|---|---|---|---|
| Model 1 | ||||||||
| LR | 0.66 | 0.67 | 0.63 | 0.71 | 0.73 | 0.68 | 0.66 | 0.21 |
| Decision Tree | 0.60 | 0.60 | 0.60 | 0.59 | 0.70 | 0.60 | 0.60 | 0.39 |
| Extra Trees | 0.66 | 0.68 | 0.65 | 0.70 | 0.73 | 0.68 | 0.67 | 0.20 |
| Gradient Boosting | 0.68 | 0.70 | 0.65 | 0.75 | 0.76 | 0.72 | 0.68 | 0.19 |
| KNN | 0.62 | 0.64 | 0.59 | 0.67 | 0.69 | 0.64 | 0.62 | 0.24 |
| Naive Bayes | 0.60 | 0.67 | 0.49 | 0.85 | 0.73 | 0.76 | 0.62 | 0.22 |
| Random Forest | 0.67 | 0.68 | 0.65 | 0.70 | 0.73 | 0.68 | 0.67 | 0.20 |
| SVM | 0.67 | 0.70 | 0.62 | 0.77 | 0.75 | 0.73 | 0.67 | 0.20 |
| Model 2 | ||||||||
| LR | 0.72 | 0.73 | 0.71 | 0.73 | 0.79 | 0.72 | 0.72 | 0.18 |
| Decision Tree | 0.64 | 0.65 | 0.65 | 0.66 | 0.73 | 0.64 | 0.64 | 0.35 |
| Extra Trees | 0.74 | 0.75 | 0.74 | 0.76 | 0.80 | 0.75 | 0.74 | 0.17 |
| Gradient Boosting | 0.75 | 0.75 | 0.74 | 0.78 | 0.83 | 0.77 | 0.74 | 0.16 |
| KNN | 0.68 | 0.70 | 0.65 | 0.76 | 0.76 | 0.72 | 0.68 | 0.20 |
| Naive Bayes | 0.71 | 0.71 | 0.72 | 0.70 | 0.74 | 0.70 | 0.71 | 0.25 |
| Random Forest | 0.74 | 0.74 | 0.75 | 0.74 | 0.81 | 0.73 | 0.74 | 0.17 |
| SVM | 0.74 | 0.75 | 0.73 | 0.76 | 0.81 | 0.75 | 0.74 | 0.17 |
LR Logistic Regression, KNN K-Nearest Neighbors, AUC area under the receiver operating characteristic curve, AUC-PR area under the precision-recall curve, PPV positive predictive value, NPV negative predictive value, SVM Support Vector Machine.
Model 1 utilizes vital signs for modeling, Model 2 incorporates vital signs, demographics, medical history, and chief complaints. Note: Sensitivity and Recall refer to the same metric and are used interchangeably in the table. Similarly, Precision is equivalent to PPV.