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ABSTRACT

The prediction of operons, the smallest unit of tran-
scription in prokaryotes, is the first step towards
reconstruction of a regulatory network at the whole
genome level. Sequence information, in particular
the distance between open reading frames, has been
used to predict if adjacent Escherichia coli genes are
in an operon. While appreciably successful, these
predictions need to be validated and refined experi-
mentally. As a growing number of gene expression
array experiments on E.coli became available, we
investigated to what extent they could be used to
improve and validate these predictions. To this end,
we examined a large collection of published micro-
arry data. The correlation between expression ratios
of adjacent genes was used in a Bayesian classifica-
tion scheme to predict whether the genes are in an
operon or not. We found that for the genes whose
expression levels change significantly across the
experiments in the data set, the currently available
gene expression data allowed a significant refine-
ment of the sequenced-based predictions. We report
these co-expression correlations in an E.coli genomic
map. For a significant portion of gene pairs, however,
the set of array experiments considered did not
contain sufficient information to determine whether
they are in the same transcriptional unit. This is not
due to unreliability of the array data per se, but to the
design of the experiments analyzed. In general,
experiments that perturb a large number of genes offer
more information for operon prediction than confined
perturbations. These results provide a rationale for
conducting expression studies comparing condi-
tions that cause global changes in gene expression.

INTRODUCTION

DNA microarray has generated great enthusiasm and a large
amount of gene expression data in both eukaryotic and
prokaryotic systems. One ultimate goal of such expression

analysis is the deduction of transcriptional regulation in the
entire genome. So far, however, the main focus of the micro-
array experiments has been more specific: rather than
attempting to reconstruct the global regulatory network,
researchers have focused on studying the patterns of expres-
sion changes under a series of very specific conditions. While
less ambitious, this is certainly a better defined problem.
Indeed, the transcriptional regulation is a complex and
condition-dependent network, which we can only probe with
snapshots that capture a small portion of the overall picture.
Studying the changes in expression induced by variation in a
particular environmental condition or gene knockouts has
produced a series of such informative snapshots (1–11).

Because of the unique operon structure, prokaryotes, such as
Escherichia coli, offer an additional feature for the snapshots
of the global regulatory network that hold across different
environmental conditions and genetic backgrounds. In
operons, multiple open reading frames (ORFs) are transcribed
from the same promoter to a single mRNA transcript. Therefore,
while an operon can be induced or repressed by a combination
of different regulatory proteins under a variety of conditions,
the genes in an operon are largely transcribed at the same level.
This implies that, in the absence of measurement error,
secondary promoters, or differential mRNA degradation, the
correlation between expression levels across a series of
different array experiments should be equal to 1 for genes that
are in an operon. Therefore, using the empirical correlation
between gene pairs in a series of array experiments we should
be able to deduce the operon status of each gene.

There are quite a number of well-studied operons, which
conveniently serve as a training set. Previous work has shown
that genes in an operon tend to be separated by a smaller
number of bases than genes not in an operon. Indeed, on the
basis of this information, for every pair of adjacent genes that
are transcribed in the same direction, it has been predicted if
they are in an operon or not (12–14). While reasonably
accurate, these predictions are purely based on sequence
information and lack experimental validation. In this article,
we use empirical correlation between the expression values of
these genes as a validation of the sequence-based prediction.
We then present a series of examples of the features identified
by expression correlation and also discuss the design of
experiments that are best suited for this type of analysis.
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MATERIALS AND METHODS

Microarray data sets

To carry out the analysis, we compiled data from 72 DNA
microarray experiments performed on E.coli: nine from our
laboratory and 63 publicly available. The details of each of
these experiments, their literature references and the location
of the data set are listed in Table 1. Some of these experiments
induced changes in genes regulated directly or indirectly by a
specific regulator, whereas others affect genes regulated by
multiple, and often unknown, regulators. The experiments carried
out in our laboratory include comparison of growth in glucose
versus acetate minimal media in the log phase and time course
of the transition from growth in glucose to acetate (4,5). The
set of 63 publicly available data was produced from seven
laboratories [Tao et al. (3), Arfin et al. (6), Richmond et al. (7),
Khodursky et al. (8), Zimmer et al. (9), Tao et al. (10),
Pomposiello et al. (11) Courcelle et al. (15)] and comprises
a total of 13 different sets of experimental conditions. We
provide a brief description of these experiments in the
Supplementary Material.

Operon training set

The operon status of selected genes was derived from
Regulon DB (16) (http://www.cifn.unam.mx/regulondb/)

with the following revisions: (i) leader peptides were
removed from the operon set because of transcriptional attenuation
within the operon, which may disrupt the co-expression pattern
within the operon; (ii) operons with significant secondary
promoters were deleted; (iii) new operons were added based on
literature data. The 257 known operons we used are listed in
Table S1 of the Supplementary Material. Additionally, 102
genes were identified as single transcriptional units and are
listed in Table S2.

Sequence information and definition of potential operon
pairs (POPs)

The sequence for the whole E.coli K12 genome (17) and the
annotation files were downloaded from the NCBI ftp site
(ftp://ncbi.nlm.nih.gov/genbank/genomes/Bacteria/
Escherichia_coli_K12/). The files were obtained in July 2001,
corresponding to version M54, accession no. U00096, and
contained 4289 ORFs. We scanned the whole E.coli K12
genome to identify pairs of adjacent ORFs transcribed in the
same direction. We call these POPs and we identified 3024 of
them. Among the POPs, we can distinguish three types:
(i) known operon pairs (OPs); (ii) known non-operon pairs
(NOPs); and (iii) pairs of unknown operon status. The OPs are
subunits of operons, as defined in Table S1; we identified 604
OPs. Known NOPs are genes that are (i) adjacent, (ii) tran-
scribed in the same direction and (iii) either containing one
gene that is known to be a single transcript (as defined in
Table S2) or genes in front of known promoters. We opted not
to include among the NOPs the gene pairs formed by the last
element of an known operon and the following gene whose
transcriptional unit was of unknown status (that is we neither
could establish that it is transcribed by itself nor part of the
existing operon). These criteria are illustrated in Figure 1 and
led to the identification of 151 NOPs.

The intergenic distance between the stop codon and the
start codon for a POP was also determined from the annota-
tion file, which was subsequently used in the prediction of
operons.

Expression data statistics

All the analysis here is based on the use of the log10-ratio of
expression values obtained with cDNA experiments. A log-ratio
value close to zero indicates that the gene in question is
expressed at similar levels in the two conditions compared in
the experiment. Let yij be the log-ratio of expression intensities
for gene i in experiment j. Looking at the specific behavior of
a gene, we indicate with yi, the sample average of expression
values for the gene i where n is the number of experiments, in
this case n = 72:

Table 1. DNA microarray data sets used in this work

aData available from http://www.seas.ucla.edu/~liaoj/.

Experiment
number

Condition Number of
measurements

Reference

2 Ihf– versus ihf+ 1 6

1 Minimal versus rich media 1 3

24–46 Tryptophan regulation 23 8

5–15 NtrC regulation 11 9

16 Heat shock 1 7

61–66 Xylose fermentation 6 10

47–60 LexA regulation 14 15

67–69 SoxRS regulation 3 11

70–72 MarRAB regulation 3 11

17–23 Transition from glucose to
acetate

7 This
laboratorya

3–4 Balanced growth in acetate
versus glucose minimal medium

2 This
laboratorya

Figure 1. Illustration of the NOPs definition. Gray boxes indicate genes that are single transcriptional units. Black boxes indicate genes that are part of a known
operon, and the white boxes indicate genes that are of unknown status. NOPs are classified as the gene pairs that contain either (i) a known single transcript or (ii)
the first element of an operon and the gene that precedes it. The last gene in a known operon and the following gene, if this is of unknown status, are not classified
to be a NOP, due to uncertainty on the terminal boundary of an operon.
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The sample standard deviation (SD) of the expression ratio of
a particular gene across all data sets is

2

In each experiment j, we can consider the difference of the log-
ratios of two adjacent genes i and l that are in the same operon
pair k:

DOPkj = yij – ylj 3

If there was no unexplained biological variability and measure-
ment error, each of these differences should be equal to
zero. Thus, if we calculate we obtain a
variance-type measure of the overall noise level. In order to
have a measurement that is less sensitive to outliers, we
considered a more robust estimator of the population SD that is
proportional to the median absolute deviation and is known as
mad. This noise measure can be defined for each experiment j:

Experiment noise SDj = madk(|DOPkj|)/ 4

Here madk represents the mad value across all OPs in the same
experiment.

We also define an overall noise considering all DOPkj across
all experiments:

Noise SD = madkj(|DOPkj|)/ 5

where madkj is the mad value across all OPs in all experiments.
For each gene i, the total variance is the sum of signal variance
and noise variance. Thus, we can define a quantity, total-to-
noise standard deviation (TTNSD) ratio for each gene i across
all experiment, as:

TTNSDi = SDi/noise SD 6

The sample covariance of the expression values of two genes
i and l across all data sets is:

7

The sample correlation (that in the text and figures will be
indicated with r) is the sample covariance divided by the
product of the SDs of the two genes:

Corril = Covil/(SDiSDl) 8

Statistical methods

Aside from the summary measurements that we have defined
above whose meaning we will discuss in more detail in the
following, our analysis required the use of two statistical
methodologies. We used the bootstrap to assess the variability
of some sample quantities of interest and a Bayesian classifica-
tion technique to investigate how correlation of expression

across experiments can be used to predict the operon status of
genes. The bootstrap is a general technique to reconstruct the
effect of sample variability on the base of the observed data
(18). Briefly, a series of hypothetical alternative data sets
(bootstrap samples) is created by re-sampling with replace-
ment from the current set of observations. For each of these
data sets the statistics of interest are calculated and the distribu-
tion of the statistics across the bootstrap samples is taken as
representative of the distribution of the statistics across experi-
ments. In particular, we used the bootstrap methodology to
obtain the SD of the average correlation of a pair of genes in
different groups.

To construct a Bayesian classifier, two ingredients are
needed: a prior probability for each POP of being an operon
and a distribution for the correlation of expression values given
the operon status. The posterior probability of being an operon,
then, will have the following form:

Post(OP/corr) = [(Prior(OP)f(Corr|OP)]/
{(Prior(OP)f(Corr|OP) + [1 – (Prior(OP)]f(Corr|NOP)} 9

where Prior(OP) is the prior probability for each POP of being
an operon and f(Corr|OP) and f(Corr|NOP) are the probability
density of the correlation given that the considered POP is in
an operon or not, respectively. We considered two possible
genome-wide definitions of prior probability: constant prior
for each POP and prior dependent on the gene distance in the
POP. The second type of prior is really the one of interest, as
our main goal is to validate or question the operon predictions
based on distance. We also considered the first prior, however,
so as to have a measure of the indication coming from array
data alone. The specific values of these are described in the
Supplementary Material. Notice that the prior obtained by the
second case is equivalent to the posterior used by Salgado et al.
(12) in their operon-prediction rule. The posterior probabilities
of operons can be used to classify each POP. We treat as equal
the costs of misclassifying a POP as an operon or as a NOP and
hence we classify as an operon each POP whose posterior
probability of operon is higher than 0.5. Such a threshold could
be altered to control the false positive and false negative rates.

RESULTS AND DISCUSSION

Known OPs exhibit higher expression correlation

As described above, we expected the correlation between
expression levels of genes in the same operon to be higher than
the correlation between genes that are not in the same operon.
To investigate to what extent the available data reproduced this
expected pattern, we identified three types of gene pairs with
different levels of co-regulation: (i) 200 randomly selected
pairs; (ii) 151 adjacent genes, transcribed in the same direction
but each pair is known to be in different operons (NOPs); and
(iii) 604 pairs of adjacent genes that are part of the known
operons (OPs).

The empirical expression correlations obtained from the
ensemble of DNA microarray data sets are displayed in
Figure 2. A smooth density estimate is superimposed on the
histogram of correlations in the three different pairs. Figure 2
has two messages: (i) there is a clear trend of increasing
correlation from random pairs to adjacent pairs and OPs;
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(ii) the distinction between OPs and NOPs is not as clear-cut
as one might expect. In detail, genes in OPs tend to have a
higher correlation (mean value of 0.632, which has a bootstrap
SD 0.01) than NOPs (mean 0.177 with bootstrap SD 0.027),
which in turn have a higher correlation than random gene pairs
(not significantly different from 0). Adjacent genes in NOPs
may be slightly correlated because of transcriptional read-
through, as only adjacent non-operon genes that are transcribed
in the same direction are considered as NOPs. As for ‘perfect’
operons, if expression levels could be measured exactly, one
would expect a correlation of 1. There are various reasons that
explain the observed departure from this value. (i) Biologically, it
is known that there exist secondary promoters within operons
that are active in specific conditions. Additionally, regulation
such as transcriptional attenuation or differential degradation
of mRNA from the termini would also reduce the expression
correlation between gene pairs in an operon. (ii) To the biological
variability one has to add the variation due to measurement
errors, which in expression array experiments is considerable.
(iii) The effect of measurement errors depends on the
experimental design. We explore this in detail below.

Determining operon structures requires perturbing a large
number of genes

If the expression level of one gene is not changed in an experi-
ment, the recorded log-ratio represents purely a measurement
error. If we consider two genes in the same operon whose
expression is not perturbed by the experiments, the correlation
between their log-ratios will be close to zero. Hence, it is more
difficult to separate operons from non-operons, the smaller the
percentage of genes perturbed in each experiment. Since this
remark may influence an experimental design decision, we
illustrate it in some detail.

Consider the following simple model for the expression
values of two genes in an operon:

G1t = St + e1t, G2t = St + e2t 10

In any experiment t, the expression level for gene i (Git) is
equal to the true expression level of that operon St plus a
random noise eit. Assume that e1 and e2 have the same distribution

and are independent. Then, the covariance between the
expressions of the two genes, in this case, is equal to the
variance of the signal Var(S) and the correlation is:

Cor(G1,G2) = 1/[1 + Var(e)/Var(S)] 11

It is clear, then, that the covariance will be 1 in the absence of
noise [Var(e) = 0]. The higher the noise, the lower the covari-
ance. It is also clear that a crucial parameter is the ratio
Var(S)/Var(e): if the variance of the signal is significantly
greater than the variance of the noise we will have a strong
correlation and vice versa. If the value St is constant across all
the experiments, so that Var(S) = 0, the expected value of the
correlation that we measure for this pair of genes is zero.
Therefore, it is important that the experimental conditions
under study should cause differential regulation of the operon.
This has important implications in terms of experimental
design. If each array experiment is studying a condition that
will affect only a small number of genes, the signal for most of
the genes will be zero in most of the experiments. This will
translate in a low correlation between genes regardless of
whether they are in an operon or not. If the goal is to collect
information about operon status, it is then preferable to
conduct experiments using conditions that affect a large
number of genes—even if they induce the same kind of variation
in numerous transcriptional units. A collection of such experi-
ments will be more informative than a collection of the same
size of experiments that induce highly specific perturbations.
This point is illustrated with a simulation in the Supplementary
Material. Note that this type of experimental design is at odds
with the conventional reductionist approach, which advocates
changes of one regulator at a time.

Empirical measures of information content: gene-wide and
experiment-wide

The analysis above points to the fact that for some operons, we
may have no information in the existing data set for prediction
of operons. We then needed a measure of the information
available in the whole data set for each gene. We considered
two such measures: (i) frequency of induction (and repression)
of the gene i among all experiments and (ii) the TTNSD ratio

Figure 2. Histogram of the correlation between expression values across experiments of genes in random pair, adjacent and transcribed in the same direction, but
not in an operon adjacent and in an operon. A smooth estimate of the density is superimposed on the histograms.
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for gene i across all experiments. Both of these measures offer
a first screening guideline. We considered the absolute log
expression ratio of a given gene >0.3 as an indication of gene
induction (or repression) under the experimental conditions.
Therefore, the frequency of induction (and repression) is
calculated as the percentage of experiments in which |yij| is
>0.3. The second measure (TTNSD) estimates the total signal
to noise ratio. The noise SD is based on the known operon
status to obtain the equivalent of replicate spots for the same
gene. This value is a useful estimator of overall noise level
without duplicate spots. The total signal is the extent to which
the gene is perturbed across all experiments. Figure 3A shows
that the majority of genes have a TTNSD value around or
below 1, suggesting that the genes are not sufficiently
perturbed beyond the noise level. Figure 3B shows how
TTNSD values correlate with the frequency of perturbation for
all the genes. For a given gene, the percentage of experiments that
perturb the particular gene correlate well with the TTNSD ratio.

Based on these measurements, it is possible to evaluate the
amount of information we have on each gene pair to discrimi-
nate their operon status on the basis of the correlation of their
expression levels across experiments. For example, the data set
does not have sufficient information on genes such as b0322,
b1672 and lysR to determine their operon status, because they
are only induced (or repressed) in a small fraction of experi-
ments and the TTNSD ratio is too low (all ∼0.5). If we restrict
our attention to the OPs with a SD greater than twice the noise
level (TTNSD > 2), for example, the median correlation
increases from 0.68 to 0.85. However, this leaves us with a
small number of OPs and NOPs in the training set. We decided,
then, to use all OPs and NOPs to construct a classifier based on
the simple correlation (the use of more robust definitions of
correlation were explored, but did not substantially change the
results). In a second stage, we evaluate the significance of the
prediction based on the actual information content.

We can also evaluate the information content of each
experiment for our goal. Based on the known operon status of
genes in the training set, we can calculate the experiment noise
SD using the equation shown in Materials and Methods. In
turn, this quantity can be used to define the fraction of induced
genes per experiment as the relative count of how many genes
have an absolute log-ratio >1.5 * Experiment noise SDk. A

detail report of this analysis can be found in the Supplementary
Material. Here we simply note that some experiments in our
collection—such as heat shock, tryptophan starvation and
glucose to acetate transition—induced a large number of genes
and thus contain more information for operon prediction. On
the negative side, the data set we considered lacks experiments
for anaerobic gene regulation, which will limit the information
we can gather on such genes.

Operon prediction based on Bayesian classification

We now proceed to examine to what extent the microarray data
set contributes to the prediction of operons beyond the prediction
based on gene distance. To achieve this goal we used the
Bayesian framework, which makes it particularly easy to
update the current knowledge on a pair of genes on the base of
novel information.

As mentioned before, the ingredients of the Bayesian classi-
fication procedure are the prior distributions and the likelihood
f(r|OP) and f(r|NOP) (distribution of correlation given the
operon status). The specification of the priors is described in
the Supplementary Material. For the classifier based on
correlation in expression only, we used equation 9 with
Prior(OP) = 0.5 for all POPs. Alternatively, we used gene
distance to calculate the POP-specific prior (see Supplementary
Material). We estimated the functions f(r|OP) and f(r|NOP)
with the smooth densities represented in Figure 2, based on the
previously described collection of 604 OPs and 151 NOPs. As
we considered two different specifications of the prior distribution,
we have two sets of posterior probabilities. Figure 4A shows
the posterior probability of an operon based only on expression
correlation, Post(OP|r). The posterior probability obtained
from the second prior is based on both distance and expression
correlation and it is shown in Figure 4B.

We evaluate the correct classification rates for the 604
known OPs and 151 NOPs obtained when classifying as OPs
all the POPs for which (i) Post(OP|r) > 0.5, (ii) Post(OP|d)

Figure 3. Measure of the amount of change in expression in our data set.
(A) Distribution of TTNSD values for genes in the whole genome based on the
entire data set. (B) Scatter plot of the TTNSD ratio for each gene against
fraction of experiments in which the absolute log expression ratio of that gene
is >0.3.

Figure 4. Posterior probability for a pair of genes of being in an operon—as a
function of correlation alone (left) and correlation and distance (right).

Table 2. Comparison of sensitivity and specificity of the different operon
prediction methods

Method Sensitivity Specificity

Correlation 0.82 0.70

Distance 0.84 0.82

Distance and correlation 0.88 0.88
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> 0.5 or (iii) Post(OP|r,d) > 0.5. To avoid underestimating the
error rate, we used a leave-one-out cross-validation procedure,
so that each POP is, in turn, excluded from the training set, the
likelihoods are re-estimated and the status of the POP is
predicted on the basis of the newly evaluated decision
boundary. We calculated the percentage of correctly classified
operons (sensitivity of the operon prediction rule) and
correctly classified non-operons (specificity of the operon
prediction rule). The results are in Table 2.

As a benchmark, recall that the sensitivity and specificity of
a uniform random classification of operon and non-operon are
equal to 0.5. Hence, using the correlation of expression values
across microarray experiments produces a 64% increase in
sensitivity and 40% increase in specificity. Notice that a
comparable sensitivity is obtained, with an increased specifi-
city, by the classifier based on distance alone. This classifier
represents one of the current standards for operon prediction:
the fact that comparable performance can be obtained with
array data is an indication that indeed correlation between
expression levels contains a considerable amount of informa-
tion. The most interesting result, however, is the increase in
sensitivity when both distance and array information are used
at the same time. Not only array data contain a considerable
amount of information but this is, at least in part, independent
from the one carried by distance between genes, so that even if
distance is included in a model, correlation in array experiments
should be added to improve the prediction (the error rate of operon
decreases by 25%).

We then applied the above prediction based on both micro-
array data and distance to the whole POP set. The POPs in the
E.coli genome (total 3024) comprise the collection of all the
pairs of adjacent genes that are transcribed in the same direction
(including OPs, NOPs and POPs of unknown status). The
results of these predictions are presented graphically in an
expression correlation map of the entire E.coli genome, which
is available on the internet (www.seas.ucla.edu/~liaoj). The
structure of the map is illustrated in Figure 5. The map is
organized in minutes. For each gene we report the TTNSD as
an indication of the amount of information available in our data
set to predict its operon status. For each gene pair we report the
expression correlation value and the result of the operon
prediction based on distance and correlation in the expression.
By simply looking up the genes of interest in this map, the
researcher can quickly gather information about the extent to
which currently available microarray results (which are experi-
mental data) confirm or shed suspicion on the prediction of
operon status based on distance (which is purely sequence
based). We illustrate how to best interpret the information in
the map by analyzing one example in detail—further cases are
documented in the Supplementary Material.

Figures 6 and 7 offer a more detailed version of the information
condensed in the genome map. We analyze three operons and
three NOPs from our training set. For each gene pair, we present
the scatter plot of the expression values of each of the two genes
across all the experiments. Each pair of log-ratios is indicated with
a number representing the experiment that generates it. These

Figure 5. Example of gene map. Each box represents a gene. Above each is the TTNSD value given for that gene. Between the genes transcribed in the same
direction is the correlation coefficient given. The first arrow represents the predicted operon structure when both distance and microarray data are taken into
account. The second arrow represents the operon structure as it is predicted by distance alone. On the left an approximate minute count is given.
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scatter plots visualize both the correlation in expression between
the genes in the pair and the amount of variation that the
expression of each of the genes experience across experiments.

Figure 6 presents the scatter plot of the log-ratio in the 72
considered experiments for the genes b2096 (gatY) to b2090
(gatR) (in order of transcription). This is the gatYZABCDR
operon, which is involved in galactitol metabolism. Nobelmann
and Lengeler (19) reported two transcriptional initiation sites
upstream of gatY and gatR. A quick look at Figure 5 minute
46.70 shows how the information in Figure 6 is condensed in
the map. The prediction based both on distance and array
information validates the (correct) prediction based on
distance. Both the scatter plots in Figure 6 and the correlation

values in Figure 5 indicate that the array experiments support
the hypothesis of an operon involving these genes. The high
TTNSD values and the range of expression values indicate that
the expression levels of this operon were perturbated a number
of times in the array experiments, so that the prediction based
on correlation can be considered relevant. It is interesting to
note that the last gene in the operon (gatR) is not often acti-
vated and does not exhibit the same correlation, suggesting the
presence of a more important promoter between this and the
previous gene. Notice that there is indeed space for such a
regulatory element, with 100 bp separating the two genes.
Indeed, it has been documented that in E.coli K-12 there is a
potential IS3E insert that might interrupt the gatR gene (19).

Figure 6. Scatter plot of expression values for the adjacent genes in the gatYZABCDR operon.

Figure 7. Scatter plot of expression values for the adjacent genes in three NOPs (from left to right): b1334, b1335; b1520, b1521; and b2698, b2699.
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Figure 7 illustrates three cases of NOPs (only the last one of
these is illustrated in Fig. 5). In Figure 7A there is no correlation
between the points, but also not much signal, so that we cannot
infer any real conclusions from the data. In Figure 7B, we have
relatively high signal and no correlation, making a strong case
in favor of the non-operon prediction and hence confirming the
distance-based prediction. Indeed, a potential Rho-dependent
terminator hairpin loop has been documented between b1520
and b1521, suggesting that this is really a NOP (20). In Figure
7C we have a significant amount of signal and significant
amount of correlation suggesting that actually this pair of
genes (recA and oraA) may be in an operon. This contradicts
the information on which our non-operon training set was
constructed and also the prediction based on distance. The
literature with regard to these two genes is inconclusive
(15,21). They may either be in an operon or are regulated by
the same regulator (LexA) but transcribed from different
promoters. It is notable that the array data would have difficulties
distinguishing between the two cases.

CONCLUSION

The empirical nature of expression array measurements offers
an important complement to the information that can be
obtained by the analysis of genome sequences. Multiple
research groups are trying to use array information to validate
and improve binding motifs prediction, for example. In E.coli,
one of the simplest uses of sequence information is the prediction
of operons based on the distance in base pairs between two
adjacent genes transcribed in the same direction. The results of
gene expression array experiments are an important source of
data to verify such predictions. We used a set of 72 experiments
for this purpose and proposed a measure of information
content of each gene in the data set in terms of the TTNSD
value. We also describe the design of the experiment that is
more useful to carry out operon validation on the base of
expression data. The results of our work are numerous. On the
one hand, we provide one of the first large-scale validations of
the information content of array experiments. On the other
hand, we offer an up-to-date and easy to consult database of
how currently available array experiments validate, question or
complement current knowledge on the operon status of adjacent
genes. Additionally, we point the experimenters towards novel
types of array experiments in E.coli. In particular, we highlight
the importance and the value of employing conditions that affect
a large number of genes, when trying to reconstruct global
regulatory patterns. Another conclusion of our study is the
necessity of using a large number of experiments to reconstruct
a global regulatory network. We found that our collection of 72
arrays represented a bare minimum, given the amount of
missing data and the fact that a majority of the genes is not
perturbed in each experiment.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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