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Accurate estimation of interfacial tension (IFT) between nitrogen and crude oil during nitrogen-based 
gas injection into oil reservoirs is imperative. The previous research works dealing with prediction of 
IFT of oil and nitrogen systems consider synthetic oil samples such n-alkanes. In this work, we aim to 
utilize eight machine learning methods of Decision Tree (DT), AdaBoost (AB), Random Forest (RF), 
K-nearest Neighbors (KNN), Ensemble Learning (EL), Support Vector Machine (SVM), Convolutional 
Neural Network (CNN) and Multilayer Perceptron Artificial Neural Network (MLP-ANN) to construct 
data-driven intelligent models to predict crude oil – nitrogen IFT based upon experimental data of 
real crude oils samples encountered in underground oil reservoirs. Several statistical indices and 
graphical approaches are used as accuracy performance indicators. The results show that virtually all 
the gathered datapoints are suitable for the purpose of model development. The sensitivity analysis 
indicated that pressure, temperature and crude oil API all negatively affect the IFT, with pressure 
being the most effective factor. The evaluation study proved that Random Forest is the most accurate 
developed intelligent model as it was characterized with acceptable R-squared (0.959), mean square 
error (1.65), average absolute relative error (6.85%) of unseen test datapoints as well as with correct 
trend prediction of IFT with regard to all input parameters of pressure, temperature and crude oil API. 
The developed model can be considered an accurate an easy-to-use tool for the prediction of crude oil/
N2 IFT values for enhance oil recovery study optimization and upstream reservoir investigations.
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The inefficacy of oil retrieval during primary and secondary production stages has engendered an accelerated 
maturation of numerous methods for the reduction of residual oil saturation antecedent to the permanent 
discontinuation of oil reservoir operation1,2. For the purpose of augmenting oil recovery, the introduction of gas 
into oil reservoirs has proven to be a widely adopted practice, facilitating an enhancement of oil retrieval through 
the injection of an assortment of gaseous media, namely, natural gas, enriched natural gas, carbon dioxide, 
nitrogen, or flue gas3,4. Within the spectrum of available gas types, carbon dioxide has garnered recognition 
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as a particularly efficacious means of facilitating enhanced oil recovery, primarily via viscosity diminution, 
vaporization, and miscible displacement, thereby effectuating the evacuation of oil from the reservoir5. As a dual-
purpose strategy, the employment of CO2 for enhanced oil recovery (EOR) not only promotes the retrieval of 
crude oil but also enables the sequestration of CO2, thereby reducing greenhouse gas emissions. Notwithstanding 
its numerous advantages, the CO2 flooding technique is beset with a host of economic and technical challenges. 
From a technical standpoint, asphaltene precipitation during CO2 injection can prove to be a substantial 
impediment to the efficacy of this method, engendering grave issues such as reservoir impairment, alteration 
of wettability, diminution of relative permeability, and obstruction of flow in the reservoir and surface facilities. 
Consequently, in certain oil fields, the implementation of CO2 is deemed impracticable due to the prospect of 
asphaltene precipitation. Other obstacles encountered in the course of CO2 flooding include corrosion, freezing 
of the wellbore annulus, poor injectivity, and pump-related difficulties. From an economic perspective, the key 
considerations are oil price, capital expenditure, and operational cost. However, paramount to all economic and 
technical concerns is the availability, abundance, accessibility, and reliability of the CO2 source5–8.

In light of the aforementioned impediments potentially encountered during CO2 injection, certain 
companies are disinclined to utilize CO2 as an injection gas. Consequently, nitrogen injection is proffered as a 
non-hydrocarbon source of gas for the displacement of crude oil from matured oil reservoirs. The mechanisms 
by which nitrogen can effectuate oil displacement in this context include pressure maintenance, gravity 
enhancement, immiscible displacement, miscible displacement, and functioning as a driver for miscible slug. 
In the context of miscible displacement, nitrogen can efficaciously displace crude oil by inducing the formation 
of a miscible bank through vaporization of the intermediate components of the oil, thereby facilitating the 
development of miscibility9–11. When the interfacial tension (IFT) between two phases reaches ultralow values, 
it indicates that the phases have achieved miscibility. Consequently, estimating the IFT can provide valuable 
insights into the miscibility status of the phases. Therefore, having reliable tools for accurate estimation of IFT 
between crude oil and gases deems to be necessary mostly because experimental workflows to measure IFT 
are heavy, tedious, arduous, time-consuming and costly. This need is more pronounced when one involves gas 
injection based EOR methods such as carbon dioxide and nitrogen injection methods, though the minimum 
miscibility pressure of nitrogen/crude oil system is known to be much larger than that of carbon dioxide/crude 
oil system. Indeed, having reliable and simple models to accurately compute IFT between crude oil and gas 
systems is vital for upstream reservoir studies and EOR optimization investigations.

Machine learning and artificial intelligence methods have been proved as efficient, accurate and reliable tools 
for the prediction tasks12–15. Bahaloo et al.16 conducted a review to explore how machine learning and artificial 
intelligence can be implemented in petroleum industry to enhance upstream processes like drilling, reservoir 
studies, and production engineering areas. Agwu et el17. created a neural network model to forecast oil flow 
rates in wells operated by electrical submersible pumps. Alatefi et al.18 introduced multiple artificial models 
to estimate minimum miscibility pressure of carbon dioxide. Alatefi et al.19 provided a combinational method 
based upon conventional well logs, machine learning methods and core analysis to precisely predict porosity 
of carbonate formations. Alatefi and Almeshal20 made use of real field Pressure–Volume–Temperature (PVT) 
data to precisely estimate bubble point pressure of oil-bearing reservoirs. Hadavimoghaddam et al.21 accurately 
predicted solubility of hydrogen in hydrocarbon fuels using white box machine learning methods. Youcefy et 
al.22 predicted stand pipe pressure via a machine learning model in real time. Hassaan et al.23 put forth a new 
way to estimate rock permeability and porosity for the sake of reservoir evaluation based upon different machine 
learning methods. Lv et al.24 predicted the carbon dioxide diffusion coefficient into heavy crude oil/bitumen. 
Lv er al25 provided powerful machine learning models to accurately forecast the values of minimum miscibility 
pressure for crude oil/carbon dioxide systems.

For the purpose of studies with regard to miscible displacement via nitrogen gas, accurate models to predict 
IFT between nitrogen and crude oil phases are deemed to be vital. In this regard, Salehi et al.26 accurately 
modeled IFT between n-alkanes and mixtures of carbon dioxide and nitrogen gases using machine learning 
methodologies. Mahdaviara et al.27 put forward machine learning based models for the prediction task of 
n-alkanes and gas mixtures (containing nitrogen, methane and carbon dioxide) IFT values. Kalam et al.28 also 
provided artificial intelligence based techniques to easily predict IFT between nitrogen/carbon dioxide mixtures 
and normal alkanes. Ameli et al.29 performed the same task using several data-driven techniques. Zhang et al.30 
put forth a novel supervised machine learning methodology for the quick forecast of nitrogen-alkanes IFT.

As can be pinpointed, all the previous research works dealing with prediction of IFT of oil and gas phase 
consider synthetic oil (particularly, n-alkanes) whereas taking into consideration the realistic conditions 
occurring in real underground petroleum reservoirs, crude oil prevails. This study, therefore, aims at providing 
machine leaning models to predict nitrogen-crude oil IFT as a function of temperature, pressure and crude oil 
API. Eight machine learning methods including Decision Tree (DT), AdaBoost (AB), Random Forest (RF), 
K-nearest Neighbors (KNN), Ensemble Learning (EL), Support Vector Machine (SVM), Convolutional Neural 
Network (CNN) and Multilayer Perceptron Artificial Neural Network (MLP-ANN) are specifically utilized 
for the purpose of intelligent model development. A dataset gained from previously published experimental 
studies is used although before model construction, its reliability is checked using Leverage outlier detection 
methodology. To gain more insights also, sensitivity studies are carried out in order to comprehend the relative 
effects of different parameters on the nitrogen-crude oil IFT. The created data-driven models are assessed using 
disparate statistical and graphical approaches. The main factor that differentiates this research work with its 
previous counterparts is the development of machine learning based upon real crude oil samples which is in 
realistic encountered in reservoir studies.
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Data gathering and models’ evaluation indices
This research incorporates an experimental database consisting of 148 datapoints, gathered from an extensive 
review of previously published literature9,31–35, where significant work was devoted to the experimental 
measurement of the equilibrium IFT between crude oil and nitrogen gas across various pressure, temperature 
and crude oil API values. The statistical details related to all experimental data used for the model development 
are organized in Table 1.

To compare the predictive capabilities of each developed model, several performance metrics are calculated 
for each model, as outlined below36,37:
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In which RE%, AARE%, MSE, and R2 stand for relative error percent, average absolute relative error percent, 
mean square error, and coefficient of determination. Also, subscript i represents the index number of a given 
data point within the dataset, while pred and exp denote the estimated and actual data points, respectively. 
Additionally, N symbolizes the total number of data points in the dataset.

Notice that the input variables include crude oil API, temperature and pressure while equilibrium IFT is 
the output variable when constructing the predictive models. In additions, three datasets, namely training, 
validation and testing are randomly generated. The train, validation and test datasets contain 80% and 10% 
and 10%, respectively, of the total gathered datapoints. It is crucial to highlight that input and output variables 
are initially normalized using the following equation, aiming to minimize the effects of variations within the 
datasets:

	
nnorm =

n − nmin
nmax − nmin

� (5)

In the provided equation, the symbols n, nmax, nmin, and nnorm denote the actual data point, the maximum value 
in the dataset, the minimum value in the dataset, and the normalized data point, respectively. This normalization 
process ensures a more accurate comparison of model performance by mitigating the influence of inherent data 
variability.

As mentioned before, seven machine learning methods including Decision Tree (DT), AdaBoost (AB), 
Random Forest (RF), K-nearest Neighbors (KNN), Ensemble Learning (EL), Support Vector Machine (SVM), 
Convolutional Neural Network (CNN) and Multilayer Perceptron Artificial Neural Network (MLP-ANN) are 
utilized for the construction of robust data-driven models. The backgrounds of the aforementioned methods are 
given in the appendix. Notice that we selected these machine learning algorithms to capture the complexity of 
interfacial tension in crude oil-nitrogen systems. The chosen models encompass both interpretable and complex 
learners, ensuring a comprehensive approach to identifying non-linear relationships and feature interactions 
inherent to the dataset. Decision Tree (DT) and Random Forest (RF) were chosen for their robustness in 
handling non-linear data, with Random Forest’s ensemble approach effectively reducing variance. AdaBoost 
(AB), another ensemble method, enhances model accuracy by iteratively focusing on challenging instances, a 
benefit when capturing finer nuances of interfacial tension. K-Nearest Neighbors (KNN) complements these with 
its non-parametric structure, ideal for local variations without assuming data distribution. Additionally, Support 
Vector Machine (SVM) and neural network-based models, including Convolutional Neural Network (CNN) 
and Multilayer Perceptron (MLP-ANN), were chosen for their ability to learn complex patterns. SVM’s kernel 

Parameter Minimum Maximum Average Standard deviation

P (MPa) 0.48 51.77 15.90 12.12

T(K) 295.15 403.15 342.65 28.69

API Gravity 20.20 42.55 26.20 7.048

IFT (mN/m) 3.78 25.50 14.89 5.47

Table 1.  Statistical data with regard to experimental IFT dataset.
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functions allow it to manage intricate decision boundaries, whereas CNN’s spatial learning capabilities make 
it uniquely suited to capture nuanced feature interactions. MLP-ANN, known for its universal approximation 
capabilities, supports these findings by mapping non-linear dependencies. Finally, ensemble learning provides a 
well-rounded estimate by integrating these individual models, thereby balancing interpretability and predictive 
power for reliable estimation of crude oil-nitrogen interfacial tension.

Results and discussion
Outlier detection
The Leverage method serves as a means to identify data points with significant deviations. Its core principle 
relies on the combination of standardized residuals and the Hat matrix (H). The Hat matrix is calculated using 
the following formula38:

	 H = X
(
XT X

)−1
XT � (6)

In the provided equation, X symbolizes a matrix with dimensions n and m, representing the number of input 
parameters and data points, respectively. Moreover, XT denotes the transpose of matrix X. The hat value for a 
given data point is calculated using the diagonal elements of the Hat matrix. The warning Leverage (H*) can be 
determined using the following formula38:

	 H∗ = 3(n + 1)/m� (7)

In this equation, m and n correspond to the previously defined matrix dimensions representing the number 
of input parameters and data points, respectively. By assessing hat values in relation to H*, the Leverage 
method enables the identification of potential outliers or influential points within the dataset. Subsequently, 
the identification of questionable data points is achieved by establishing trustworthy and suspect zones within 
the Williams’ plot. As illustrated in Fig. 1, suspect and leverage limits serve to demarcate the reliable region. A 
significant portion of interfacial tension data points reside within the reliable zones, while only 4 datapoints 
(highlighted in red) are categorized as suspect IFT values. This visual representation facilitates the evaluation of 
data quality and the potential impact of suspect datapoints on subsequent modeling and analysis efforts. Notice 
that to create generalizable methods, all datapoints are considered for the model development here. Notice that 
the outliers were found using the methodology given above and the experimental dataset in this study.

Sensitivity analysis
In this segment, our endeavor shall focus upon ascertaining the proportional influence of each respective input 
variable - viz., temperature, pressure and crude oil API - upon the resultant crude oil – nitrogen gas equilibrium 
IFT. This shall be effectuated with cognizance of the respective relevancy factor for each individual input variable. 
The equation for the relevancy factor is thusly defined as38:
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Herein, the identifier “j” refers to the discrete input variable under consideration. Note that the conceivable 
scope of the relevancy factor is delimited to the interval − 1 to + 1. Moreover, the magnitude of the computed 
relevancy factor is directly proportional to the strength of the correlation between the input and output variables. 
A negative relevancy index denotes an inverse correlation, while a positive index signifies a direct correlation. 
The computed relevancy factors for each of the input variables under consideration are presented in Fig. 2. As 
can be seen, all the input variables such as pressure, temperature and API gravity inversely affect the IFT between 
crude oil and nitrogen gas. In addition, pressure is the highly effective parameter amongst all the parameters 
with a relevancy factor of -0.752.

Models’ hyperparameter determination
This section discusses the process of obtaining hyperparameters. Figure 3 illustrates the relationship between 
the coefficient of determination and mean square error versus the maximum depth hyperparameter within the 
Decision Tree method. It is evident that the optimal value is determined to be 8. Similarly, the value of 5 is also 
identified as the optimal number of estimators for the AdaBoost machine learning method, as shown in Fig. 4. 
Figure 5 presents two 3D plots depicting the mean square error and coefficient of determination during the 
validation phase of the Random Forest approach. The optimum values for the maximum depth and number 
of estimators are found to be 20 and 19, respectively. Figure 6 depicts mean square error and determination 
coefficient versus number of neighbors in KNN approach, in which it is shown the optimum number of neighbors 
is 2. Furthermore, the optimized value of the SVM hyperparameter (C) is estimated to be 701, as depicted in 
Fig. 7. Figures 8 and 9 shows the tuning process of the MLP-ANN and CNN methods in terms of mean square 
error versus iteration during the training and validation phases. As can be seen, the plots for Decision Tree, 
Adaptive Boosting, and Support Vector Machine all suffers from overfitting issues as large discrepancy can be 
vividly observed in the MSE metric of training and validation phase.

Table 2 tabulates the tuning parameters (range and their found optimum values) for each of the machine 
learning algorithms used in this study. Note that we used the “averaging mode” of the Ensemble Learning 
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machine learning algorithm, with its base estimators as Decision Tree, Adaptive Boosting, Random Forest, and 
K-nearest Neighbors each of which with their tuned hyperparameters.

Models’ evaluation
Table  3 presents the evaluation indices, including the coefficient of determination, mean square error, and 
average absolute relative error (AARE%), for the developed data-driven intelligent models such as Decision Tree, 
AdaBoost, Random Forest, Ensemble Learning, K-nearest Neighbors, Support Vector Machine, Convolutional 
Neural Network (CNN) and Multilayer Perceptron Artificial Neural Network (MLP-ANN). Additionally, to 
enhance the evaluation process, these parameters for the testing phase are illustrated in Fig. 10.

As observed with regard to test data, the Random Forest and Decision Tree methods exhibit the lowest mean 
square error, indicating their superior performance in predicting the IFT. Furthermore, these methods achieve 
the highest values of the determination coefficient. Conversely, for the prediction of IFT in this study, KNN 
and CNN appear to be less accurate, as they have the highest values of MSE and AARE% and the lowest values 
of the determination coefficient. Notice that Decision Tree and Ensemble Learning suffers from overfitting as 
evidenced by the large discrepancy in MSE between training/test or training/validation segments.

To evaluate the performance of the trained algorithms and examine their estimation accuracy, this study 
employs several visual plots. Initially, cross plots for all proposed models are generated, as depicted in Fig. 11. For 
both the Random Forest and Decision Tree models, the clustering of points around the unit slope line signifies 
a high level of accuracy. Moreover, the equations derived from the fitting lines on these points are notably close 
to the bisector line. Additionally, the distribution of relative deviation for each estimator is shown in Fig. 12. A 
closer alignment of the data with the y = 0 line indicates higher estimator accuracy. According to this plot and 
considering the overfitting issue of Decision Tree method, the Random Forest algorithm is identified as the most 
effective predictive tool.

Fig. 1.  Outlier detection within the experimental dataset.
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As another testing method to assess the reliability of the developed models, trend prediction should be 
considered, for which case, it is indicated in Fig. 13 for different input parameters of pressure, temperature and 
crude oil API. In terms trend prediction of pressure, KNN, CNN and AdaBoost fails to accurately capture the 
correct trend, while for API gravity, MLP-ANN is unable to capture the correct trend. Finally, KNN fails to in 
correctly predicting the trend prediction of IFT versus temperature. Therefore, considering the trend prediction, 
all evaluation metrics as well as the overfitting issue, we can conclude that combining the results from the 
trend prediction and the evaluation indices elucidated earlier, Random Forest is the most accurate developed 
intelligent model to predict crude oil-nitrogen IFT in terms of pressure, temperature and crude oil API.

Study limitations, practical application, and future recommendations
A key limitation of this study lies in the dataset size, which may impact the generalizability and robustness of the 
findings. While complex models such as CNN are employed to explore hierarchical relationships in feature data, 
the limited data size introduces a risk of overfitting, where the model might capture noise rather than genuine 
patterns. Furthermore, the databank may lack diversity, potentially limiting the model’s applicability across 
different conditions or crude oil compositions, thus affecting its external validity. For future research, expanding 
the dataset to include a broader range of crude oil compositions, nitrogen levels, and environmental conditions 
is recommended to improve model robustness and generalizability. Where dataset expansion is constrained, 
transfer learning may offer a feasible approach to apply complex models effectively by building on pretrained 

Fig. 3.  The process of obtaining the optimum value for max depth in terms of mean square error and 
determination coefficient versus max depth in DT algorithm.

 

Fig. 2.  The computed relevancy factor for each input factor.
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Fig. 6.  The process of obtaining the optimum value for number of neighbors in terms of mean square error 
and determination coefficient versus number of neighbors in KNN algorithm.

 

Fig. 5.  The process of obtaining the optimum value for number of estimator and max depth in terms of mean 
square error and determination coefficient versus these parameters in RF algorithm.

 

Fig. 4.  The process of obtaining the optimum value for number of estimators in terms of mean square error 
and determination coefficient versus number of estimators in AdaBoost algorithm.
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models from similar domains. Additionally, future studies could explore alternative machine learning models 
and optimization techniques, such as hyperparameter tuning and ensemble methods, to improve performance 
while maintaining interpretability. Testing on external datasets would also be essential to confirm the model’s 
applicability beyond the initial study conditions, thereby strengthening its real-world relevance. These remain to 
be investigated by our research group during our future works.

Despite these limitations, the developed data-driven models offer practical applications in accurately 
predicting interfacial tension (IFT) for nitrogen/crude oil systems, a crucial parameter in enhanced oil recovery 
(EOR) processes and other industry applications. Accurate IFT prediction helps in optimizing the selection of 
injection parameters, improving the effectiveness of nitrogen injection for EOR by enhancing oil displacement 

Fig. 8.  The process of optimizing CNN approach.

 

Fig. 7.  The process of obtaining the tuning parameter of SVM approach in terms of mean square error and 
determination coefficient versus c hyperparameter in SVM approach.
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Method Parameters and the range Optimum values and structure

DT
• Max depth (ranged 1 to 50)
• Min samples split (ranged 2 to 20)
• Min samples leaf (range 1 to 20)

• Max depth: 8
• Min samples split: 2
• Min samples leaf: 1

AB • Number of estimators (ranged 1 to 50)
• Learning rate (0.01 to 1.0)

• Number of estimators: 5
• Learning rate: 10

RF
• Number of estimators (ranged 1 to 20)
• Max depth (ranged 1 to 20)
• Min sample split (ranged 2 to 20)

• Number of estimators: 19
• Max depth: 20
• Min sample split: 2

KNN • Number of neighbors (ranged 1 to 50) • Number of neighbors: 2

EL • Constructed based upon DT, AB, RF an KNN algorithms • Tuned values of each DT, AB, RF an KNN methods

SVM
• C hyperparameter (ranged 1 to 1000)
• Kernel function (linear, polynomial, RBF, Sigmoid)
• Gamma (range 1e-4 to 1.0)

• C hyperparameter: 701
• Kernel function: RBF
• Gamma: 0.33

CNN
• Number of filters (ranged 32 to 512)
• Filter size (3*3, 5*5 and 7*7)
• Pooling size (2*2 or 3*3)

• Number of filters: 32
• Filter size: 5*5
• Pooling size: 2*2

MLP-ANN
• Number of hidden layers (ranged 2 to 20)
• Number of neurons in each hidden layer (ranged 5 to 40)
• Activation function (relu, tanh, sigmoid)
• Learning rate (ranged 0.001 to 0.1)

• Number of hidden layers: 6
• Number of neurons in each hidden layer: 33
• Activation function: relu
• Learning rate: 0.001

Table 2.  Range and tuned values of hyperparameters of all the machine learning methods utilized in this 
study.

 

Fig. 9.  The process of optimizing MLP-ANN approach.
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efficiency, and reducing operational costs. By providing reliable IFT estimates, the models can aid in making 
more informed decisions in field operations, particularly when experimental measurements are unavailable or 
impractical, thereby improving both safety and efficiency in real-world applications.

Conclusions
Accurate estimation of IFT between crude oil and nitrogen is vital when it comes to enhanced oil recovery 
optimization tasks and upstream reservoir studies. In this research work, intelligent data-driven models based 
on eight machine learning algorithms including Decision Tree (DT), AdaBoost (AB), Random Forest (RF), 
K-nearest Neighbors (KNN), Ensemble Learning (EL), Support Vector Machine (SVM), Convolutional Neural 
Network (CNN) and Multilayer Perceptron Artificial Neural Network (MLP-ANN) were developed to predict 
equilibrium interfacial tension between crude oil and nitrogen phases using an experimental dataset gathered 
from published works previously. The results indicated that almost all data are reliable for the purpose of 
data-driven model development. In addition, it was found that all the effective parameters including pressure, 
temperature and crude oil API inversely affect IFT, with pressure being the most effective parameter. The model 
evaluation using various statistical indices and graphical methods, ultimately, implied that Random Forest is 
the most accurately developed intelligent model to predict IFT of crude oil/nitrogen systems with acceptable 
R-squared (0.959), mean square error (1.65), average absolute relative error (6.85%) of unseen test datapoints. 
The developed model can be made use of without requiring tedious, heavy, arduous and time-consuming 
experimental procedures.

Model

R2 MSE AARE%

Training Validation Test Training Validation Test Training Validation Test

Decision 
Tree 0.998628 0.9419383 0.951227 0.038274 1.9598029 1.969701 0.619965 5.9495814 7.373993

AdaBoost 0.994503 0.9829023 0.930396 0.153343 0.5771109 2.810983 1.385973 4.2744479 10.70054

Random 
Forest 0.962907 0.9752893 0.959012 1.034649 0.834079 1.655327 4.382448 5.2276914 6.855313

KNN 0.943946 0.9767881 0.889473 1.563539 0.7834898 4.463694 4.801762 3.9701605 8.125265

Ensemble 
Learning 0.990196 0.981191 0.943542 0.273472 0.6348763 2.280067 2.304018 4.1129071 7.342033

CNN 0.939171 0.9418796 0.896304 1.696726 1.9617828 4.187813 5.075706 5.2224487 5.948077

SVR 0.915223 0.9957063 0.941175 2.364719 0.1449279 2.375694 5.240866 1.78921 9.307926

MLP-ANN 0.905727 0.9776783 0.929881 2.629609 0.7534436 2.831794 8.442734 3.8741063 12.3595

Table 3.  Statistical indices with regard to training, validation and testing phases for all the developed 
intelligent models.
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Fig. 10.  AARE%, MSE and R-squared values for the testing phase of all the developed models in this study.
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Fig. 11.  Cross plots of actual versus estimated values for all the developed models in this study.
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Figure 11.  (continued)
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Fig. 12.  Relative error % versus actual values for all the developed models in this study.
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Figure 12.  (continued)
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Data availability
The data that supports the finding of this study will be made available from the corresponding author upon 
reasonable academic request.
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Fig. 13.  Trend prediction ability of the developed data-driven models in terms of temperature, pressure and 
crude oil API.
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