Skip to main content
. 2025 Jan 6;15:903. doi: 10.1038/s41598-025-85394-4

Table 2.

Performance Metrics of Machine Learning Models.

Model AUROC Sensitivity Specificity
Logistic Regression 0.692 0.7236 0.7161
MLP 0.664 0.6829 0.6897
Random Forest 0.765 0.7398 0.7240
CATBoost 0.763 0.7073 0.7145
EBM 0.780 0.7154 0.7198
GBM 0.791 0.7821 0.9652

AUC (Area Under the Curve) = The area under the ROC curve, MLP = Multi-Layer Perceptron, CATBoost = Categorical Boosting, EBM = Explainable Boosting Machine, GBM = Gradient Boosting Machine.