TABLE 1.
mDSC | mHD | DSC of a single organ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Model | Year | DSC | HD | Aorta | Gallbladder | Kidney(L) | Kidney(R) | Liver | Pancreas | Spleen | Stomach |
U-Net (Ronneberger et al., 2015) | 2015 | 76.85% | 39.70 | 89.07 | 69.72 | 77.77 | 68.6 | 93.43 | 53.98 | 86.67 | 75.58 |
U-Net++ (Zhou et al., 2018) | 2018 | 76.91% | 36.93 | 88.19 | 68.89 | 81.76 | 75.27 | 93.01 | 58.20 | 83.44 | 70.52 |
Residual U-Net (Diakogiannis et al., 2020) | 2018 | 76.95% | 38.44 | 87.06 | 66.05 | 83.43 | 76.83 | 93.99 | 51.86 | 85.25 | 70.13 |
Att-Unet (Oktay et al., 2018) | 2018 | 77.77% | 36.02 | 89.55 | 68.88 | 77.98 | 71.11 | 93.57 | 58.04 | 87.30 | 75.75 |
MultiResUNet (Ibtehaz and Rahman, 2020) | 2020 | 77.42% | 36.84 | 87.73 | 65.67 | 82.08 | 70.43 | 93.49 | 60.09 | 85.23 | 75.66 |
TransUNet (Chen et al., 2021) | 2021 | 77.48% | 31.69 | 87.23 | 63.13 | 81.87 | 77.02 | 94.08 | 55.86 | 85.08 | 75.62 |
UCTransNet (Wang et al., 2022a) | 2022 | 78.23% | 26.75 | 84.25 | 64.65 | 82.35 | 77.65 | 94.36 | 58.18 | 84.74 | 79.66 |
TransNorm (Azad et al., 2022) | 2022 | 78.40% | 30.25 | 86.23 | 65.1 | 82.18 | 78.63 | 94.22 | 55.34 | 89.50 | 76.01 |
MT-UNet (Wang et al., 2022b) | 2022 | 78.59% | 26.59 | 87.92 | 64.99 | 81.47 | 77.29 | 93.06 | 59.46 | 87.75 | 76.81 |
swin-unet (Cao et al., 2022) | 2022 | 79.13% | 21.55 | 85.47 | 66.53 | 83.28 | 79.61 | 94.29 | 56.58 | 90.66 | 76.60 |
DA-TransUNet (Sun et al., 2023) | 2023 | 79.80% | 23.48 | 86.54 | 65.27 | 81.70 | 80.45 | 94.57 | 61.62 | 88.53 | 79.73 |
MIPC-Net(Ours) | 80.00% | 19.32 | 87.30 | 66.43 | 83.24 | 80.37 | 94.48 | 59.45 | 89.20 | 79.55 |
The bold values indicate the best performance among all the methods compared in each respective evaluation metric. For each row in a table, the bold number represents the method that achieves the highest score or lowest error on that particular metric, demonstrating its superior performance relative to the other approaches.